Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Type
4.2. Study Population, Inclusion and Exclusion Criteria
4.3. Diagnostic Procedures
4.4. Statistics
4.5. Ethics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Target Pathogen | Target Gene | Forward Primer Sequence | Reverse Primer Sequence | Probe Sequence | Reference, where the Detailed Protocol Can Be Found |
---|---|---|---|---|---|
Ancylostoma spp. | ITS2 | GAATGACAGCAAACTCGTTGTTG | ATACTAGCCACTGCCGAAACGT | ATCGTTTACCGACTTTAG | [40] |
Ascaris lumbricoides | ITS1 | GTAATAGCAGTCGGCGGTTTCTT | GCCCAACATGCCACCTATTC | TTGGCGGACAATTGCATGCGAT | [40] |
Campylobacter jejuni | gyrA | CTATAACAACTGCACCTACTAAT | AAGTGTAAGCACACAAGGTA | CTTAATAGCCGTCACCCCAC | [44] |
Cryptosporidium parvum | 138-bp fragment inside the C. parvum-specific 452-bp fragment | CGCTTCTCTAGCCTTTCATGA | CTTCACGTGTGTTTGCCAAT | CCAATCACAGAATCATCAGAATCGACTGGTATC | [40] |
Entamoeba histolytica | SSU rRNA gene | ATTGTCGTGGCATCCTAACTCA | GCGGACGGCTCATTATAACA | TCATTGAATGAATTGGCCATTT | [40] |
Enterobius vermicularis | ITS1 | CGGTGTAATTTTGTTGGTGTCTATG | TGGCAGCATTGCAAACTAATG | TGTGCCAGTCAACGCCTAAACCGTC | [40] |
Escherichia coli, enteroaggregative (EAEC) | aatA | CAATGTATAGAAATCCGCTGTT | CTGTCAGATAAAATCTCGAGAGAA | CATGTTCCTGAGAGTGCAATCCCAG | [42] |
Escherichia coli, enteropathogenic (EPEC) | eae | CATTGATCAGGATTTTTCTGGTGATA | CTCATGCGGAAATAGCCGTTA | ATAGTCTCGCCAGTATTCGCCACCAATACC | [42] |
Escherichia coli, enterotoxigenic (ETEC) | eltB | GCGTTACTATCCTCTCTATG | TGATATTCCGAACATAGTTCTGTA | TAGACTGGGGAGCTCCGTGTGC | [42] |
estB | TCCCTCAGGATGCTAAAC | CAACAAAGCAACAGGTACATACGT | ATAGCACCCGGTACAAGCAGG | [42] | |
Giardia intestinalis | SSU rRNA gene | GACGGCTCAGGACAACGGTT | TTGCCAGCGGTGTCCG | CCCGCGGCGGTCCCTGCTAG | [40] |
Hymenolepis nana | ITS1 | CATTGTGTACCAAATTGATGATGAGTA | CAACTGACAGCATGTTTCGATATG | CGTGTGCGCCTCTGGCTTACCG | [40] |
Necator americanus | ITS2 | CTGTTTGTCGAACGGTACTTGC | ATAACAGCGTGCACATGTTGC | CTGTACTACGCATTGTATAC | [40] |
Salmonella spp. | ttrC | ATTGTTGATTCAGGTACAAAC | AATTAGCCATGTTGTAATCTC | CAAGTTCAACGCGCAATTTA | [44] |
Schistosoma spp. | ITS2 | GGTCTAGATGACTTGATYGAGATGCT | TCCCGAGCGYGTATAATGTCATTA | TGGGTTGTGCTCGAGTCGTGGC | [40] |
Shigella spp./Escherichia coli, enteroinvasive (EIEC) | ipaH | CAGAAGAGCAGAAGTATGAG | CAGTACCTCGTCAGTCAG | ACAGGTGATGCGTGAGACTG | [44] |
Strongyloides stercoralis | 18S rRNA gene | GAATTCCAAGTAAACGTAAGTCATTAGC | TGCCTCTGGATATTGCTCAGTTC | ACACACCGGCCGTCGCTGC | [40] |
Taenia saginata | ITS1 | GCGTCGTCTTTGCGTTACAC | TGACACAACCGCGCTCTG | CCACAGCACCAGCGACAGCAGCAA | [40] |
Taenia solium | ITS1 | ATGGATCAATCTGGGTGGAGTT | ATCGCAGGGTAAGAAAAGAAGGT | TGGTACTGCTGTGGCGGCGG | [40] |
Trichuris trichiura | 18S rRNA gene | TTGAAACGACTTGCTCATCAACTT | CTGATTCTCCGTTAACCGTTGTC | CGATGGTACGCTACGTGCTTACCATGG | [40] |
Tropheryma whipplei | Dig 15 | TGTTTTGTACTGCTTGTAACAGGATCT | GATGATAGGAGGGATAGA-GCAGGA | AGAGATACATTTGTGTTAGTTGTTACA | [41] |
Dig 15 | TGAGTGATGGTAGTCTGAGAGATATGT | TCCATAACAAAGACAACAACCAATC | AGAAGAAGATGTTACGGGTTG | [41] | |
Yersinia spp. | ail | GCATTAACGAATATGTTAGC | ATCGAGTTTGGAGTATTCAT | CCGCTTCCAAATTTTGTCAT | [44] |
References
- Frickmann, H.; Hagen, R.M.; Geiselbrechtinger, F.; Hoysal, N. Infectious diseases during the European Union training mission Mali (EUTM MLI)—A four-year experience. Mil. Med. Res. 2018, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.C.; Dean, A.G.; Parker, G.W. Seasonal gastroenteritis and malabsorption at an American military base in the Philippines. II. Malabsorption following the acute illness. Am. J. Epidemiol. 1972, 95, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Dean, A.G.; Couch, R.B.; Jones, T.C.; Douglas, R.G., Jr. Seasonal gastroenteritis and malabsorption at an American military base in the Philippines. 3. Microbiologic investigations and volunteer experiments. Am. J. Epidemiol. 1972, 95, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Frickmann, H.; Alker, J.; Hansen, J.; Dib, J.C.; Aristizabal, A.; Concha, G.; Schotte, U.; Kann, S. Seasonal Differences in Cyclospora cayetanensis Prevalence in Colombian Indigenous People. Microorganisms 2021, 9, 627. [Google Scholar] [CrossRef]
- Almeria, S.; Cinar, H.N.; Dubey, J.P. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019, 7, 317. [Google Scholar] [CrossRef] [Green Version]
- Shields, J.M.; Olson, B.H. Cyclospora cayetanensis: A review of an emerging parasitic coccidian. Int. J. Parasitol. 2003, 33, 371–391. [Google Scholar] [CrossRef]
- Li, J.; Wang, R.; Chen, Y.; Xiao, L.; Zhang, L. Cyclospora cayetanensis infection in humans: Biological characteristics, clinical features, epidemiology, detection method and treatment. Parasitology 2020, 147, 160–170. [Google Scholar] [CrossRef]
- Moodley, D.; Jackson, T.F.; Gathiram, V.; van den Ende, J. Cryptosporidium infections in children in Durban. Seasonal variation, age distribution and disease status. S. Afr. Med. J. 1991, 79, 295–297. [Google Scholar]
- Das, S.K.; Begum, D.; Ahmed, S.; Ferdous, F.; Farzana, F.D.; Chisti, M.J.; Latham, J.R.; Talukder, K.A.; Rahman, M.M.; Begum, Y.A.; et al. Geographical diversity in seasonality of major diarrhoeal pathogens in Bangladesh observed between 2010 and 2012. Epidemiol. Infect. 2014, 142, 2530–2541. [Google Scholar] [CrossRef]
- Kalupahana, R.S.; Mughini-Gras, L.; Kottawatta, S.A.; Somarathne, S.; Gamage, C.; Wagenaar, J.A. Weather correlates of Campylobacter prevalence in broilers at slaughter under tropical conditions in Sri Lanka. Epidemiol. Infect. 2018, 146, 972–979. [Google Scholar] [CrossRef] [Green Version]
- Furuya-Kanamori, L.; McKenzie, S.J.; Yakob, L.; Clark, J.; Paterson, D.L.; Riley, T.V.; Clements, A.C. Clostridium difficile infection seasonality: Patterns across hemispheres and continents—A systematic review. PLoS ONE 2015, 10, 0120730. [Google Scholar] [CrossRef]
- Loderstädt, U.; Hagen, R.M.; Hahn, A.; Frickmann, H. New Developments in PCR-Based Diagnostics for Bacterial Pathogens Causing Gastrointestinal Infections—A Narrative Mini-Review on Challenges in the Tropics. Trop. Med. Infect. Dis. 2021, 6, 96. [Google Scholar] [CrossRef] [PubMed]
- Gomwalk, N.E.; Umoh, U.J.; Gosham, L.T.; Ahmad, A.A. Influence of climatic factors on rotavirus infection among children with acute gastroenteritis in Zaria, northern Nigeria. J. Trop. Pediatr. 1993, 39, 293–297. [Google Scholar] [CrossRef]
- Hieber, J.P.; Shelton, S.; Nelson, J.D.; Leon, J.; Mohs, E. Comparison of human rotavirus disease in tropical and temperate settings. Am. J. Dis. Child. 1978, 132, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Ureña-Castro, K.; Ávila, S.; Gutierrez, M.; Naumova, E.N.; Ulloa-Gutierrez, R.; Mora-Guevara, A. Seasonality of Rotavirus Hospitalizations at Costa Rica’s National Children’s Hospital in 2010–2015. Int. J. Environ. Res. Public Health 2019, 16, 2321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atchison, C.J.; Tam, C.C.; Hajat, S.; van Pelt, W.; Cowden, J.M.; Lopman, B.A. Temperature-dependent transmission of rotavirus in Great Britain and The Netherlands. Proc. Biol. Sci. 2010, 277, 933–942. [Google Scholar] [CrossRef]
- Ansari, S.A.; Springthorpe, V.S.; Sattar, S.A. Survival and vehicular spread of human rotaviruses: Possible relation to seasonality of outbreaks. Rev. Infect. Dis. 1991, 13, 448–461. [Google Scholar] [CrossRef]
- Cook, S.M.; Glass, R.I.; LeBaron, C.W.; Ho, M.S. Global seasonality of rotavirus infections. Bull. World Health Organ. 1990, 68, 171–177. [Google Scholar]
- Chiang, G.P.K.; Chen, Z.; Chan, M.C.W.; Lee, S.H.M.; Kwok, A.K.; Yeung, A.C.M.; Nelson, E.A.S.; Hon, K.L.; Leung, T.F.; Chan, P.K.S. Clinical features and seasonality of parechovirus infection in an Asian subtropical city, Hong Kong. PLoS ONE 2017, 12, e0184533. [Google Scholar] [CrossRef]
- Tao, C.W.; Hsu, B.M.; Kao, P.M.; Huang, W.C.; Hsu, T.K.; Ho, Y.N.; Lu, Y.J.; Fan, C.W. Seasonal difference of human adenoviruses in a subtropical river basin based on 1-year monthly survey. Environ. Sci. Pollut. Res. Int. 2016, 23, 2928–2936. [Google Scholar] [CrossRef]
- Bless, P.J.; Schmutz, C.; Suter, K.; Jost, M.; Hattendorf, J.; Mäusezahl-Feuz, M.; Mäusezahl, D. A tradition and an epidemic: Determinants of the campylobacteriosis winter peak in Switzerland. Eur. J. Epidemiol. 2014, 29, 527–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loh, T.P.; Lai, F.Y.; Tan, E.S.; Thoon, K.C.; Tee, N.W.; Cutter, J.; Tang, J.W. Correlations between clinical illness, respiratory virus infections and climate factors in a tropical paediatric population. Epidemiol. Infect. 2011, 139, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.S.; Yip, W.C.; Yap, H.K. Seasonal variations in admissions to a tropical paediatric unit. Trop. Geogr. Med. 1983, 35, 167–172. [Google Scholar] [PubMed]
- Kelly, M.T.; Stroh, E.M. Temporal relationship of Vibrio parahaemolyticus in patients and the environment. J. Clin. Microbiol. 1988, 26, 1754–1756. [Google Scholar] [CrossRef] [Green Version]
- Rehnstam-Holm, A.S.; Atnur, V.; Godhe, A. Defining the niche of Vibrio parahaemolyticus during pre- and post-monsoon seasons in the coastal Arabian Sea. Microb. Ecol. 2014, 67, 57–65. [Google Scholar] [CrossRef]
- Kann, S.; Bruennert, D.; Hansen, J.; Mendoza, G.A.C.; Gonzalez, J.J.C.; Quintero, C.L.A.; Hanke, M.; Hagen, R.M.; Backhaus, J.; Frickmann, H. High Prevalence of Intestinal Pathogens in Indigenous in Colombia. J. Clin. Med. 2020, 9, 2786. [Google Scholar] [CrossRef]
- Sandmann, F.G.; Jit, M.; Robotham, J.V.; Deeny, S.R. Burden, duration and costs of hospital bed closures due to acute gastroenteritis in England per winter, 2010/11–2015/16. J. Hosp. Infect. 2017, 97, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Onozuka, D.; Gasparrini, A.; Sera, F.; Hashizume, M.; Honda, Y. Modeling Future Projections of Temperature-Related Excess Morbidity due to Infectious Gastroenteritis under Climate Change Conditions in Japan. Environ. Health Perspect. 2019, 127, 77006. [Google Scholar] [CrossRef]
- O’Ryan, M.; Prado, V.; Pickering, L.K. A millennium update on pediatric diarrheal illness in the developing world. Semin. Pediatr. Infect. Dis. 2005, 16, 125–136. [Google Scholar] [CrossRef]
- Altekruse, S.F.; Swerdlow, D.L.; Stern, N.J. Microbial food borne pathogens. Campylobacter jejuni. Vet. Clin. N. Am. Food Anim. Pract. 1998, 14, 31–40. [Google Scholar] [CrossRef]
- Keita, A.K.; Brouqui, P.; Badiaga, S.; Benkouiten, S.; Ratmanov, P.; Raoult, D.; Fenollar, F. Tropheryma whipplei prevalence strongly suggests human transmission in homeless shelters. Int. J. Infect. Dis. 2013, 17, e67–e68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumkamp, R.; Sarpong, N.; Schwarz, N.G.; Adlkofer, J.; Loag, W.; Eibach, D.; Hagen, R.M.; Adu-Sarkodie, Y.; Tannich, E.; May, J. Gastrointestinal infections and diarrheal disease in Ghanaian infants and children: An outpatient case-control study. PLoS Negl. Trop. Dis. 2015, 9, e0003568. [Google Scholar]
- Frickmann, H.; Schwarz, N.G.; Rakotozandrindrainy, R.; May, J.; Hagen, R.M. PCR for enteric pathogens in high-prevalence settings. What does a positive signal tell us? Infect. Dis. 2015, 47, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Torres, A.G. Enteropathogenic Escherichia coli: Foe or innocent bystander? Clin. Microbiol. Infect. 2015, 21, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keita, A.K.; Bassene, H.; Tall, A.; Sokhna, C.; Ratmanov, P.; Trape, J.F.; Raoult, D.; Fenollar, F. Tropheryma whipplei: A common bacterium in rural Senegal. PLoS Negl. Trop. Dis. 2011, 5, e1403. [Google Scholar] [CrossRef]
- Keita, A.K.; Dubot-Pérès, A.; Phommasone, K.; Sibounheuang, B.; Vongsouvath, M.; Mayxay, M.; Raoult, D.; Newton, P.N.; Fenollar, F. High prevalence of Tropheryma whipplei in Lao kindergarten children. PLoS Negl. Trop. Dis. 2015, 9, e0003538. [Google Scholar] [CrossRef] [Green Version]
- Ramharter, M.; Harrison, N.; Bühler, T.; Herold, B.; Lagler, H.; Lötsch, F.; Mombo-Ngoma, G.; Müller, C.; Adegnika, A.A.; Kremsner, P.G.; et al. Prevalence and risk factor assessment of Tropheryma whipplei in a rural community in Gabon: A community-based cross-sectional study. Clin. Microbiol. Infect. 2014, 20, 1189–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinnemeier, C.D.; Klupp, E.M.; Krumkamp, R.; Rolling, T.; Fischer, N.; Owusu-Dabo, E.; Addo, M.M.; Adu-Sarkodie, Y.; Käsmaier, J.; Aepfelbacher, M.; et al. Tropheryma whipplei in children with diarrhoea in rural Ghana. Clin. Microbiol. Infect. 2016, 22, 65.e1–65.e3. [Google Scholar] [CrossRef]
- Frickmann, H.; Hoffmann, T.; Köller, T.; Hahn, A.; Podbielski, A.; Landt, O.; Loderstädt, U.; Tannich, E. Comparison of five commercial real-time PCRs for in-vitro diagnosis of Entamoeba histolytica, Giardia duodenalis, Cryptosporidium spp., Cyclospora cayetanensis, and Dientamoeba fragilis in human stool samples. Travel Med. Infect. Dis. 2021, 41, 102042. [Google Scholar] [CrossRef]
- Köller, T.; Hahn, A.; Altangerel, E.; Verweij, J.J.; Landt, O.; Kann, S.; Dekker, D.; May, J.; Loderstädt, U.; Podbielski, A.; et al. Comparison of commercial and in-house real-time PCR platforms for 15 parasites and microsporidia in human stool samples without a gold standard. Acta Trop. 2020, 207, 105516. [Google Scholar] [CrossRef]
- Frickmann, H.; Hanke, M.; Hahn, A.; Schwarz, N.G.; Landt, O.; Moter, A.; Kikhney, J.; Hinz, R.; Rojak, S.; Dekker, D.; et al. Detection of Tropheryma whipplei in stool samples by one commercial and two in-house real-time PCR assays. Trop. Med. Int. Health 2019, 24, 101–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, A.; Luetgehetmann, M.; Landt, O.; Schwarz, N.G.; Frickmann, H. Comparison of one commercial and two in-house TaqMan multiplex real-time PCR assays for detection of enteropathogenic, enterotoxigenic and enteroaggregative Escherichia coli. Trop. Med. Int. Health 2017, 22, 1371–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanida, K.; Hahn, A.; Frickmann, H. Comparison of two commercial and one in-house real-time PCR assays for the diagnosis of bacterial gastroenteritis. Eur. J. Microbiol. Immunol. 2020, 10, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Wiemer, D.; Loderstaedt, U.; von Wulffen, H.; Priesnitz, S.; Fischer, M.; Tannich, E.; Hagen, R.M. Real-time multiplex PCR for simultaneous detection of Campylobacter jejuni, Salmonella, Shigella and Yersinia species in fecal samples. Int. J. Med. Microbiol. 2011, 301, 577–584. [Google Scholar] [CrossRef]
Screening in the Rainy Season * of 2014 (n = 105) | Screening in the Dry Season * of 2018 (n = 227) | |||
---|---|---|---|---|
Assessed Microorganism | Positive, n (%) | Negative, n (%) | Positive, n (%) | Negative, n (%) |
Bacteria (in the order of total numbers of detections within the study) | ||||
Enteropathogenic Escherichia coli (EPEC) | 45 (42.9%) | 60 (57.1%) | 65 (28.6%) | 162 (71.4%) |
Enteroaggregative Escherichia coli (EAEC) | 69 (65.7%) | 36 (34.3%) | 40 (17.6%) | 187 (32.4%) |
Campylobacter jejuni | 31 (29.5%) | 74 (70.5%) | 48 (22.2%) | 168 (77.8%) |
Enterotoxigenic Escherichia coli (ETEC) | 44 (41.9%) | 61 (58.1%) | 25 (11.0%) | 202 (89.0%) |
Tropheryma whipplei | 7 (6.7%) | 98 (93.3%) | 12 (5.3%) | 215 (94.7%) |
Salmonella spp. | 0 (0.0%) | 105 (100.0%) | 6 (2.6%) | 221 (97.4%) |
Shigella spp./enteroinvasive Escherichia coli (EIEC) | 2 (1.9%) | 103 (98.1%) | 4 (1.8%) | 225 (98.2%) |
Yersinia spp. | 0 (0.0%) | 105 (100.0%) | 0 (0.0%) | 227 (100.0%) |
Protozoa (in the order of total numbers of detections within in the study) | ||||
Giardia intestinalis | 50 (57.6%) | 55 (52.4%) | 117 (54.2%) | 99 (45.8%) |
Entamoeba histolytica | 7 (6.7%) | 98 (93.3%) | 2 (0.9%) | 214 (99.1%) |
Cryptosporidium parvum | 1 (0.9%) | 104 (99.1%) | 1 (0.4%) | 226 (99.6%) |
Helminths (in the order of total numbers of detections within in the study) | ||||
Hymenolepis nana | 21 (20.0%) | 84 (80.0%) | 43 (18.9%) | 184 (81.1%) |
Necator americanus | 20 (19.0%) | 85 (81.0%) | 22 (10.2%) | 194 (89.8%) |
Trichuris trichiura | 23 (21.9%) | 82 (78.1%) | 12 (5.3%) | 215 (94.7%) |
Ascaris lumbricoides | 11 (10.5%) | 94 (89.5%) | 21 (9.7%) | 195 (90.3%) |
Taenia solium | 6 (5.7%) | 99 (94.3%) | 4 (1.8%) | 223 (98.2%) |
Strongyloides stercoralis | 3 (2.9%) | 102 (97.1%) | 6 (2.8%) | 210 (97.2%) |
Enterobius vermicularis | 2 (1.9%) | 103 (98.1%) | 4 (1.8%) | 225 (98.2%) |
Schistosoma spp. | 0 (0.0%) | 105 (100.0%) | 1 (0.4%) | 226 (99.6%) |
Ancylostoma spp. | 0 (0.0%) | 105 (100.0%) | 0 (0.0%) | 227 (100.0%) |
Taenia saginata | 0 (0.0%) | 105 (100.0%) | 0 (0.0%) | 227 (100.0%) |
Pathogens | More Detections in the Rainy Season Than in the Dry Season | Male Versus Female (Reference) | Gastrointestinal Symptoms | Age Per 1 Year | Body Mass Index per 1 kg/m2 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Ordered by Bacteria, Protozoa and Helminths | Odds Ratio in the Multimodal Model | Significance (Threshold 0.05) | Odds Ratio in the Multimodal Model | Significance (Threshold 0.05) | Odds Ratio in the Multimodal Model | Significance (Threshold 0.05) | Odds Ratio in the Multimodal Model | Significance (Threshold 0.05) | Odds Ratio in the Multimodal Model | Significance (Threshold 0.05) |
Enteropathogenic Escherichia coli (EPEC) | 1.943 | 0.0104 | 0.855 | 0.5271 | 1.481 | 0.2433 | 1.031 | 0.0005 | 0.935 | 0.0582 |
Enteroaggregative Escherichia coli (EAEC) | 9.513 | <0.0001 | 0.648 | 0.1182 | 1.233 | 0.5862 | 1.009 | 0.3379 | 1.009 | 0.7910 |
Campylobacter jejuni | 1.735 | 0.0601 | 1.181 | 0.5459 | 0.700 | 0.4336 | 0.957 | 0.0004 | 1.017 | 0.6635 |
Enterotoxigenic Escherichia coli (ETEC) | 6.130 | <0.0001 | 0.928 | 0.8005 | 0.947 | 0.8989 | 0.998 | 0.8485 | 0.990 | 0.7890 |
Tropheryma whipplei | 1.975 | 0.2136 | 2.588 | 0.0795 | 0.918 | 0.9029 | 1.007 | 0.6574 | 0.795 | 0.0091 |
Giardia intestinalis | 0.810 | 0.3918 | 1.274 | 0.2968 | 0.949 | 0.8789 | 0.982 | 0.0234 | 0.989 | 0.7109 |
Entamoeba histolytica | 10.862 | 0.0057 | 0.247 | 0.0952 | 0.836 | 0.8828 | 0.996 | 0.8909 | 0.867 | 0.2418 |
Hymenolepis nana | 1.063 | 0.8426 | 1.255 | 0.4263 | 0.849 | 0.7002 | 0.988 | 0.2471 | 1.012 | 0.7513 |
Necator americanus | 2.118 | 0.0279 | 0.624 | 0.1759 | 0.786 | 0.6511 | 1.009 | 0.3863 | 0.986 | 0.7592 |
Trichuris trichiura | 5.411 | <0.0001 | 1.259 | 0.5521 | 0.763 | 0.6500 | 0.992 | 0.5409 | 0.948 | 0.3428 |
Ascaris lumbricoides | 1.177 | 0.6855 | 0.593 | 0.1795 | 0.911 | 0.8721 | 1.004 | 0.7310 | 0.950 | 0.3514 |
Taenia solium | 2.889 | 0.1169 | 0.838 | 0.7950 | 1.502 | 0.6115 | 1.039 | 0.0195 | 0.949 | 0.5449 |
Strongyloides stercoralis | 0.941 | 0.9334 | 1.372 | 0.6475 | 1.604 | 0.5792 | 1.012 | 0.5283 | 1.028 | 0.7175 |
Study Population 1 (Rainy Season, July–November 2014) | Study Population 2 (Dry Season, January–April 2018) | |||||||
---|---|---|---|---|---|---|---|---|
Village (Number (n) of individuals assessed with coverage in %) | n | coverage of the entire population in % | n | coverage of the entire population in % | ||||
Tezhumake, Department Cesar | 6 | 27.6 | 84 | 33.6 | ||||
Siminke, Department La Guajira | 3 | 20.0 | 25 | 16.1 | ||||
Valledapur, Department Cesar | 5 | 0.01 | 76 | 63.3 | ||||
Ashintukwa, Department La Guajira | n.a. | n.a. | 42 | 16.8 | ||||
All | 105 | 227 | ||||||
Sex (n, %) | n | % | n | % | ||||
Female | 54 | 51.4 | 114 | 50.2 | ||||
Male | 51 | 48.6 | 113 | 49.8 | ||||
Gastrointestinal symptoms (n, %) | n | % | n | % | ||||
No | 89 | 84.8 | 194 | 85.5 | ||||
Yes | 16 | 15.2 | 33 | 14.5 | ||||
Age in years | n | mean | median | STD | n | mean | median | STD |
105 | 24.5 | 20.0 | 18.0 | 227 | 19.6 | 10.6 | 18.0 | |
Body Size in cm | n | mean | median | STD | n | mean | median | STD |
104 | 136.0 | 144.0 | 24.4 | 225 | 124.8 | 125.0 | 25.9 | |
Weight in kg | n | mean | median | STD | n | mean | median | STD |
103 | 41.7 | 45.0 | 16.2 | 226 | 33.9 | 26.7 | 19.0 | |
Body mass index (BMI) in kg/m2 | n | mean | median | STD | n | mean | median | STD |
103 | 21.5 | 20.8 | 3.9 | 225 | 19.9 | 18.2 | 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kann, S.; Hartmann, M.; Alker, J.; Hansen, J.; Dib, J.C.; Aristizabal, A.; Concha, G.; Schotte, U.; Kreienbrock, L.; Frickmann, H. Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites. Pathogens 2022, 11, 214. https://doi.org/10.3390/pathogens11020214
Kann S, Hartmann M, Alker J, Hansen J, Dib JC, Aristizabal A, Concha G, Schotte U, Kreienbrock L, Frickmann H. Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites. Pathogens. 2022; 11(2):214. https://doi.org/10.3390/pathogens11020214
Chicago/Turabian StyleKann, Simone, Maria Hartmann, Juliane Alker, Jessica Hansen, Juan Carlos Dib, Andrés Aristizabal, Gustavo Concha, Ulrich Schotte, Lothar Kreienbrock, and Hagen Frickmann. 2022. "Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites" Pathogens 11, no. 2: 214. https://doi.org/10.3390/pathogens11020214
APA StyleKann, S., Hartmann, M., Alker, J., Hansen, J., Dib, J. C., Aristizabal, A., Concha, G., Schotte, U., Kreienbrock, L., & Frickmann, H. (2022). Seasonal Patterns of Enteric Pathogens in Colombian Indigenous People—A More Pronounced Effect on Bacteria Than on Parasites. Pathogens, 11(2), 214. https://doi.org/10.3390/pathogens11020214