Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria
Abstract
:1. Introduction
2. Results
2.1. Number of Unique Sequences per Patient Is Elevated in Association with Chronic PM but Not Gravidity
2.2. Association of Short Peptide Motifs in DBL3X with Gravidity and PM Outcome Parameters
2.3. Sequence Analysis Identifies Four Types That Associate with Gravidity and Infection Parameters
2.4. Association of Infection Outcomes with Sequence Type Dominance
3. Discussion
4. Methods
4.1. Ethics Statement
4.2. Study Population
4.3. Amplification and Sequencing of var2csa DBL3X Domain
4.4. Data Quality Filtering
4.5. Unique Sequence Types Analysis
4.6. Motif Analysis
4.7. VAR2CSA Structure Modeling
4.8. Statistical Analysis and Graph Generation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dellicour, S.; Tatem, A.J.; Guerra, C.A.; Snow, R.W.; ter Kuile, F.O. Quantifying the number of pregnancies at risk of malaria in 2007: A demographic study. PLoS Med. 2010, 7, e1000221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021.
- WHO. World Malaria Report 2020; World Health Organization: Geneva, Switzerland, 2020.
- Goel, S.; Gowda, D.C. How specific is Plasmodium falciparum adherence to chondroitin 4-sulfate? Trends Parasitol. 2011, 27, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabin, B.J.; Romagosa, C.; Abdelgalil, S.; Menéndez, C.; Verhoeff, F.H.; McGready, R.; Fletcher, K.A.; Owens, S.; d’Alessandro, U.; Nosten, F.; et al. The sick placenta-the role of malaria. Placenta 2004, 25, 359–378. [Google Scholar] [PubMed]
- Nosten, F.; Rogerson, S.J.; Beeson, J.G.; McGready, R.; Mutabingwa, T. and Brabin, B. Malaria in pregnancy and the endemicity spectrum: What can we learn? Trends Parasitol. 2004, 20, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Brabin, B.J. An analysis of malaria in pregnancy in Africa. Bull. World Health Organ. 1983, 61, 1005–1016. [Google Scholar] [PubMed]
- Sullivan, A.D.; Nyirenda, T.; Cullinan, T.; Taylor, T.; Harlow, S.D.; James, S.A.; Meshnick, S.R. Malaria infection during pregnancy: Intrauterine growth retardation and preterm delivery in Malawi. J. Infect. Dis. 1999, 179, 1580–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilles, H.M.; Lawson, J.B.; Sibelas, M.; Voller, A.; Allan, N. Malaria, anaemia and pregnancy. Ann. Trop. Med. Parasitol. 1969, 63, 245–263. [Google Scholar] [CrossRef]
- Brabin, B. An assessment of low birthweight risk in primiparae as an indicator of malaria control in pregnancy. Int. J. Epidemiol. 1991, 20, 276–283. [Google Scholar] [CrossRef]
- Fried, M.; Nosten, F.; Brockman, A.; Brabin, B.J.; Duffy, P.E. Maternal antibodies block malaria. Nature 1998, 395, 851–852. [Google Scholar] [CrossRef]
- O’Neil-Dunne, I.; Achur, R.N.; Agbor-Enoh, S.T.; Valiyaveettil, M.; Naik, R.S.; Ockenhouse, C.F.; Zhou, A.; Megnekou, R.; Leke, R.; Taylor, D.W.; et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect. Immun. 2001, 69, 7487–7492. [Google Scholar] [CrossRef] [Green Version]
- Cox, S.E.; Staalsoe, T.; Arthur, P.; Bulmer, J.N.; Hviid, L.; Yeboah-Antwi, K.; Kirkwood, B.R.; Riley, E.M. Rapid acquisition of isolate-specific antibodies to chondroitin sulfate A-adherent plasmodium falciparum isolates in Ghanaian primigravidae. Infect. Immun. 2005, 73, 2841–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, A.; Gangnard, S.; Dechavanne, S.; Amirat, F.; Bentley, A.L.; Bentley, G.A.; Gamain, B. Var2CSA minimal CSA binding region is located within the N-terminal region. PLoS ONE 2011, 6, e20270. [Google Scholar]
- Tuikue-Ndam, N.; Deloron, P. Developing vaccines to prevent malaria in pregnant women. Expert Opin. Biol. Ther. 2015, 15, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Doritchamou, J.; Sabbagh, A.; Jespersen, J.S.; Renard, E.; Salanti, A.; Nielsen, M.A.; Deloron, P.; Tuikue Ndam, N. Identification of a Major Dimorphic Region in the Functionally Critical N-Terminal ID1 Domain of VAR2CSA. PLoS ONE 2015, 10, e0137695. [Google Scholar]
- Mordmuller, B.; Sulyok, M.; Egger-Adam, D.; Resende, M.; de Jongh, W.A.; Jensen, M.H.; Smedegaard, H.H.; Ditlev, S.B.; Soegaard, M.; Poulsen, L.; et al. First-in-human, Randomized, Double-blind Clinical Trial of Differentially Adjuvanted PAMVAC, A Vaccine Candidate to Prevent Pregnancy-associated Malaria. Clin. Infect. Dis. 2019, 69, 1509–1516. [Google Scholar] [CrossRef] [Green Version]
- Sirima, S.B.; Richert, L.; Chêne, A.; Konate, A.T.; Campion, C.; Dechavanne, S.; Semblat, J.P.; Benhamouda, N.; Bahuaud, M.; Loulergue, P.; et al. PRIMVAC vaccine adjuvanted with Alhydrogel or GLA-SE to prevent placental malaria: A first-in-human, randomised, double-blind, placebo-controlled study. Lancet Infect. Dis. 2020, 20, 585–597. [Google Scholar] [CrossRef]
- Dahlback, M.; Jørgensen, L.M.; Nielsen, M.A.; Clausen, T.M.; Ditlev, S.B.; Resende, M.; Pinto, V.V.; Arnot, D.E.; Theander, T.G.; Salanti, A. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains. J. Biol. Chem. 2011, 286, 15908–15917. [Google Scholar] [CrossRef] [Green Version]
- Rovira-Vallbona, E.; Monteiro, I.; Bardají, A.; Serra-Casas, E.; Neafsey, D.E.; Quelhas, D.; Valim, C.; Alonso, P.; Dobaño, C.; Ordi, J.; et al. VAR2CSA signatures of high Plasmodium falciparum parasitemia in the placenta. PLoS ONE 2013, 8, e69753. [Google Scholar] [CrossRef] [Green Version]
- Lambert, L.H.; Bullock, J.L.; Cook, S.T.; Miura, K.; Garboczi, D.N.; Diakite, M.; Fairhurst, R.M.; Singh, K.; Long, C.A. Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect. Immun. 2014, 82, 4842–4853. [Google Scholar] [CrossRef] [Green Version]
- Dechavanne, S.; Srivastava, A.; Gangnard, S.; Nunes-Silva, S.; Dechavanne, C.; Fievet, N.; Deloron, P.; Chêne, A.; Gamain, B. Parity-dependent recognition of DBL1X-3X suggests an important role of the VAR2CSA high-affinity CSA-binding region in the development of the humoral response against placental malaria. Infect. Immun. 2015, 83, 2466–2474. [Google Scholar] [CrossRef] [Green Version]
- Gamain, B.; Smith, J.D.; Viebig, N.K.; Gysin, J.; Scherf, A. Pregnancy-associated malaria: Parasite binding, natural immunity and vaccine development. Int. J. Parasitol. 2007, 37, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Talundzic, E.; Shah, S.; Fawole, O.; Owino, S.; Moore, J.M.; Peterson, D.S. Sequence polymorphism, segmental recombination and toggling amino acid residues within the DBL3X domain of the VAR2CSA placental malaria antigen. PLoS ONE 2012, 7, e31565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavente, E.D.; Oresegun, D.R.; de Sessions, P.F.; Walker, E.M.; Roper, C.; Dombrowsk, J.G.; de Souza, R.M.; Marinho, C.R.F.; Sutherland, C.J.; Hibberd, M.L.; et al. Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development. Sci. Rep. 2018, 8, 15429. [Google Scholar] [CrossRef] [PubMed]
- Bewley, M.C.; Gautam, L.; Jagadeeshaprasad, M.G.; Gowda, D.C.; Flanagan, J.M. Molecular architecture and domain arrangement of the placental malaria protein VAR2CSA suggests a model for carbohydrate binding. J. Biol. Chem. 2020, 295, 18589–18603. [Google Scholar] [CrossRef] [PubMed]
- Gangnard, S.; Lewit-Bentley, A.; Dechavanne, S.; Srivastava, A.; Amirat, F.; Bentley, G.A.; Gamain, B. Structure of the DBL3X-DBL4epsilon region of the VAR2CSA placental malaria vaccine candidate: Insight into DBL domain interactions. Sci. Rep. 2015, 5, 14868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, R.; Lian, T.; Huang, R.; Renn, J.P.; Petersen, J.D.; Zimmerberg, J.; Duffy, P.E.; Tolia, N.H. Structural basis for placental malaria mediated by Plasmodium falciparum VAR2CSA. Nat. Microbiol. 2021, 6, 380–391. [Google Scholar] [CrossRef]
- Wang, K.; Dagil, R.; Lavstsen, T.; Misra, S.K.; Spliid, C.B.; Wang, Y.; Gustavsson, T.; Sandoval, D.R.; Vidal-Calvo, E.E.; Choudhary, S.; et al. Cryo-EM reveals the architecture of placental malaria VAR2CSA and provides molecular insight into chondroitin sulfate binding. Nat. Commun. 2021, 12, 2956. [Google Scholar] [CrossRef]
- Avery, J.W.; Smith, G.M.; Owino, S.O.; Sarr, D.; Nagy, T.; Mwalimu, S.; Matthias, J.; Kelly, L.F.; Poovassery, J.S.; Middii, J.D.; et al. Maternal malaria induces a procoagulant and antifibrinolytic state that is embryotoxic but responsive to anticoagulant therapy. PLoS ONE 2012, 7, e31090. [Google Scholar] [CrossRef] [Green Version]
- Dahlback, M.; Rask, T.S.; Andersen, P.H.; Nielsen, M.A.; Ndam, N.T.; Resende, M.; Turner, L.; Deloron, P.; Hviid, L.; Lund, O.; et al. Epitope mapping and topographic analysis of VAR2CSA DBL3X involved in P. falciparum placental sequestration. PLoS Pathog. 2006, 2, e124. [Google Scholar] [CrossRef] [Green Version]
- Su, X.Z.; Heatwole, V.M.; Wertheimer, S.P.; Guinet, F.; Herrfeldt, J.A.; Peterson, D.S.; Ravetch, J.A.; Wellems, T.E. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 1995, 82, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.J.; Craig, A.G.; Berendt, A.R.; Pinches, R.; Nash, G.; Marsh, K.; Newbold, C.I. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 1992, 357, 689–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, J.A.; Kyes, S.A. The role of Plasmodium falciparum var genes in malaria in pregnancy. Mol. Microbiol. 2004, 53, 1011–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimnell, A.R.; Kraemer, S.M.; Mukherjee, S.; Phippard, D.J.; Janes, J.H.; Flamoe, E.; Su, X.Z.; Awadalla, P.; Smith, J.D. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol. Biochem. Parasitol. 2006, 148, 169–180. [Google Scholar] [CrossRef]
- Bockhorst, J.; Lu, F.; Janes, J.H.; Keebler, J.; Gamain, B.; Awadalla, P.; Su, X.Z.; Samudrala, R.; Jojic, N.; Smith, J.D. Structural polymorphism and diversifying selection on the pregnancy malaria vaccine candidate VAR2CSA. Mol. Biochem. Parasitol. 2007, 155, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.C.; Hathaway, N.J.; Parobek, C.M.; Thwai, K.L.; Madanitsa, M.; Khairallah, C.; Kalilani-Phiri, L.; Mwapasa, V.; Massougbodji, A.; Fievet, N.; et al. Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade. Sci. Rep. 2017, 7, 7768. [Google Scholar] [CrossRef] [PubMed]
- Ataide, R.; Mayor, A.; Rogerson, S.J. Malaria, primigravidae, and antibodies: Knowledge gained and future perspectives. Trends Parasitol. 2014, 30, 85–94. [Google Scholar] [CrossRef]
- Avril, M.; Cartwright, M.M.; Hathaway, M.J.; Smith, J.D. Induction of strain-transcendent antibodies to placental-type isolates with VAR2CSA DBL3 or DBL5 recombinant proteins. Malar. J. 2011, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Avril, M.; Hathaway, M.J.; Srivastava, A.; Dechavanne, S.; Hommel, M.; Beeson, J.G.; Smit, J.D.; Gamain, B. Antibodies to a full-length VAR2CSA immunogen are broadly strain-transcendent but do not cross-inhibit different placental-type parasite isolates. PLoS ONE 2011, 6, e16622. [Google Scholar] [CrossRef]
- Doritchamou, J.; Bigey, P.; Nielsen, M.A.; Gnidehou, S.; Ezinmegnon, S.; Burgain, A.; Massougbodji, A.; Deloron, P.; Salanti, A.; Ndam, N.T. Differential adhesion-inhibitory patterns of antibodies raised against two major variants of the NTS-DBL2X region of VAR2CSA. Vaccine 2013, 31, 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Bordbar, B.; Tuikue Ndam, N.; Renard, E.; Jafari-Guemouri, S.; Tavul, L.; Jennison, C.; Gnidehou, S.; Tahar, R.; Gamboa, D.; Bendezu, J.; et al. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: Impact on vaccine design for placental malaria. Infect. Genet. Evol. 2014, 25, 81–92. [Google Scholar] [CrossRef]
- Dahlback, M.; Nielsen, M.A.; Salanti, A. Can any lessons be learned from the ambiguous glycan binding of PfEMP1 domains? Trends Parasitol. 2010, 26, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Renn, J.P.; Doritchamou, J.Y.A.; Tentokam, B.C.N.; Morrison, R.D.; Cowles, M.V.; Burkhardt, M.; Ma, R.; Mahamar, A.; Attaher, O.; Diarra, B.S.; et al. Allelic variants of full-length VAR2CSA, the placental malaria vaccine candidate, differ in antigenicity and receptor binding affinity. Commun. Biol. 2021, 4, 1309. [Google Scholar] [CrossRef] [PubMed]
- Doritchamou, J.Y.A.; Suurbaar, J.; Ndam, N.T. Progress and new horizons toward a VAR2CSA-based placental malaria vaccine. Expert Rev. Vaccines 2021, 20, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Doritchamou, J.Y.A.; Renn, J.P.; Jenkins, B.; Mahamar, A.; Dicko, A.; Fried, M.; Duffy, P.E. A single full-length VAR2CSA ectodomain variant purifies broadly neutralizing antibodies against placental malaria isolates. Elife 2022, 11, e76264. [Google Scholar] [CrossRef]
- Githeko, A.K.; Brandling-Bennett, A.D.; Beier, M.; Atieli, F.; Owaga, M.; Collins, F.H. The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Trans. R. Soc. Trop. Med. Hyg. 1992, 86, 355–358. [Google Scholar] [CrossRef]
- Desai, M.; ter Kuile, F.O.; Nosten, F.; McGready, R.; Asamoa, K.; Brabin, B. and Newman, R.D. Epidemiology and burden of malaria in pregnancy. Lancet Infect. Dis. 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Iriemenam, N.C.; Shah, M.; Gatei, W.; van Eijk, A.M.; Ayisi, J.; Kariuki, S.; Eng, J.V.; Owino, S.O.; Lal, A.A.; Omosun, Y.O.; et al. Temporal trends of sulphadoxine-pyrimethamine (SP) drug-resistance molecular markers in Plasmodium falciparum parasites from pregnant women in western Kenya. Malar. J. 2012, 11, 134. [Google Scholar] [CrossRef] [Green Version]
- Harrington, W.E.; Mutabingwa, T.K.; Muehlenbachs, A.; Sorensen, B.; Bolla, M.C.; Fried, M.; Duffy, P.E. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc. Natl. Acad. Sci. USA 2009, 106, 9027–9032. [Google Scholar] [CrossRef] [Green Version]
- Menendez, C.; Moorthy, V.S.; Reed, Z.; Bardají, A.; Alonso, P.; Brown, G.V. Development of vaccines to prevent malaria in pregnant women: WHO MALVAC meeting report. Expert Rev. Vaccines 2011, 10, 1271–1280. [Google Scholar] [CrossRef]
- Perrault, S.D.; Hajek, J.; Zhong, K.; Owino, S.O.; Sichangi, M.; Smith, G.; Shi, Y.P.; Moore, J.M.; Kain, K.C. Human immunodeficiency virus co-infection increases placental parasite density and transplacental malaria transmission in Western Kenya. Am. J. Trop. Med. Hyg. 2009, 80, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Othoro, C.; Moore, J.M.; Wannemuehler, K.; Nahlen, B.L.; Otieno, J.; Slutsker, L.; Lal, A.A.; Shi, Y.P. Evaluation of various methods of maternal placental blood collection for immunology studies. Clin. Vaccine Immunol. 2006, 13, 568–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, J.M.; Nahlen, B.; Ofulla, A.V.; Caba, J.; Ayisi, J.; Oloo, A.; Misore, A.; Nahmias, A.J.; Lal, A.A.; Udhayakumar, V. A simple perfusion technique for isolation of maternal intervillous blood mononuclear cells from human placentae. J. Immunol. Methods 1997, 209, 93–104. [Google Scholar] [CrossRef]
- Dubowitz, L.M.; Dubowitz, V.; Goldberg, C. Clinical assessment of gestational age in the newborn infant. J. Pediatrics 1970, 77, 1–10. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Campo, D.S.; Dimitrova, Z.; Yamasaki, L.; Skums, P.; Lau, D.T.Y.; Vaughan, G.; Forbi, J.C.; Teo, C.-E.; Khudyakov, Y. Next-generation sequencing reveals large connected networks of intra-host HCV variants. BMC Genom. 2014, 15 (Suppl. S5), S4. [Google Scholar] [CrossRef]
- Colwell, R. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. 2013. Available online: https://www.researchgate.net/publication/247642760_Statistical_Estimation_of_Species_Richness_and_Shared_Species_from_Samples (accessed on 23 April 2022).
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
Primigravid (n = 23) | Multigravid (n = 26) | p Value a | |
---|---|---|---|
Gravidity (mean, range) | 1 | 4, 3–4.3 | <0.0001 |
Age (years) | 18 (17, 19) | 25 (23, 28.3) | <0.0001 |
Luo ethnicity (%) | 22/23 (96) | 24/26 (92) | 1 |
Resident of Siaya District (%) | 16/23 (70) | 23/26 (88) | 0.16 |
Submicroscopic placental infection (%) b | 3/23 (13) | 7/26 (27) | 0.30 |
% Placental parasitemia b | 1.8 (0.5, 7.0) | 0.5 (0.3, 1.2) | 0.037 |
Placental parasite density/µL b | 15,502 (4723, 50, 521) | 1564 (651, 4410) | 0.0014 |
Chronic placental malaria (%) c | 16/20 (80) | 11/23 (48) | 0.056 |
% Hemozoin-bearing WBC d | 4.3 (1.2, 8.4) | 1.0 (0, 4.3) | 0.041 |
HIV seropositive (%) | 1/23 (4) | 6/26 (23) | 0.10 |
Peripheral hemoglobin level (g/dL) e | 11.6 ± 2.0 | 10.5 ± 2.1 | 0.13 |
Self-reported antimalarial use (%); SP use (%) f | 15/23 (65); 15/23 (65) | 16/26 (62); 12/26 (46) | 1/0.25 |
Infant birth weight (g) | 3009 ± 383 | 3304 ± 436 | 0.015 |
Gestational age (wks) g | 38.3 ± 1.0 | 38.2 ± 1.4 | 0.61 |
Male birth (%) | 10/23 (43) | 16/26 (62) | 0.26 |
Motif | No. Observed | % of Total Population (n = 522) | Primigravid n (%) | Multigravid n (%) | p |
---|---|---|---|---|---|
IISQNDKK | 273 | 51 | 144 (27) | 129 (24) | 0.0571 |
IISRNPMK | 138 | 26 | 52 (9) | 86 (16) | 0.0008 |
EGGEDGKGKQKE | 94 | 18 | 37 (7) | 60 (11) | 0.0313 |
EKANNN | 222 | 41 | 125 (24) | 97 (18) | 0.0049 |
NSNGLP | 328 | 62 | 159 (29) | 169 (32) | 0.4237 |
Continuous Variables | ||||||||||||
Type 1 | Type 2 | Type 3 | Type 4 | |||||||||
Co-efficient | SEM | p | Co-efficient | SEM | p | Co-efficient | SEM | p | Co-efficient | SEM | p | |
Age | 0.737 | 0.973 | 0.453 | −0.877 | 0.586 | 0.142 | 0.764 | 0.616 | 0.222 | −0.806 | 0.414 | 0.0580 |
Gravidity | 0.371 | 0.325 | 0.260 | −0.362 | 0.196 | 0.0711 | 0.306 | 0.206 | 0.145 | −0.170 | 0.138 | 0.225 |
Placental parasite density a | −0.036 | 0.298 | 0.905 | 0.190 | 0.179 | 0.296 | −0.347 | 0.189 | 0.0727 | 0.173 | 0.127 | 0.179 |
Percent placental parasitemia a | −0.0340 | 0.258 | 0.896 | 0.169 | 0.154 | 0.281 | −0.363 | 0.163 | 0.0311 | 0.207 | 0.109 | 0.0648 |
Placental hemozoin burden b | −0.147 | 0.266 | 0.584 | 0.155 | 0.123 | 0.215 | −0.177 | 0.129 | 0.176 | 0.127 | 0.0907 | 0.170 |
Peripheral hemoglobin c | −0.080 | 0.471 | 0.866 | −0.125 | 0.257 | 0.631 | −0.407 | 0.264 | 0.133 | 0.075 | 0.177 | 0.675 |
Infant birth weight | 45.4 | 77.8 | 0.563 | −64.0 | 46.8 | 0.179 | 60.9 | 49.3 | 0.223 | −31.2 | 33.1 | 0.350 |
Gestational age at birth | −0.646 | 0.209 | 0.0036 | −0.0676 | 0.127 | 0.596 | 0.0913 | 0.132 | 0.494 | −0.0219 | 0.0899 | 0.809 |
Categorical Variables | ||||||||||||
Type 1 | Type 2 | Type 3 | Type 4 | |||||||||
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |||||
Gravidity group | 3.85 (0.763, 19.4) | 0.103 | 0.621 (0.342, 1.13) | 0.118 | 1.55 (0.872, 2.74) | 0.135 | 0.835 (0.594, 1.17) | 0.298 | ||||
Upper quartile parasite density | 0.231 (0.020, 2.72) | 0.245 | 1.14 (0.698, 1.85) | 0.611 | 0.657 (0.333, 1.30) | 0.226 | 1.12 (0.777, 1.60) | 0.552 | ||||
Upper quartile percent parasitemia | 0.454 (0.064, 3.20) | 0.428 | 1.78 (0.863, 3.68) | 0.118 | 0.184 (0.042, 0.805) | 0.0245 | 1.19 (0.696, 2.04) | 0.524 | ||||
Upper quartile hemozoin-WBCs | 0.684 (0.100, 4.66) | 0.698 | 1.52 (0.852, 2.69) | 0.158 | 1.47 (0.799, 2.71) | 0.215 | 1.02 (.0641, 1.61) | 0.947 | ||||
Placental histology group d | 0.305 (0.073, 1.28) | 0.105 | 4.12 (0.910, 18.6) | 0.0661 | 0.615 (0.305, 1.24) | 0.176 | 3.26 (1.41, 7.52) | 0.0056 | ||||
Anemia | 0.521 (0.135, 2.01) | 0.345 | 1.14 (0.628, 2.05) | 0.674 | 1.43 (0.830, 2.46) | 0.198 | 1.28 (0.892, 1.85) | 0.179 | ||||
HIV serostatus | 0.994 (0.416, 2.37) | 0.990 | 0.315 (0.047, 2.12) | 0.236 | 1.11 (0.601, 2.04) | 0.742 | 1.27 (0.852, 1.91) | 0.239 | ||||
Self-reported antimalarial drug use e | 0.896 (0.427, 1.88) | 0.773 | 1.57 (0.682, 3.63) | 0.288 | 1.14 (0.642, 2.02) | 0.656 | 0.863 (0.604, 1.23) | 0.418 | ||||
Low birth weight | 0.956 (0.258, 3.55) | 0.947 | 1.53 (0.881, 2.65) | 0.132 | 0.907 (0.415, 1.98) | 0.806 | 1.20 (0.754, 1.92) | 0.437 | ||||
Preterm birth | 2.66 (0.891, 7.96) | 0.0797 | 0.884 (0.161, 4.85) | 0.887 | 0.604 (0.114, 3.19) | 0.552 | 0.832 (0.287, 2.41) | 0.735 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talundzic, E.; Scott, S.; Owino, S.O.; Campo, D.S.; Lucchi, N.W.; Udhayakumar, V.; Moore, J.M.; Peterson, D.S. Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria. Pathogens 2022, 11, 520. https://doi.org/10.3390/pathogens11050520
Talundzic E, Scott S, Owino SO, Campo DS, Lucchi NW, Udhayakumar V, Moore JM, Peterson DS. Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria. Pathogens. 2022; 11(5):520. https://doi.org/10.3390/pathogens11050520
Chicago/Turabian StyleTalundzic, Eldin, Stephen Scott, Simon O. Owino, David S. Campo, Naomi W. Lucchi, Venkatachalam Udhayakumar, Julie M. Moore, and David S. Peterson. 2022. "Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria" Pathogens 11, no. 5: 520. https://doi.org/10.3390/pathogens11050520
APA StyleTalundzic, E., Scott, S., Owino, S. O., Campo, D. S., Lucchi, N. W., Udhayakumar, V., Moore, J. M., & Peterson, D. S. (2022). Polymorphic Molecular Signatures in Variable Regions of the Plasmodium falciparum var2csa DBL3x Domain Are Associated with Virulence in Placental Malaria. Pathogens, 11(5), 520. https://doi.org/10.3390/pathogens11050520