Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Probiotic Strains and Parasites
4.3. Experimental Design
4.4. Collection of Adult Parasites from the Intestinal Contents and Walls of Mice
4.5. Trichinoscopy and Artificial Digestion
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pozio, E.; Hoberg, E.; La Rosa, G.; Zarlenga, D.S. Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect. Genet. Evol. 2009, 9, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Şuteu, I.; Cozma, V. Parazitologie Clinică Veterinară [Clinical Veterinary Parasitology]; Risoprint: Cluj-Napoca, Romania, 2012; Volume 2, p. 133. [Google Scholar]
- Blaga, R.; Gherman, C.; Cozma, V.; Zocevic, A.; Pozio, E.; Boireau, P. Trichinella species circulating among wild and domestic animals in Romania. Vet. Parasitol. 2009, 159, 218–221. [Google Scholar] [CrossRef]
- Cironeanu, I.; Ispas, A.T. Totul despre Trichineloză [All about Trichinellosis]; MAST Publishing House: Bucharest, Romania, 2002; pp. 9–15. [Google Scholar]
- Pozio, E. Trichinella and trichinellosis in Europe. Vet. Glas. 2019, 73, 65–84. [Google Scholar] [CrossRef] [Green Version]
- Neghina, R. Trichinellosis, a Romanian never-ending story. An overview of traditions, culinary customs, and public health conditions. Foodborne Pathog. Dis. 2010, 7, 999–1003. [Google Scholar] [CrossRef]
- Rostami, A.; Gamble, H.R.; Dupouy-Camet, J.; Khazan, H.; Bruschi, F. Meat sources of infection for outbreaks of human trichinellosis. Food Microbiol. 2017, 64, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Gottstein, B.; Pozio, E.; Nöckler, K. Epidemiology, diagnosis, treatment, and control of trichinellosis. Clin. Microbiol. Rev. 2009, 22, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Vargová, M.; Hurníková, Z.; Revajová, V.; Lauková, A.; Dvorožňáková, E. Probiotic bacteria can modulate murine macrophage’s superoxide production in Trichinella spiralis infection. Helminthologia 2020, 57, 226. [Google Scholar] [CrossRef] [PubMed]
- Saracino, M.P.; Vila, C.C.; Baldi, P.C.; Maglio, D.H.G. Searching for the one(s): Using probiotics as anthelmintic treatments. Front. Pharmacol. 2021, 12, 714198. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Sanders, M.E. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Mombelli, B.; Gismondo, M.R. The use of probiotics in medical practice. Int. J. Antimicrob. Agents 2000, 16, 531–536. [Google Scholar] [CrossRef]
- Haakensen, M.; Dobson, C.M.; Hill, J.E.; Ziola, B. Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. Int. J. Syst. Evol. Microbiol. 2009, 59, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Berrili, F.; Di Cave, D.; Cavalero, S.; D’amelio, S. Interactions between parasites and microbial communities in the human gut. Front. Cell. Infect. Microbiol. 2012, 2, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donelli, G.; Vuotto, C.; Mastromarino, P. Phenotyping and genotyping are both essential to identify and classify a probiotic microorganism. Microb. Ecol. Health Dis. 2013, 24, 20105. [Google Scholar] [CrossRef] [PubMed]
- Butel, M.J. Probiotics, gut microbiota and health. Med. Mal. Infect. 2014, 44, 1–8. [Google Scholar] [CrossRef]
- Humen, M.A.; De Antoni, G.L.; Benyacoub, J.; Costas, M.E.; Cardozo, M.I.; Kozubsky, L.; Pérez, P.F. Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect. Immun. 2005, 73, 1265–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClemens, J.; Kim, J.J.; Wang, H. Lactobacillus rhamnosus ingestion promotes innate host defense in an enteric parasitic infection. Clin. Vaccine. Immunol. 2013, 20, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Bautista-Garfias, C.R.; Ixta, O.; Orduña, M.; Martínez, F.; Aguilar, B.; Cortés, A. Enhancement of resistance in mice treated with Lactobacillus casei: Effect on Trichinella spiralis infection. Vet. Parasitol. 1999, 80, 251–260. [Google Scholar] [CrossRef]
- Martínez-Gómez, F.; Santiago-Rosales, R.; Bautista-Garfias, C.R. Effect of Lactobacillus casei Shirota strain intraperitoneal administration in CD1 mice on the establishment of Trichinella spiralis adult worms and on IgA anti-T. spiralis production. Vet. Parasitol. 2009, 162, 171–175. [Google Scholar] [CrossRef]
- El Temsahy, M.M.; Ibrahim, I.R.; Mossallam, S.F.; Mahrous, H.; Bary, A.A.; Salam, S.A.A. Evaluation of newly isolated probiotics in the protection against experimental intestinal trichinellosis. Vet. Parasitol. 2015, 214, 303–314. [Google Scholar] [CrossRef]
- Dvorožňáková, E.; Bucková, B.; Hurníková, Z.; Revajová, V.; Lauková, A. Effect of probiotic bacteria on phagocytosis and respiratory burst activity of blood polymorphonuclear leukocytes (PMNL) in mice infected with Trichinella spiralis. Vet. Parasitol. 2016, 231, 69–76. [Google Scholar] [CrossRef]
- Bucková, B.; Hurníková, Z.; Lauková, A.; Revajová, V.; Dvorožňáková, E. The anti-parasitic effect of probiotic bacteria via limiting the fecundity of Trichinella spiralis female adults. Helminthologia 2018, 55, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, L.A.; Finlay, B.B.; Maizels, R.M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 2015, 195, 4059–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, B.; Delgado, S.; Blanco-Míguez, A.; Lourenço, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef] [Green Version]
- De Le Blanc, A.M.; Matar, C.; Perdigón, G. The application of probiotics in cancer. Br. J. Nutr. 2007, 98, S105–S110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedrich, A.D.; Paz, M.L.; Leoni, J.; González Maglio, D.H. Message in a bottle: Dialog between intestine and skin modulated by probiotics. Int. J. Mol. Sci. 2017, 18, 1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randazzo, V.; Costamagna, S.R. Effect of oral administration of probiotic agents on Trichinella spiralis-infected mice. Rev. De Patol. Trop./J. Trop. Pathol. 2005, 34, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Dvoroznakova, E.; Vargova, M.; Laukova, A.; Revajova, V. Modulatory effect of probiotic therapy on intestinal lymphocytes in mice infected with Trichinella spiralis. Theory Pract. Combat. Parasit. Dis. 2019, 20, 741–745. [Google Scholar] [CrossRef]
- Wang, D.; Gong, Q.L.; Huang, H.B.; Yang, W.T.; Shi, C.W.; Jiang, Y.L.; Wang, J.Z.; Kang, Y.H.; Zhao, Q.; Yang, G.L.; et al. Protection against Trichinella spiralis in BALB/c mice via oral administration of recombinant Lactobacillus plantarum expressing murine interleukin-4. Vet. Parasitol. 2020, 280, 109068. [Google Scholar] [CrossRef] [PubMed]
- Wassom, D.L.; Dougherky, D.A.; Dick, T.A. Trichinella spiralis infection of inbred mice: Immunological specific responses induced by different Trichinella isolates. J. Parasitol. 1988, 42, 283–287. [Google Scholar] [CrossRef]
- de Avila, L.D.C.; De Leon, P.M.M.; De Moura, M.Q.; Berne, M.E.A.; Scaini, C.J.; Leivas Leite, F.P. Modulation of IL-12 and IFNγ by probiotic supplementation promotes protection against Toxocara canis infection in mice. Parasite Immunol. 2016, 38, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Solano-Aguilar, G.; Shea-Donohue, T.; Madden, K.; Dawson, H.; Beshah, E.; Jones, Y.; Urban, J. Feeding probiotic bacteria to swine enhances immunity to Ascaris suum. Vet. Immunol. Immunopath. 2009, 128, 293–294. [Google Scholar] [CrossRef]
- Gamble, H.R.; Bessonov, A.S.; Cuperlovic, K.; Gajadhar, A.A.; Van Knapen, F.; Noeckler, K.; Schenone, H.; Zhu, X. International Commission on Trichinellosis: Recommendations on methods for the control of Trichinella in domestic and wild animals intended for human consumption. Vet. Parasitol. 2000, 93, 393–408. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2015/1375 of 10 August 2015 Laying down Specific Rules on Official Controls for Trichinella in Meat (Codification). Off. J. Eur. Union 2015, 212, 7–34. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1375&from=HR (accessed on 16 December 2021).
- MedCalc Software Ltd. Ostend, Belgium. 2012. Available online: https://www.medcalc.org (accessed on 15 December 2021).
- Assaad, H.I.; Hou, Y.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid publication-ready MS-Word tables for two-way ANOVA. Springerplus 2015, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NC | PC | L. casei | L. paracasei | F(2,29) | p | ||
---|---|---|---|---|---|---|---|
Day 9 p.i. Adults | Intestinal content | 0 | 41.3 ± 6.24 a | 15.3 ± 6.84 a | 40.4 ± 9.76 a | 3.61 | 0.0408 |
Intestinal wall (artificial digestion) | 0 | 24.6 ± 4.78 a | 6.3 ± 3.03 b | 11.7 ± 4.29 ab | 5.259 | 0.0118 | |
Day 32 p.i. Larvae | Trichinoscopy | 0 | 200.1 ± 26.98 a | 186.6 ± 25.76 a | 238.4 ± 10.32 a | 1.446 | 0.2532 |
Artificial digestion | 0 | 2967.6 ± 134.08 | 2452.7 ± 138.72 | 2895.0 ± 249.05 | 2.348 | 0.1148 |
NC | PC | L. casei | L. paracasei | F(2,14) | p | ||
---|---|---|---|---|---|---|---|
Day 9 p.i. Adults | Intestinal content | 0 | 42.6 ± 4.37 a | 7.4 ± 6.41 a | 41.6 ± 16.95 a | 3.467 | 0.0648 |
Intestinal wall (artificial digestion) | 0 | 29.0 ± 5.17 a | 4.8 ± 1.53 b | 7.4 ± 4.71 b | 10.331 | 0.0025 | |
Day 32 p.i. Larvae | Trichinoscopy | 0 | 223.8 ± 40.15 a | 212.2 ± 33.91 a | 221.8 ± 8.02 a | 0.041 | 0.9601 |
Artificial digestion | 0 | 2751.0 ± 203.76 a | 2447.4 ± 235.29 a | 2650.0 ± 263.63 a | 0.431 | 0.6595 |
NC | PC | L. casei | L. paracasei | F(2,14) | p | ||
---|---|---|---|---|---|---|---|
Day 9 p.i. Adults | Intestinal content | 0 | 40.0 ± 12.45 a | 23.2 ± 11.77 a | 39.2 ± 11.84 a | 0.621 | 0.5537 |
Intestinal wall (artificial digestion) | 0 | 20.2 ± 8.14 a | 7.8 ± 6.15 a | 16.0 ± 7.16 a | 0.768 | 0.4854 | |
Day 32 p.i. Larvae | Trichinoscopy | 0 | 176.4 ± 37.19 a | 161.0 ± 38.82 a | 255.0 ± 16.65 a | 2.408 | 0.1321 |
Artificial digestion | 0 | 3184.2 ± 126.20 a | 2458.0 ± 176.67 a | 3140.0 ± 423.79 a | 2.193 | 0.1543 |
Group | Abbreviation | No. of females | No. of males | Dose of probiotics | Experimental infection |
---|---|---|---|---|---|
Negative control group | NC | 10 | 10 | - | - |
Positive control group | PC | 10 | 10 | - | 100 larvae of T. britovi/animal |
L. casei ATCC 393 experimental group | L. casei | 10 | 10 | 105 CFU/mL in 100µL | 100 larvae of T. britovi/animal |
L. paracasei CNCM experimental group | L. paracasei | 10 | 10 | 105 CFU/mL in 100µL | 100 larvae of T. britovi/animal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boros, Z.; Băieș, M.H.; Vodnar, D.C.; Gherman, C.M.; Borșan, S.-D.; Cozma-Petruț, A.; Lefkaditis, M.; Györke, A.; Cozma, V. Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens 2022, 11, 296. https://doi.org/10.3390/pathogens11030296
Boros Z, Băieș MH, Vodnar DC, Gherman CM, Borșan S-D, Cozma-Petruț A, Lefkaditis M, Györke A, Cozma V. Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens. 2022; 11(3):296. https://doi.org/10.3390/pathogens11030296
Chicago/Turabian StyleBoros, Zsolt, Mihai Horia Băieș, Dan Cristian Vodnar, Călin Mircea Gherman, Silvia-Diana Borșan, Anamaria Cozma-Petruț, Menelaos Lefkaditis, Adriana Györke, and Vasile Cozma. 2022. "Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi" Pathogens 11, no. 3: 296. https://doi.org/10.3390/pathogens11030296
APA StyleBoros, Z., Băieș, M. H., Vodnar, D. C., Gherman, C. M., Borșan, S. -D., Cozma-Petruț, A., Lefkaditis, M., Györke, A., & Cozma, V. (2022). Antiparasitic Action of Lactobacillus casei ATCC 393 and Lactobacillus paracasei CNCM Strains in CD-1 Mice Experimentally Infected with Trichinella britovi. Pathogens, 11(3), 296. https://doi.org/10.3390/pathogens11030296