Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Characterisation of Clinical A. fumigatus Isolates
2.2. Modelling A. fumigatus Virulence in T. molitor Larvae
2.2.1. Model Validation
2.2.2. Quantification of A. fumigatus in Infected T. molitor Larvae
2.2.3. Quantifying Virulence of Clinical A. fumigatus Isolates in T. molitor
2.3. Genomic Analysis of Clinical A. fumigatus Isolates
2.3.1. Identifying Single Nucleotide Variants (SNV)
2.3.2. Detecting Presence/Absence of Oxidative Stress Response Genes
3. Discussion
4. Materials and Methods
4.1. Isolates of A. fumigatus and Media
4.2. Phenotypic Variation Amongst Clinical A. fumigatus Isolates
4.2.1. Radial Growth Rate and Proteolysis on SMA
4.2.2. Conidial UV Resistance
4.2.3. Measurement of Response to Oxidative Stress
4.3. Using T. molitor to Measure A. fumigatus Virulence
4.3.1. Optimisation and Validation of T. molitor Larvae as Models of Fungal Infection
4.3.2. Quantification of A. fumigatus Infection of T. molitor Larvae
4.3.3. Measuring Inter-Isolate Variation in Virulence of A. fumigatus
4.4. Genomic Variation Amongst Clinical A. fumigatus Isolates
4.4.1. DNA Isolation
4.4.2. Library Preparation and Sequencing
4.4.3. Genome Assembly
4.4.4. Variant Analysis
4.4.5. Investigating Biological Function of Mutated Genes
4.4.6. Detecting Presence/Absence of Oxidative Stress Response Genes
4.5. MIC Determinations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Segal, B.H. Aspergillosis. N. Engl. J. Med. 2009, 360, 1870–1884. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, T.R.; Keller, N.P. Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmidis, C.; Denning, D.W. The clinical spectrum of pulmonary aspergillosis. Thorax 2015, 70, 270–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Gibbons, J.G. A population genomic characterization of copy number variation in the opportunistic fungal pathogen Aspergillus fumigatus. PLoS ONE 2018, 13, e0201611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Ami, R.; Lamaris, G.A.; Lewis, R.E.; Kontoyiannis, D.P. Interstrain variability in the virulence of Aspergillus fumigatus and Aspergillus terreus in a Toll-deficient Drosophila fly model of invasive aspergillosis. Med. Mycol. 2010, 48, 310–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberan, J.; Candel, F.J.; Arribi, A. How should we approach Aspergillus in lung secretions of patients with COPD? Rev. Esp. Quimioter. 2016, 29, 175–182. [Google Scholar] [PubMed]
- Shahi, M.; Ayatollahi Mousavi, S.A.; Nabili, M.; Aliyali, M.; Khodavaisy, S.; Badali, H. Aspergillus colonization in patients with chronic obstructive pulmonary disease. Curr. Med. Mycol. 2015, 1, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinyu, E.; Varga, J.; Ferenczy, L. Phenotypic and genotypic analysis of variability in Aspergillus fumigatus. J. Clin. Microbiol. 1995, 33, 2567–2575. [Google Scholar] [CrossRef] [Green Version]
- Paisley, D.; Robson, G.D.; Denning, D.W. Correlation between in vitro growth rate and in vivo virulence in Aspergillus fumigatus. Med. Mycol. 2005, 43, 397–401. [Google Scholar] [CrossRef] [Green Version]
- Fuller, K.K.; Cramer, R.A.; Zegans, M.E.; Dunlap, J.C.; Loros, J.J. Aspergillus fumigatus Photobiology Illuminates the Marked Heterogeneity between Isolates. mBio 2016, 7, e01517-e16. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, D.; Sakai, K.; Suzuki, S.; Umemura, M.; Nogawa, T.; Kato, N.; Osada, H.; Watanabe, A.; Kawamoto, S.; Gonoi, T.; et al. Temperature during conidiation affects stress tolerance, pigmentation, and trypacidin accumulation in the conidia of the airborne pathogen Aspergillus fumigatus. PLoS ONE 2017, 12, e0177050. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, S.S.; Souza, A.C.R.; Chowdhary, A.; Meis, J.F.; Colombo, A.L. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 2016, 59, 198–219. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, M.; Glavis-Bloom, J.; Mylonakis, E. Invertebrate models of fungal infection. Biochim. Biophys. Acta 2013, 1832, 1378–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, P.C.; Morey, A.T.; Castanheira, G.M.; Bocate, K.P.; Panagio, L.A.; Ito, F.A.; Furlaneto, M.C.; Yamada-Ogatta, S.F.; Costa, I.N.; Mora-Montes, H.M.; et al. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. J. Microbiol. Methods 2015, 118, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Amich, J.; Schafferer, L.; Haas, H.; Krappmann, S. Regulation of sulphur assimilation is essential for virulence and affects iron homeostasis of the human-pathogenic mould Aspergillus fumigatus. PLoS Pathog. 2013, 9, e1003573. [Google Scholar] [CrossRef] [Green Version]
- Slater, J.L.; Gregson, L.; Denning, D.W.; Warn, P.A. Pathogenicity of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that in mice. Med. Mycol. 2011, 49 (Suppl. 1), S107–S113. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, D.; Takahashi, H.; Watanabe, A.; Takahashi-Nakaguchi, A.; Kawamoto, S.; Kamei, K.; Gonoi, T. Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with aspergillosis. J. Clin. Microbiol. 2014, 52, 4202–4209. [Google Scholar] [CrossRef] [Green Version]
- Takahashi-Nakaguchi, A.; Muraosa, Y.; Hagiwara, D.; Sakai, K.; Toyotome, T.; Watanabe, A.; Kawamoto, S.; Kamei, K.; Gonoi, T.; Takahashi, H. Genome sequence comparison of Aspergillus fumigatus strains isolated from patients with pulmonary aspergilloma and chronic necrotizing pulmonary aspergillosis. Med. Mycol. 2015, 53, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, D.; Di Paola, M.; Rizzetto, L.; Tocci, N.; De Filippo, C.; Lionetti, P.; Ardizzoni, A.; Colombari, B.; Paulone, S.; Gut, I.G.; et al. Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential. Front. Immunol. 2017, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, A.C.; Jackson, K.M.; McDonald, T.R.; Wang, Y.; Lueck, B.D.; Bohjanen, S.; Smith, K.D.; Akampurira, A.; Meya, D.B.; Xue, C.; et al. Identification of Pathogen Genomic Differences That Impact Human Immune Response and Disease during Cryptococcus neoformans Infection. mBio 2019, 10, e01440-e19. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Wang, K.; Yu, X.; Liu, J.; Zhang, H.; Zhou, F.; Xie, B.; Li, S. Transcription factor CCG-8 as a new regulator in the adaptation to antifungal azole stress. Antimicrob. Agents Chemother. 2014, 58, 1434–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, T.; van Rhijn, N.; Fraczek, M.; Gsaller, F.; Davies, E.; Carr, P.; Gago, S.; Fortune-Grant, R.; Rahman, S.; Gilsenan, J.M.; et al. The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat. Commun. 2020, 11, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irmer, H.; Tarazona, S.; Sasse, C.; Olbermann, P.; Loeffler, J.; Krappmann, S.; Conesa, A.; Braus, G.H. RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genom. 2015, 16, 640. [Google Scholar] [CrossRef] [Green Version]
- Alshareef, F.; Robson, G.D. Genetic and virulence variation in an environmental population of the opportunistic pathogen Aspergillus fumigatus. Microbiology 2014, 160, 742–751. [Google Scholar] [CrossRef] [Green Version]
- Amarsaikhan, N.; O’Dea, E.M.; Tsoggerel, A.; Owegi, H.; Gillenwater, J.; Templeton, S.P. Isolate-dependent growth, virulence, and cell wall composition in the human pathogen Aspergillus fumigatus. PLoS ONE 2014, 9, e100430. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, C.H.; Beattie, S.R.; Fuller, K.K.; McGurk, E.A.; Tang, Y.W.; Hohl, T.M.; Obar, J.J.; Cramer, R.A., Jr. Heterogeneity among Isolates Reveals that Fitness in Low Oxygen Correlates with Aspergillus fumigatus Virulence. mBio 2016, 7, e01515–e01516. [Google Scholar] [CrossRef] [Green Version]
- Fortwendel, J.R.; Zhao, W.; Bhabhra, R.; Park, S.; Perlin, D.S.; Askew, D.S.; Rhodes, J.C. A fungus-specific ras homolog contributes to the hyphal growth and virulence of Aspergillus fumigatus. Eukaryot. Cell 2005, 4, 1982–1989. [Google Scholar] [CrossRef] [Green Version]
- Mellado, E.; Aufauvre-Brown, A.; Gow, N.A.; Holden, D.W. The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol. Microbiol. 1996, 20, 667–679. [Google Scholar] [CrossRef]
- Zhao, W.; Panepinto, J.C.; Fortwendel, J.R.; Fox, L.; Oliver, B.G.; Askew, D.S.; Rhodes, J.C. Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence. Infect. Immun. 2006, 74, 4865–4874. [Google Scholar] [CrossRef] [Green Version]
- Mavridou, E.; Meletiadis, J.; Jancura, P.; Abbas, S.; Arendrup, M.C.; Melchers, W.J.; Heskes, T.; Mouton, J.W.; Verweij, P.E. Composite survival index to compare virulence changes in azole-resistant Aspergillus fumigatus clinical isolates. PLoS ONE 2013, 8, e72280. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Barker, B.M.; Grahl, N.; Puttikamonkul, S.; Bell, J.D.; Craven, K.D.; Cramer, R.A., Jr. The small GTPase RacA mediates intracellular reactive oxygen species production, polarized growth, and virulence in the human fungal pathogen Aspergillus fumigatus. Eukaryot. Cell 2011, 10, 174–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, G.U.; Rangel, D.E.; Fernandes, E.K.; Flint, S.D.; Roberts, D.W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Curr. Genet. 2015, 61, 405–425. [Google Scholar] [CrossRef] [PubMed]
- Bayry, J.; Beaussart, A.; Dufrene, Y.F.; Sharma, M.; Bansal, K.; Kniemeyer, O.; Aimanianda, V.; Brakhage, A.A.; Kaveri, S.V.; Kwon-Chung, K.J.; et al. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response. Infect. Immun. 2014, 82, 3141–3153. [Google Scholar] [CrossRef] [Green Version]
- Chai, L.Y.; Netea, M.G.; Sugui, J.; Vonk, A.G.; van de Sande, W.W.; Warris, A.; Kwon-Chung, K.J.; Kullberg, B.J. Aspergillus fumigatus conidial melanin modulates host cytokine response. Immunobiology 2010, 215, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Mech, F.; Thywissen, A.; Guthke, R.; Brakhage, A.A.; Figge, M.T. Automated image analysis of the host-pathogen interaction between phagocytes and Aspergillus fumigatus. PLoS ONE 2011, 6, e19591. [Google Scholar] [CrossRef] [Green Version]
- Amin, S.; Thywissen, A.; Heinekamp, T.; Saluz, H.P.; Brakhage, A.A. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int. J. Med. Microbiol. 2014, 304, 626–636. [Google Scholar] [CrossRef]
- Thywissen, A.; Heinekamp, T.; Dahse, H.M.; Schmaler-Ripcke, J.; Nietzsche, S.; Zipfel, P.F.; Brakhage, A.A. Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus Interferes with the Host Endocytosis Pathway. Front. Microbiol. 2011, 2, 96. [Google Scholar] [CrossRef] [Green Version]
- Warris, A.; Ballou, E.R. Oxidative responses and fungal infection biology. Semin. Cell Dev. Biol. 2019, 89, 34–46. [Google Scholar] [CrossRef]
- Hohl, T.M. Immune responses to invasive aspergillosis: New understanding and therapeutic opportunities. Curr. Opin. Infect. Dis. 2017, 30, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Canteri de Souza, P.; Custodio Caloni, C.; Wilson, D.; Sergio Almeida, R. An Invertebrate Host to Study Fungal Infections, Mycotoxins and Antifungal Drugs: Tenebrio molitor. J. Fungi 2018, 4, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondon, P.; De Champs, C.; Donadille, A.; Ambroise-Thomas, P.; Grillot, R. Variation in virulence of Aspergillus fumigatus strains in a murine model of invasive pulmonary aspergillosis. J. Med. Microbiol. 1996, 45, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aufauvre-Brown, A.; Brown, J.S.; Holden, D.W. Comparison of virulence between clinical and environmental isolates of Aspergillus fumigatus. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Sasse, C.; Dunkel, N.; Schafer, T.; Schneider, S.; Dierolf, F.; Ohlsen, K.; Morschhauser, J. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol. Microbiol. 2012, 86, 539–556. [Google Scholar] [CrossRef]
- Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol. 2013, 11, e1001692. [Google Scholar] [CrossRef]
- Valsecchi, I.; Mellado, E.; Beau, R.; Raj, S.; Latge, J.P. Fitness Studies of Azole-Resistant Strains of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2015, 59, 7866–7869. [Google Scholar] [CrossRef] [Green Version]
- Lackner, M.; Rambach, G.; Jukic, E.; Sartori, B.; Fritz, J.; Seger, C.; Hagleitner, M.; Speth, C.; Lass-Florl, C. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice. Med. Mycol. 2018, 56, 703–710. [Google Scholar] [CrossRef]
- Basenko, E.Y.; Pulman, J.A.; Shanmugasundram, A.; Harb, O.S.; Crouch, K.; Starns, D.; Warrenfeltz, S.; Aurrecoechea, C.; Stoeckert, C.J., Jr.; Kissinger, J.C.; et al. FungiDB: An Integrated Bioinformatic Resource for Fungi and Oomycetes. J. Fungi 2018, 4, 39. [Google Scholar] [CrossRef] [Green Version]
- Vena, A.; Munoz, P.; Mateos, M.; Guinea, J.; Galar, A.; Pea, F.; Alvarez-Uria, A.; Escribano, P.; Bouza, E. Therapeutic Drug Monitoring of Antifungal Drugs: Another Tool to Improve Patient Outcome? Infect. Dis. Ther. 2020, 9, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Sinnollareddy, M.G.; Roberts, J.A.; Lipman, J.; Akova, M.; Bassetti, M.; De Waele, J.J.; Kaukonen, K.M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. Pharmacokinetic variability and exposures of fluconazole, anidulafungin, and caspofungin in intensive care unit patients: Data from multinational Defining Antibiotic Levels in Intensive care unit (DALI) patients Study. Crit. Care. 2015, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Puértolas-Balint, F.; Rossen, J.W.A.; Oliveira dos Santos, C.; Chlebowicz, M.M.A.; Raangs, E.C.; van Putten, M.L.; Sola-Campoy, P.J.; Han, L.; Schmidt, M.; García-Cobos, S. Revealing the Virulence Potential of Clinical and Environmental Aspergillus fumigatus Isolates Using Whole-Genome Sequencing. Front. Microbiol. 2019, 10, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, D.J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J. Bacteriol. 1992, 174, 6678–6681. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Tu, Y.; Wang, Y.; Jiang, C.; Ma, L.; Hu, Z.; Wang, J.; Zeng, B.; He, B. Oxidative Stress Response of Aspergillus oryzae Induced by Hydrogen Peroxide and Menadione Sodium Bisulfite. Microorganisms 2019, 7, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, C.O.; Varga, J.J.; Hornbach, A.; Mezger, M.; Sennefelder, H.; Kneitz, S.; Kurzai, O.; Krappmann, S.; Einsele, H.; Nierman, W.C.; et al. The temporal dynamics of differential gene expression in Aspergillus fumigatus interacting with human immature dendritic cells in vitro. PLoS ONE 2011, 6, e16016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, C.O.; Loeffler, J.; De Luca, A.; Frost, S.; Kenny, C.; Duval, S.; Romani, L.; Rogers, T.R. Dynamics of extracellular release of Aspergillus fumigatus DNA and galactomannan during growth in blood and serum. J. Med. Microbiol. 2010, 59, 408–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmalhorst, P.S.; Krappmann, S.; Vervecken, W.; Rohde, M.; Muller, M.; Braus, G.H.; Contreras, R.; Braun, A.; Bakker, H.; Routier, F.H. Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryot. Cell 2008, 7, 1268–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhodes, J.C. Aspergillus fumigatus: Growth and virulence. Med. Mycol. 2006, 44 (Suppl. 1), S77–S81. [Google Scholar] [CrossRef] [Green Version]
- Yike, I. Fungal proteases and their pathophysiological effects. Mycopathologia 2011, 171, 299–323. [Google Scholar] [CrossRef]
- Botelho, N.S.; de Paula, S.B.; Panagio, L.A.; Pinge-Filho, P.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Candida species isolated from urban bats of Londrina-Parana, Brazil and their potential virulence. Zoonoses Public Health 2012, 59, 16–22. [Google Scholar] [CrossRef]
- Rajamani, S.; Hilda, A. Plate Assay to Screen Fungi for Proteolytic Activity. Curr. Sci. 1987, 56, 1179–1181. [Google Scholar]
- Ferling, I.; Dunn, J.D.; Ferling, A.; Soldati, T.; Hillmann, F. Conidial Melanin of the Human-Pathogenic Fungus Aspergillus fumigatus Disrupts Cell Autonomous Defenses in Amoebae. mBio 2020, 11, e00862-e20. [Google Scholar] [CrossRef] [PubMed]
- Heinekamp, T.; Thywissen, A.; Macheleidt, J.; Keller, S.; Valiante, V.; Brakhage, A.A. Aspergillus fumigatus melanins: Interference with the host endocytosis pathway and impact on virulence. Front. Microbiol. 2012, 3, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurucz, V.; Kruger, T.; Antal, K.; Dietl, A.M.; Haas, H.; Pocsi, I.; Kniemeyer, O.; Emri, T. Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron depletion. BMC Genom. 2018, 19, 357. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qiao, J.; Liu, W.; Wan, Z.; Wang, X.; Calderone, R.; Li, R. The sho1 sensor regulates growth, morphology, and oxidant adaptation in Aspergillus fumigatus but is not essential for development of invasive pulmonary aspergillosis. Infect. Immun. 2008, 76, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Morton, C.O.; de Luca, A.; Romani, L.; Rogers, T.R. RT-qPCR detection of Aspergillus fumigatus RNA in vitro and in a murine model of invasive aspergillosis utilizing the PAXgene(R) and Tempus RNA stabilization systems. Med. Mycol. 2012, 50, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Florea, L.; Langmead, B. Lighter: Fast and memory-efficient sequencing error correction without counting. Genome Biol. 2014, 15, 509. [Google Scholar] [CrossRef] [Green Version]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, M.; Raney, B.; Paten, B.; Pham, S. Ragout-a reference-assisted assembly tool for bacterial genomes. Bioinformatics 2014, 30, i302–i309. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priebe, S.; Linde, J.; Albrecht, D.; Guthke, R.; Brakhage, A.A. FungiFun: A web-based application for functional categorization of fungal genes and proteins. Fungal Genet. Biol. 2011, 48, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [Green Version]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sonderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Aurrecoechea, C.; Barreto, A.; Basenko, E.Y.; Brestelli, J.; Brunk, B.P.; Cade, S.; Crouch, K.; Doherty, R.; Falke, D.; Fischer, S.; et al. EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic. Acids. Res. 2017, 45, D581–D591. [Google Scholar] [CrossRef]
- Seemann, T.; Grüning, B. ABRicate. Available online: https://github.com/tseemann/abricate (accessed on 10 March 2020).
- El-Khoury, M.; Ligot, R.; Mahoney, S.; Stack, C.M.; Perrone, G.G.; Morton, C.O. The in vitro effects of interferon-gamma, alone or in combination with amphotericin B, tested against the pathogenic fungi Candida albicans and Aspergillus fumigatus. BMC Res. Notes 2017, 10, 364. [Google Scholar] [CrossRef] [Green Version]
Chromosome | Position 1 | Mutation 2 | Gene | Transcript | Class | AA Change | AF 3 |
---|---|---|---|---|---|---|---|
NC_007198.1 | 2422543 | T>C | AFUA_5G09420 | rna-XM_748604.1 | missense | p.Thr502Ala | 0.49 |
NC_007197.1 | 89009 | C>T | AFUA_4G00330 | rna-XM_741330.1 | missense | p.Gly11Glu | 0.41 |
NC_007197.1 | 95331 | G>A | AFUA_4G00350 | rna-XM_741328.1 | missense | p.His142Tyr | 0.41 |
NC_007197.1 | 95364 | C>G | AFUA_4G00350 | rna-XM_741328.1 | missense | p.Glu131Gln | 0.41 |
NC_007197.1 | 95399 | G>A | AFUA_4G00350 | rna-XM_741328.1 | missense | p.Ala119Val | 0.41 |
Property | AFUA_5G09420 | AFUA_4G00350 | AFUA_4G00330 |
---|---|---|---|
FunCat Protein | Clock controlled protein (CCG-8) | None | None |
FunCat Category | Cell type differentiation | None | None |
InterProScan Protein family | Transcription factor OPI1 | Peptidase M54, archaemetzincin-2. Metallopeptidase domain | None predicted. |
Literature | Knockouts in N. crassa and Fusarium verticillioides hypersensitise to azoles [22] | Increased expression following itraconazole treatment [23,24]. | Increased expression following itraconazole treatment [23,24]. |
Phobius/TMHMM | None | None | 3 TMhelix, 4 Phobius transmembrane domains predicted |
Clinical Origin | Isolate | Number of Genes Present in Assembly | |
---|---|---|---|
Oxidative Stress Response | Melanin Biosynthesis | ||
Coloniser | Af01 | 130 | 9 |
Af02 | 130 | 9 | |
Af03 | 130 | 9 | |
Af04 | 131 | 9 | |
Af06 | 131 | 9 | |
Af10 | 129 | 9 | |
Proven IA | Af11 | 131 | 9 |
Af12 | 130 | 9 | |
Af13 | 131 | 9 | |
Af14 | 130 | 9 |
Isolate Name | Patient Classification | Isolate Origin |
---|---|---|
Af01 | Coloniser 1 | Sputum |
Af02 | Coloniser | Sputum |
Af03 | Coloniser | BAL 3 |
Af04 | Coloniser | BAL |
Af05 | Coloniser | Sputum |
Af06 | Coloniser | Tissue 4 |
Af07 | Coloniser | Tissue |
Af08 | Coloniser | Sputum |
Af09 | Coloniser | Sputum |
Af10 | Coloniser | Sputum |
Af11 | Proven IA 2 | Tissue |
Af12 | Proven IA | BAL |
Af13 | Proven IA | Tissue |
Af14 | Proven IA | BAL |
Af15 | Proven IA | Tissue |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Kamand, S.; Steiner, M.; Ramirez, C.; Halliday, C.; Chen, S.C.-A.; Papanicolaou, A.; Morton, C.O. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022, 11, 428. https://doi.org/10.3390/pathogens11040428
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SC-A, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens. 2022; 11(4):428. https://doi.org/10.3390/pathogens11040428
Chicago/Turabian StyleEl-Kamand, Sam, Martina Steiner, Carl Ramirez, Catriona Halliday, Sharon C.-A. Chen, Alexie Papanicolaou, and Charles Oliver Morton. 2022. "Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype" Pathogens 11, no. 4: 428. https://doi.org/10.3390/pathogens11040428
APA StyleEl-Kamand, S., Steiner, M., Ramirez, C., Halliday, C., Chen, S. C. -A., Papanicolaou, A., & Morton, C. O. (2022). Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens, 11(4), 428. https://doi.org/10.3390/pathogens11040428