Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis
Abstract
:1. Introduction
2. Microbiological Tests
2.1. Acid-Fast Staining and Smear Microscopy
2.2. Mycobacterial Culture and Identification
2.3. Molecular Tests
2.4. Assays Based on the Detection of Urinary Lipoarabinomannan
2.5. Microbiological Tests for Drug Resistance
Principle | Limit of Detection (CFU/mL) | Delay to Positive Results (Negative If #) | Sensitivity in Children MRS (%) | Sensitivity in Children CRS (%) | WHO Recommendation | Type of Facility Where Usually Available in Resource-Limited Settings | |
---|---|---|---|---|---|---|---|
Smear microscopy | Microscopic detection of MTB following Zeilh Neelsen or Auramine staining | 1,000 to 10,000 | Minutes | 15–30 | 5–15 | To be replaced as the initial diagnostic test by WRDs | Primary health centre with microscopy capacity |
Solid culture | Phenotypic | 10 to 100 | 3 to 4 weeks (8 weeks) | 82 | 20–40 | Monitoring of patient’s response to treatment. | National/regional level reference laboratory |
Liquid culture | Phenotypic | <10 | 10 to 21 days (6 weeks) | 85 | 20–40 | Monitoring of patient’s response to treatment. | National/regional level reference laboratory |
Xpert MTB/RIF ** | Molecular detection of MTB and RIF resistance (rpoB gene) using GeneXpert system | 131 112 | 2 h | 62–66 | 25–35 | Initial tests in children with signs and symptoms of pulmonary TB (strong recommendation) | Regional and district hospital * |
Xpert MTB/RIF Ultra ** | Molecular detection of MTB and RIF resistance (rpoB gene + IS6110) using GeneXpert system | 38 15 | 90 min | 64–75 | 45 | Initial tests in children with signs and symptoms of pulmonary TB (strong recommendation) | Regional and district hospital * |
TrueNAT ** | MTB and RIF resistance detection using chip-based Real-Time (RT) micro-PCR on automated system | 100 | <1 h | No data in children | No data in children | Initial tests in children with signs and symptoms of pulmonary TB (conditional recommendation) | District hospital laboratory |
Loop-Mediated Isothermal Amplification (LAMP) | MTB detection using amplification at a fixed temperature (without thermocycler) and simple visual detection | 100 | 2 h | 84 (1 study) | No data | Recommended only in adult as initial test so far | District hospital laboratory |
Alere LAM | Detection of mycobacterial cell-wall glycolipid lipoarabinomannan in urine by immunocapture | No data | 30 min | 43 to 50 (HIV+) | No data | HIV-positive children with presumptive TB or advanced HIV disease or who are seriously ill or irrespective of TB suggestive signs if they have CD4 count <200 cells/mm3 (inpatients) or CD4 < 100 cells/mm3 (outpatients) | Point-of-Care, no need of laboratory. |
FUJILAM Silvamp | Detection of mycobacterial cell-wall glycolipid lipoarabinomannan in urine by immunocapture | No data | 60 min | 42 to 65 (any children); 60 (HIV) | No data | Under review | Point-of-Care, no need of laboratory. |
3. Microbiological Sample Collection Methods and Diagnostic Yield
Operational and Safety Challenges for Implementing Paediatric Specimen Collection
Type of Sample | Type of Test | Number of Participants | Sensitivity, % (95 CI) | Specificity, % (95 CI) |
---|---|---|---|---|
Expectorated or induced sputum | Xpert MTB/RIF | 6812 | 64.6 (55.3 to 72.9) | 99.0 (98.1 to 99.5) |
Xpert Ultra | 697 | 72.8 (64.7 to 79.6) | 97.5 (95.8 to 98.5) | |
Gastric aspirate | Xpert MTB/RIF | 3487 | 73.0 (52.9 to 86.7) | 98.1 (95.5 to 99.2) |
Xpert Ultra | 64 (48 to 77) | 95 (84 to 99) | ||
Nasopharyngeal aspirate | Xpert MTB/RIF | 1125 | 45.7 (27.6 to 65.1) | 99.6 (98.9 to 99.8) |
Xpert Ultra | 251 | 46 (29 to 63) | 97.5 (94 to 99) | |
Stool | Xpert MTB/RIF | 1592 | 61.5 (44.1 to 76.4) | 98.5 (97.0 to 99.2) |
Xpert Ultra | 53 (35 to 70) | 98 (93 to 99) |
4. Importance of Microbiological Diagnosis in Childhood TB
4.1. Reasons to Seek Microbiological Confirmation
4.2. Variability in the Yield of Microbiological Testing in Children
4.3. Specific TB Diagnostic Needs in Vulnerable Population Groups
5. Challenges in Implementation and Access to Microbiological Diagnosis in Children
6. Strategies to Improve Yield and Access to Microbiological Diagnosis
6.1. Combining Samples
6.2. Improving Access to Sample Collection and Testing at Lower Levels of Health Care
6.3. Improving Screening of Children with Presumptive TB
6.4. New Biomarkers for Microbiological Diagnosis
7. Conclusions
- -
- Performance of tests and sample collection methods
- ◦
- Diagnostic yield of multiple specimens of different types versus repeated specimens and incremental yield of different combinations of specimen types.
- ◦
- Diagnostic performance of combining bio-signatures/omics approaches with traditional microbiological approaches.
- ◦
- Feasibility and impact of methods to enhance the viability and growth of bacilli from culture on overall microbiological yield.
- ◦
- Diagnostic accuracy and clinical impact of LAM assays in severely malnourished children.
- ◦
- New approaches to simplify sample collection, such as the oral swab.
- -
- Placement of tests in paediatric diagnostic algorithms
- ◦
- Triage or screening tests to identify children with presumptive TB and target groups at higher risk of TB for sample collection, regardless of symptoms.
- ◦
- Role and contribution of microbiological diagnosis in treatment decision algorithms.
- ◦
- Clinical utility of Xpert testing in specific groups to reduce delay to treatment initiation.
- -
- Implementation of tests
- ◦
- Feasibility, acceptability, impact on morbidity, mortality, treatment outcome, cost-effectiveness, and budget impact/cost of decentralising childhood TB microbiological diagnosis at PHC level.
- -
- New biomarkers
- ◦
- Development of more sensitive and specific biomarkers of active disease, given the limitations of microbiological diagnosis.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Dodd, P.J.; Yuen, C.M.; Sismanidis, C.; Seddon, J.A.; Jenkins, H.E. The global burden of tuberculosis mortality in children: A mathematical modelling study. Lancet Glob. Health 2017, 5, e898–e906. [Google Scholar] [CrossRef] [Green Version]
- Zar, H.J.; Connell, T.G.; Nicol, M. Diagnosis of pulmonary tuberculosis in children: New advances. Expert Rev. Anti-Infect. Ther. 2010, 8, 277–288. [Google Scholar] [CrossRef] [PubMed]
- Detjen, A.K.; DiNardo, A.R.; Leyden, J.; Steingart, K.R.; Menzies, D.; Schiller, I.; Dendukuri, N.; Mandalakas, A.M. Xpert MTB/RIF assay for the diagnosis of pulmonary tuberculosis in children: A systematic review and meta-analysis. Lancet Respir. Med. 2015, 3, 451–461. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Implementing the Stop TB Strategy: A Handbook for National Tuberculosis Control Programmes; World Health Organization: Geneva, Switzerland, 2008; p. 198. [Google Scholar]
- Perez-Velez, C.M.; Marais, B.J. Tuberculosis in children. N. Engl. J. Med. 2012, 367, 348–361. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 2021 update ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 3: Diagnosis: Rapid Diagnostics for Tuberculosis Detection, 2021 update ed.; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis: Module 5: Management of Tuberculosis in Children and Adolescents, 2022 update ed.; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Huddart, S.; MacLean, E.; Pai, M. Location, location, location: Tuberculosis services in highest burden countries. Lancet Glob. Health 2016, 4, e907–e908. [Google Scholar] [CrossRef] [Green Version]
- Marais, B.J.; Hesseling, A.C.; Gie, R.P.; Schaaf, H.S.; Enarson, D.A.; Beyers, N. The bacteriologic yield in children with intrathoracic tuberculosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 42, e69–e71. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.B.; Verma, Y.; Jain, R.; Mukherjee, A.; Gautam, H.; Lodha, R.; Kabra, S.K. Childhood Intra-Thoracic Tuberculosis Clinical Presentation Determines Yield of Laboratory Diagnostic Assays. Front. Pediatr. 2021, 9, 667726. [Google Scholar] [CrossRef]
- World Health Organization. Meeting Report: High-Priority Target Product Profiles for New Tuberculosis Diagnostics: Report of a Consensus Meeting; Member, Expert Committee; World Health Organization: Geneva, Switzerland, 2014; p. 98. [Google Scholar]
- Eyangoh, S.I.; Torrea, G.; Tejiokem, M.C.; Kamdem, Y.; Piam, F.F.; Noeske, J.; Van Deun, A. HIV-related incremental yield of bleach sputum concentration and fluorescence technique for the microscopic detection of tuberculosis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2008, 27, 849–855. [Google Scholar] [CrossRef]
- Starke, J.R. Childhood tuberculosis. A diagnostic dilemma. Chest 1993, 104, 329–330. [Google Scholar] [CrossRef]
- Roya-Pabon, C.L.; Perez-Velez, C.M. Tuberculosis exposure, infection and disease in children: A systematic diagnostic approach. Pneumonia 2016, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Guidance for National Tuberculosis Programmes in the Management of Tuberculosis in Children, 2nd ed.; World Health Organization: Geneva, Switzerland, 2014; p. 50. [Google Scholar]
- Dheda, K.; Barry, C.E.; Maartens, G. Tuberculosis. Lancet 2016, 387, 1211–1226. [Google Scholar] [CrossRef]
- Srisuwanvilai, L.-O.; Monkongdee, P.; Podewils, L.J.; Ngamlert, K.; Pobkeeree, V.; Puripokai, P.; Kanjanamongkolsiri, P.; Subhachaturas, W.; Akarasewi, P.; Wells, C.D.; et al. Performance of the BACTEC MGIT 960 compared with solid media for detection of Mycobacterium in Bangkok, Thailand. Diagn. Microbiol. Infect. Dis 2008, 61, 402–407. [Google Scholar] [CrossRef]
- Starke, J.R. Pediatric tuberculosis: Time for a new approach. Tuberculosis 2003, 83, 208–212. [Google Scholar] [CrossRef]
- Zar, H.J.; Hanslo, D.; Apolles, P.; Swingler, G.; Hussey, G. Induced sputum versus gastric lavage for microbiological confirmation of pulmonary tuberculosis in infants and young children: A prospective study. Lancet 2005, 365, 130–134. [Google Scholar] [CrossRef]
- Frigati, L.; Bekker, A.; Stroebele, S.; Goussard, P.; Schaaf, H.S. Culture-confirmed Tuberculosis in South African Infants Younger Than 3 Months of Age: Clinical Presentation and Management of Respiratory Complications. Pediatr. Infect. Dis. J. 2019, 38, 351–354. [Google Scholar] [CrossRef]
- Goussard, P.; Croucamp, R.; Bosch, C.; Demers, A.-M.; Morrison, J.; Mfingwana, L.; Palmer, M.; van der Zalm, M.M.; Friedrich, S.O.; Janson, J.T.; et al. Diagnostic utility of bronchoalveolar lavage in children with complicated intrathoracic tuberculosis. Pediatr. Pulmonol. 2021, 56, 2186–2194. [Google Scholar] [CrossRef]
- Peres, R.L.; Maciel, E.L.; Morais, C.G.; Ribeiro, F.C.K.; Vinhas, S.A.; Pinheiro, C.; Dietze, R.; Johnson, J.L.; Eisenach, K.; Palaci, M. Comparison of two concentrations of NALC-NaOH for decontamination of sputum for mycobacterial culture. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2009, 13, 1572–1575. [Google Scholar]
- Brittle, W.; Marais, B.J.; Hesseling, A.C.; Schaaf, H.S.; Kidd, M.; Wasserman, E.; Botha, T. Improvement in mycobacterial yield and reduced time to detection in pediatric samples by use of a nutrient broth growth supplement. J. Clin. Microbiol. 2009, 47, 1287–1289. [Google Scholar] [CrossRef] [Green Version]
- Parsons, L.M.; Somoskövi, Á.; Gutierrez, C.; Lee, E.; Paramasivan, C.N.; Abimiku, A.l.; Spector, S.; Roscigno, G.; Nkengasong, J. Laboratory Diagnosis of Tuberculosis in Resource-Poor Countries: Challenges and Opportunities. Clin. Microbiol. Rev. 2011, 24, 314–350. [Google Scholar] [CrossRef] [Green Version]
- Flores, L.L.; Pai, M.; Colford, J.M.; Riley, L.W. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: Meta-analysis and meta-regression. BMC Microbiol. 2005, 5, 1–10. [Google Scholar] [CrossRef]
- Ling, D.I.; Flores, L.L.; Riley, L.W.; Pai, M. Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: Meta-analysis and meta-regression. PLoS ONE 2008, 3, e1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banada, P.P.; Sivasubramani, S.K.; Blakemore, R.; Boehme, C.; Perkins, M.D.; Fennelly, K.; Alland, D. Containment of bioaerosol infection risk by the Xpert MTB/RIF assay and its applicability to point-of-care settings. J. Clin. Microbiol. 2010, 48, 3551–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorsa, A.; Jerene, D.; Negash, S.; Habtamu, A. Use of Xpert Contributes to Accurate Diagnosis, Timely Initiation, and Rational Use of Anti-TB Treatment Among Childhood Tuberculosis Cases in South Central Ethiopia. Pediatr. Health Med. Ther. 2020, 11, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Kasa Tom, S.; Welch, H.; Kilalang, C.; Tefuarani, N.; Vince, J.; Lavu, E.; Johnson, K.; Magaye, R.; Duke, T. Evaluation of Xpert MTB/RIF assay in children with presumed pulmonary tuberculosis in Papua New Guinea. Paediatr. Int. Child Health 2018, 38, 97–105. [Google Scholar] [CrossRef]
- Raizada, N.; Khaparde, S.D.; Rao, R.; Kalra, A.; Sarin, S.; Salhotra, V.S.; Swaminathan, S.; Khanna, A.; Chopra, K.K.; Hanif, M.; et al. Upfront Xpert MTB/RIF testing on various specimen types for presumptive infant TB cases for early and appropriate treatment initiation. PLoS ONE 2018, 13, e0202085. [Google Scholar] [CrossRef] [Green Version]
- Dorman, S.E.; Schumacher, S.G.; Alland, D.; Nabeta, P.; Armstrong, D.T.; King, B.; Hall, S.L.; Chakravorty, S.; Cirillo, D.M.; Tukvadze, N.; et al. Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: A prospective multicentre diagnostic accuracy study. Lancet Infect. Dis. 2018, 18, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Jaganath, D.; Wambi, P.; Reza, T.F.; Nakafeero, J.; Aben, E.O.; Kiconco, E.; Nannyonga, G.; Nsereko, M.; Sekadde, M.P.; Mudiope, M.; et al. A Prospective Evaluation of Xpert MTB/RIF Ultra for Childhood Pulmonary Tuberculosis in Uganda. J. Pediatr. Infect. Dis. Soc. 2021, 10, 586–592. [Google Scholar] [CrossRef]
- Dowling, W.B.; Whitelaw, A.; Nel, P. Tracing TB: Are there predictors for active TB disease in patients with Xpert Ultra trace results? Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2022, 114, 115–123. [Google Scholar] [CrossRef]
- Vijayalakshmi, J.; Surekha, A.; Devi, A.R.; Devi, S.U. Truenat—A Novel Diagnostic Tool for Rapid Detection of Mycobacterium tuberculosis and Rifampicin Resistance in Pulmonary Samples. Int. J. Curr. Microbiol. App. Sci. 2019, 9, 1260–1267. [Google Scholar] [CrossRef]
- Yadav, R.; Daroch, P.; Gupta, P.; Vaidya, P.; Mathew, J.L.; Singh, M.; Sethi, S. Evaluation of TB-LAMP assay for detection of Mycobacterium tuberculosis in children. Infect. Dis. 2021, 53, 942–946. [Google Scholar] [CrossRef]
- Shah, M.; Martinson, N.A.; Chaisson, R.E.; Martin, D.J.; Variava, E.; Dorman, S.E. Quantitative analysis of a urine-based assay for detection of lipoarabinomannan in patients with tuberculosis. J. Clin. Microbiol. 2010, 48, 2972–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, J.G.; Zijenah, L.S.; Chanda, D.; Clowes, P.; Lesosky, M.; Gina, P.; Mehta, N.; Calligaro, G.; Lombard, C.J.; Kadzirange, G.; et al. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: A pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet 2016, 387, 1187–1197. [Google Scholar] [CrossRef]
- World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Lawn, S.D.; Kerkhoff, A.D.; Vogt, M.; Wood, R. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: A descriptive study. Lancet Infect. Dis. 2011, 12, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Nicol, M.P.; Schumacher, S.G.; Workman, L.; Broger, T.; Baard, C.; Prins, M.; Bateman, L.; du Toit, E.; van Heerden, J.; Szekely, R.; et al. Accuracy of a Novel Urine Test, Fujifilm SILVAMP Tuberculosis Lipoarabinomannan, for the Diagnosis of Pulmonary Tuberculosis in Children. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 72, e280–e288. [Google Scholar] [CrossRef]
- Li, Z.; Tong, X.; Liu, S.; Yue, J.; Fan, H. The Value of FujiLAM in the Diagnosis of Tuberculosis: A Systematic Review and Meta-Analysis. Front. Public Health 2021, 9, 757133. [Google Scholar] [CrossRef]
- Dheda, K.; Gumbo, T.; Maartens, G.; Dooley, K.E.; McNerney, R.; Murray, M.; Furin, J.; Nardell, E.A.; London, L.; Lessem, E.; et al. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir. Med. 2017, 5, 291–360. [Google Scholar] [CrossRef]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Penn-Nicholson, A.; Gomathi, S.N.; Ugarte-Gil, C.; Meaza, A.; Lavu, E.; Patel, P.; Choudhury, B.; Rodrigues, C.; Chadha, S.; Kazi, M.; et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur. Respir. J. 2021, 58, 2100526. [Google Scholar] [CrossRef]
- Ling, D.I.; Zwerling, A.A.; Pai, M. GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis. Eur. Respir. J. 2008, 32, 1165–1174. [Google Scholar] [CrossRef] [Green Version]
- Rachow, A.; Clowes, P.; Saathoff, E.; Mtafya, B.; Michael, E.; Ntinginya, E.N.; Kowour, D.; Rojas-Ponce, G.; Kroidl, A.; Maboko, L.; et al. Increased and expedited case detection by Xpert MTB/RIF assay in childhood tuberculosis: A prospective cohort study. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54, 1388–1396. [Google Scholar] [CrossRef]
- Chakravorty, S.; Simmons, A.M.; Rowneki, M.; Parmar, H.; Cao, Y.; Ryan, J.; Banada, P.P.; Deshpande, S.; Shenai, S.; Gall, A.; et al. The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. mBio 2017, 8, e00812–e00817. [Google Scholar] [CrossRef] [Green Version]
- Zyl-Smit, R.N.v.; Binder, A.; Meldau, R.; Mishra, H.; Semple, P.L.; Theron, G.; Peter, J.; Whitelaw, A.; Sharma, S.K.; Warren, R.; et al. Comparison of Quantitative Techniques including Xpert MTB/RIF to Evaluate Mycobacterial Burden. PLoS ONE 2011, 6, e28815. [Google Scholar] [CrossRef]
- Marais, B.J.; Pai, M. Specimen collection methods in the diagnosis of childhood tuberculosis. Indian J. Med. Microbiol. 2006, 24, 249–251. [Google Scholar] [CrossRef]
- World Health Organization. Guidance for National Tuberculosis Programmes in the Management of Tuberculosis in Children; World Health Organization: Geneva, Switzerland, 2006; p. 50. [Google Scholar]
- Lobato, M.N.; Loeffler, A.M.; Furst, K.; Cole, B.; Hopewell, P.C. Detection of Mycobacterium tuberculosis in gastric aspirates collected from children: Hospitalization is not necessary. Pediatrics 1998, 102, E40. [Google Scholar] [CrossRef] [Green Version]
- Zar, H.J.; Tannenbaum, E.; Apolles, P.; Roux, P.; Hanslo, D.; Hussey, G. Sputum induction for the diagnosis of pulmonary tuberculosis in infants and young children in an urban setting in South Africa. Arch. Dis. Child. 2000, 82, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Owens, S.; Abdel-Rahman, I.E.; Balyejusa, S.; Musoke, P.; Cooke, R.P.D.; Parry, C.M.; Coulter, J.B.S. Nasopharyngeal aspiration for diagnosis of pulmonary tuberculosis. Arch. Dis. Child. 2007, 92, 693–696. [Google Scholar] [CrossRef] [Green Version]
- Walters, E.; van der Zalm, M.M.; Demers, A.-M.; Whitelaw, A.; Palmer, M.; Bosch, C.; Draper, H.R.; Schaaf, H.S.; Goussard, P.; Lombard, C.J.; et al. Specimen Pooling as a Diagnostic Strategy for Microbiologic Confirmation in Children with Intrathoracic Tuberculosis. Pediatr. Infect. Dis. J. 2019, 38, e128–e131. [Google Scholar] [CrossRef]
- Zar, H.J.; Workman, L.; Isaacs, W.; Dheda, K.; Zemanay, W.; Nicol, M.P. Rapid diagnosis of pulmonary tuberculosis in African children in a primary care setting by use of Xpert MTB/RIF on respiratory specimens: A prospective study. Lancet. Glob. Health 2013, 1, e97–e104. [Google Scholar] [CrossRef] [Green Version]
- Zar, H.J.; Workman, L.; Isaacs, W.; Munro, J.; Black, F.; Eley, B.; Allen, V.; Boehme, C.C.; Zemanay, W.; Nicol, M.P. Rapid molecular diagnosis of pulmonary tuberculosis in children using nasopharyngeal specimens. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- MacLean, E.; Sulis, G.; Denkinger, C.M.; Johnston, J.C.; Pai, M.; Ahmad Khan, F. Diagnostic Accuracy of Stool Xpert MTB/RIF for Detection of Pulmonary Tuberculosis in Children: A Systematic Review and Meta-analysis. J. Clin. Microbiol. 2019, 57, e02057-18. [Google Scholar] [CrossRef] [Green Version]
- Gebre, M.; Cameron, L.H.; Tadesse, G.; Woldeamanuel, Y.; Wassie, L. Variable Diagnostic Performance of Stool Xpert in Pediatric Tuberculosis: A Systematic Review and Meta-analysis. Open Forum Infect. Dis. 2021, 8, ofaa627. [Google Scholar] [CrossRef] [PubMed]
- Walters, E.; van der Zalm, M.M.; Palmer, M.; Bosch, C.; Demers, A.-M.; Draper, H.; Goussard, P.; Schaaf, H.S.; Friedrich, S.O.; Whitelaw, A.; et al. Xpert MTB/RIF on Stool Is Useful for the Rapid Diagnosis of Tuberculosis in Young Children With Severe Pulmonary Disease. Pediatr. Infect. Dis. J. 2017, 36, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Marcy, O.; Ung, V.; Goyet, S.; Borand, L.; Msellati, P.; Tejiokem, M.; Nguyen Thi, N.L.; Nacro, B.; Cheng, S.; Eyangoh, S.; et al. Performance of Xpert MTB/RIF and Alternative Specimen Collection Methods for the Diagnosis of Tuberculosis in HIV-Infected Children. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 62, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, A.W.; González Fernández, L.; Takwoingi, Y.; Eisenhut, M.; Detjen, A.K.; Steingart, K.R.; Mandalakas, A.M. Xpert MTB/RIF and Xpert MTB/RIF Ultra assays for active tuberculosis and rifampicin resistance in children. Cochrane Database Syst. Rev. 2020, 8, CD013359. [Google Scholar] [CrossRef]
- Lounnas, M.; Chabala, C.; Mwanga-Amumpere, J.; Nicol, M.P.; Singh, U.; Shangavi, S.; Wobudeya, E.; De Haas, P.; Bonnet, M.; Nabeta, P.; et al. Comparison of three centrifuge-free stool processing methods for Xpert Ultra testing in children with presumptive TB. In Proceedings of the 52nd World Conference on Lung Health of the International Union against Tuberculosis and Lung Disease (The Union), Virtual, 19–22 October 2021. [Google Scholar]
- Ioos, V.; Cordel, H.; Bonnet, M. Alternative sputum collection methods for diagnosis of childhood intrathoracic tuberculosis: A systematic literature review. Arch. Dis. Child. 2019, 104, 629–635. [Google Scholar] [CrossRef]
- Vessière, A.; Font, H.; Gabillard, D.; Adonis-Koffi, L.; Borand, L.; Chabala, C.; Khosa, C.; Mavale, S.; Moh, R.; Mulenga, V.; et al. Impact of systematic early tuberculosis detection using Xpert MTB/RIF Ultra in children with severe pneumonia in high tuberculosis burden countries (TB-Speed pneumonia): A stepped wedge cluster randomized trial. BMC Pediatr. 2021, 21, 136. [Google Scholar] [CrossRef]
- Bhatta, B.; Vessière, A.; Borand, L.; Moh, R.; Khosa, C.; Chabala, C.; Mwanga-Amumpere, J.; Bonnet, M.; Marcy, O.; Orne-Gliemann, J. Acceptability of nasopharyngeal aspirate and stool for TB diagnosis in children with severe pneumonia: Parents’ and healthcare workers’ perspective. In Proceedings of the 52nd World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union), Virtual, 19–22 October 2021. [Google Scholar]
- World Health Organization. Rapid Communication on Updated Guidance on the Management of Tuberculosis in Children and Adolescents; World Health Organization: Geneva, Switzerland, 2021; p. 8. [Google Scholar]
- World Health Organization. WHO Operational Handbook on Tuberculosis: Module 5: Management of Tuberculosis in Children and Adolescents; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Graham, S.M.; Cuevas, L.E.; Jean-Philippe, P.; Browning, R.; Casenghi, M.; Detjen, A.K.; Gnanashanmugam, D.; Hesseling, A.C.; Kampmann, B.; Mandalakas, A.; et al. Clinical Case Definitions for Classification of Intrathoracic Tuberculosis in Children: An Update. Clin. Infect. Dis. 2015, 61, S179–S187. [Google Scholar] [CrossRef]
- Birungi, F.M.; van Wyk, B.; Uwimana, J.; Ntaganira, J.; Graham, S.M. Xpert MTB/RIF assay did not improve diagnosis of pulmonary tuberculosis among child contacts in Rwanda. Pan Afr. Med. J. 2018, 30, 39. [Google Scholar] [CrossRef]
- Dodd, P.J.; Prendergast, A.J.; Beecroft, C.; Kampmann, B.; Seddon, J.A. The impact of HIV and antiretroviral therapy on TB risk in children: A systematic review and meta-analysis. Thorax 2017, 72, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Marcy, O.; Tejiokem, M.; Msellati, P.; Truong Huu, K.; Do Chau, V.; Tran Ngoc, D.; Nacro, B.; Ateba-Ndongo, F.; Tetang-Ndiang, S.; Ung, V.; et al. Mortality and its determinants in antiretroviral treatment-naive HIV-infected children with suspected tuberculosis: An observational cohort study. Lancet HIV 2018, 5, e87–e95. [Google Scholar] [CrossRef]
- Nkereuwem, E.; Togun, T.; Gomez, M.P.; Székely, R.; Macé, A.; Jobe, D.; Schumacher, S.G.; Kampmann, B.; Denkinger, C.M.; Consortium, R.K.R.K. Comparing accuracy of lipoarabinomannan urine tests for diagnosis of pulmonary tuberculosis in children from four African countries: A cross-sectional study. Lancet Infect. Dis. 2021, 21, 376–384. [Google Scholar] [CrossRef]
- Osório, D.-V.; Munyangaju, I.; Muhiwa, A.; Nacarapa, E.; Nhangave, A.-V.; Ramos, J.-M. Lipoarabinomannan Antigen Assay (TB-LAM) for Diagnosing Pulmonary Tuberculosis in Children with Severe Acute Malnutrition in Mozambique. J. Trop. Pediatr. 2021, 67, fmaa072. [Google Scholar] [CrossRef]
- Schramm, B.; Nganaboy, R.C.; Uwiragiye, P.; Mukeba, D.; Abdoubara, A.; Abdou, I.; Nshimiymana, J.-C.; Sounna, S.; Hiffler, L.; Flevaud, L.; et al. Potential value of urine lateral-flow lipoarabinomannan (LAM) test for diagnosing tuberculosis among severely acute malnourished children. PLoS ONE 2021, 16, e0250933. [Google Scholar] [CrossRef]
- Oliwa, J.N.; Karumbi, J.M.; Marais, B.J.; Madhi, S.A.; Graham, S.M. Tuberculosis as a cause or comorbidity of childhood pneumonia in tuberculosis-endemic areas: A systematic review. Lancet Respir. Med. 2015, 3, 235–243. [Google Scholar] [CrossRef]
- O’Brien, K.L.; Baggett, H.C.; Brooks, W.A.; Feikin, D.R.; Hammitt, L.L.; Higdon, M.M.; Howie, S.R.; Knoll, M.D.; Kotloff, K.L.; Levine, O.S.; et al. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: The PERCH multi-country case-control study. Lancet 2019, 394, 757–779. [Google Scholar] [CrossRef] [Green Version]
- Seidenberg, P.; Mwananyanda, L.; Chipeta, J.; Kwenda, G.; Mulindwa, J.M.; Mwansa, J.; Mwenechanya, M.; Wa Somwe, S.; Feikin, D.R.; Haddix, M.; et al. The Etiology of Pneumonia in HIV-infected Zambian Children: Findings From the Pneumonia Etiology Research for Child Health (PERCH) Study. Pediatr. Infect. Dis. J. 2021, 40, S50–S58. [Google Scholar] [CrossRef]
- Marcy, O.; Font, H.; Vessière, A.; Moh, R.; Borand, L.; Taguebue, J.-V.; Chabala, C.; Khosa, C.; Mwanga-Amumpere, J.; Wobudeya, E.; et al. Impact of systematic TB detection using Xpert Ultra on nasopharyngeal aspirates and stool samples on mortality in children with severe pneumonia. In Proceedings of the 52nd World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease (The Union), Virtual, 19–22 October 2021. [Google Scholar]
- Oliwa, J.N.; Gathara, D.; Ogero, M.; van Hensbroek, M.B.; English, M.; Van’t Hoog, A.; Network, C.I. Diagnostic practices and estimated burden of tuberculosis among children admitted to 13 government hospitals in Kenya: An analysis of two years’ routine clinical data. PLoS ONE 2019, 14, e0221145. [Google Scholar] [CrossRef]
- Reid, M.J.A.; Saito, S.; Fayorsey, R.; Carter, R.J.; Abrams, E.J. Assessing capacity for diagnosing tuberculosis in children in sub-Saharan African HIV care settings. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2012, 16, 924–927. [Google Scholar] [CrossRef] [Green Version]
- Wobudeya, E.; Niangoran, S.; Borand, L.; Mao, T.E.; Taguebue, J.-V.; Moh, R.; Khosa, C.; Mwanga-Amumpere, J.; Bonnet, M.; Marcy, O.; et al. Childhood TB diagnostic capacities in primary healthcare facilities in high TB-burden countries: Results from the TB-speed cross-sectional descriptive survey. In Proceedings of the 50th World Conference on Lung Health of the International Union against Tuberculosis and Lung Disease (The Union), Hyderabad, India, 30 October–2 November 2019. [Google Scholar]
- Sanogo, B.; Kiema, P.E.; Barro, M.; Nacro, S.F.; Ouermi, S.A.; Msellati, P.; Nacro, B. Contribution and Acceptability of Bacteriological Collection Tools in the Diagnosis of Tuberculosis in Children Infected with HIV. J. Trop. Pediatr. 2021, 67, fmab027. [Google Scholar] [CrossRef]
- Song, R.; Click, E.S.; McCarthy, K.D.; Heilig, C.M.; Mchembere, W.; Smith, J.P.; Fajans, M.; Musau, S.K.; Okeyo, E.; Okumu, A.; et al. Sensitive and Feasible Specimen Collection and Testing Strategies for Diagnosing Tuberculosis in Young Children. JAMA Pediatr. 2021, 175, e206069. [Google Scholar] [CrossRef]
- Nicol, M.P.; Wood, R.C.; Workman, L.; Prins, M.; Whitman, C.; Ghebrekristos, Y.; Mbhele, S.; Olson, A.; Jones-Engel, L.E.; Zar, H.J.; et al. Microbiological diagnosis of pulmonary tuberculosis in children by oral swab polymerase chain reaction. Sci. Rep. 2019, 9, 10789. [Google Scholar] [CrossRef]
- Vonasek, B.J.; Radtke, K.K.; Vaz, P.; Buck, W.C.; Chabala, C.; McCollum, E.D.; Marcy, O.; Fitzgerald, E.; Kondwani, A.; Garcia-Prats, A.J. Tuberculosis in children with severe acute malnutrition. Expert Rev. Respir. Med. 2022, 1–12. [Google Scholar] [CrossRef]
- Gupta, A.K.; Singh, A.; Singh, S. Diagnosis of Tuberculosis: Nanodiagnostics Approaches. NanoBioMedicine 2019, 261–283. [Google Scholar] [CrossRef] [Green Version]
- Karunaratne, R.E.; Wijenayaka, L.A.; Wijesundera, S.S.; De Silva, K.M.N.; Adikaram, C.P.; Perera, J. Use of nanotechnology for infectious disease diagnostics: Application in drug resistant tuberculosis. BMC Infect. Dis. 2019, 19, 618. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, B.; Prasad, T.; Singh, V.; Khan, A.; Kamra, E.; Mor, P.; Yadav, A.; Gupta, K.B.; Mehta, P.K. Diagnosis of tuberculosis by nanoparticle-based immuno-PCR assay based on mycobacterial MPT64 and CFP-10 detection. Nanomedicine 2020, 15, 2609–2624. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Anderson, S.T.; Kaforou, M.; Brent, A.J.; Wright, V.J.; Banwell, C.M.; Chagaluka, G.; Crampin, A.C.; Dockrell, H.M.; French, N.; Hamilton, M.S.; et al. Diagnosis of childhood tuberculosis and host RNA expression in Africa. N. Engl. J. Med. 2014, 370, 1712–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suliman, S.; Thompson, E.G.; Sutherland, J.; Weiner, J.; Ota, M.O.C.; Shankar, S.; Penn-Nicholson, A.; Thiel, B.; Erasmus, M.; Maertzdorf, J.; et al. Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. Am. J. Respir. Crit. Care Med. 2018, 197, 1198–1208. [Google Scholar] [CrossRef]
- Bacha, J.M.; Ngo, K.; Clowes, P.; Draper, H.R.; Ntinginya, E.N.; DiNardo, A.; Mangu, C.; Sabi, I.; Mtafya, B.; Mandalakas, A.M. Why being an expert—Despite xpert -remains crucial for children in high TB burden settings. BMC Infect. Dis. 2017, 17, 123. [Google Scholar] [CrossRef] [Green Version]
Type of Sample | Principle | Age Group | Time to Obtain Specimen | Specific Requirements | Equipment and Consumables Needed | Biosafety and Infection Control Risk Assessment | Patient Safety Concern |
---|---|---|---|---|---|---|---|
Expectorated sputum | Collect spontaneously expectorated sputum | Older children and adolescents | Seconds to minutes | Sputum containers | Low | No safety concern | |
Induced sputum | Induce sputum through nebulisation of hypertonic saline | All | Several minutes | Adequate infection control measures due to aerosolisation of secretions | Nebulization machine, hypertonic saline solution + suction in young children (see NPA below) | Moderate (need a well-ventilated area due to risk of aerosol) | Moderate (contraindicated for children with respiratory distress) |
Nasopharyngeal aspirate | Aspirate 2 mL of expectoration in retropharynx | All | Seconds (12 s per nostril) | Supine or seated position; caregiver or HCW to help restraining Induces reflex cough; saline instillation feasible | Suction machine (low negative pressure needed 80 to 100 mmHg) and mucus aspirator | Low | Very low |
Gastric aspirate | Aspirate 5 to 10 mL of gastric content | <5 to 8 years | Minutes | Overnight fasting, hospitalisation | Syringe and nasogastric tube | Low | Very low |
Stool | Collection of stool for detection of swallowed sputum | All; acceptability for older children may be reduced | Time to pass stools | Storage and transport; Processing before Xpert testing is not standardised; data suggest stool detects TB in children with high bacillary loads | Plastic container | Very low | No safety concern |
String tests | Collection of swallowed sputum by an absorbent string coiled into a capsule and swallowed into the stomach | >4 years | 2 h | Not widely adopted | Entero-test (capsule containing lead weight and string) | Low | Very low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wobudeya, E.; Bonnet, M.; Walters, E.G.; Nabeta, P.; Song, R.; Murithi, W.; Mchembere, W.; Dim, B.; Taguebue, J.-V.; Orne-Gliemann, J.; et al. Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis. Pathogens 2022, 11, 389. https://doi.org/10.3390/pathogens11040389
Wobudeya E, Bonnet M, Walters EG, Nabeta P, Song R, Murithi W, Mchembere W, Dim B, Taguebue J-V, Orne-Gliemann J, et al. Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis. Pathogens. 2022; 11(4):389. https://doi.org/10.3390/pathogens11040389
Chicago/Turabian StyleWobudeya, Eric, Maryline Bonnet, Elisabetta Ghimenton Walters, Pamela Nabeta, Rinn Song, Wilfred Murithi, Walter Mchembere, Bunnet Dim, Jean-Voisin Taguebue, Joanna Orne-Gliemann, and et al. 2022. "Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis" Pathogens 11, no. 4: 389. https://doi.org/10.3390/pathogens11040389
APA StyleWobudeya, E., Bonnet, M., Walters, E. G., Nabeta, P., Song, R., Murithi, W., Mchembere, W., Dim, B., Taguebue, J. -V., Orne-Gliemann, J., Nicol, M. P., & Marcy, O. (2022). Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis. Pathogens, 11(4), 389. https://doi.org/10.3390/pathogens11040389