Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays
Abstract
:1. Introduction
2. Results
2.1. HRM Assay
2.2. Analytical Specificity
2.3. Analytical Sensitivity
2.4. Efficiency
2.5. Clinical Isolates
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Clinical Isolates
4.2. HRM Conditions
4.3. Analytical Specificity
4.4. Analytical Sensitivity
4.5. Efficiency
4.6. Clinical Isolates
5. Conclusion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickerman, A.; Bandara, A.B.; Inzana, T.J. Phylogenomic analysis of Haemophilus parasuis and proposed reclassification to Glaesserella parasuis, gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 2020, 70, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Costa-Hurtado, M.; Barba-Vidal, E.; Maldonado, J.; Aragon, V. Update on Glässer’s disease: How to control the disease under restrictive use of antimicrobials. Vet. Microbiol. 2020, 242, 108595. [Google Scholar] [CrossRef]
- Cerdà-Cuéllar, M.; Naranjo, J.F.; Verge, A.; Nofrarías, M.; Cortey, M.; Olvera, A.; Segalés, J.; Aragon, V. Sow vaccination modulates the colonization of piglets by Haemophilus parasuis. Vet. Microbiol. 2010, 145, 315–320. [Google Scholar] [CrossRef]
- Olvera, A.; Cerdà-Cuéllar, M.; Aragon, V. Study of the population structure of Haemophilus parasuis by multilocus sequence typing. Microbiology 2006, 152, 3683–3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galofré-Milà, N.; Correa-Fiz, F.; Lacouture, S.; Gottschalk, M.; Strutzberg-Minder, K.; Bensaid, A.; Pina-Pedrero, S.; Aragon, V. A robust PCR for the differentiation of potential virulent strains of Haemophilus parasuis. BMC Vet. Res. 2017, 13, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amano, H.; Shibata, M.; Kajio, N.; Morozumi, T. Pathologic observations of pigs intranasally inoculated with serovar 1, 4 and 5 of Haemophilus parasuis using immunoperoxidase method. J. Vet. Med. Sci. 1994, 56, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Little, T.W. Haemophilus infection in pigs. Vet. Rec. 1970, 87, 399–402. [Google Scholar] [CrossRef]
- Nielsen, R.; Danielsen, V. An outbreak of Glasser’s disease. Studies on etiology, serology and the effect of vaccination. Nord. Vet. Med. 1975, 27, 20–25. [Google Scholar]
- Aragon, V.; Segalés, J.; Tucker, A. Glässer’s Disease. In Diseases of Swine; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 844–853. [Google Scholar]
- Li, J.; Wang, S.; Li, C.; Wang, C.; Liu, Y.; Wang, G.; He, X.; Hu, L.; Liu, Y.; Cui, M.; et al. Secondary Haemophilus parasuis infection enhances highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) infection-mediated inflammatory responses. Vet. Microbiol. 2017, 204, 35–42. [Google Scholar] [CrossRef]
- Pomorska-Mol, M.; Dors, A.; Kwit, K.; Czyzewska-Dors, E.; Pejsak, Z. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. BMC Vet. Res. 2017, 13, 376. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.K.; Goyal, S.M.; Joo, H.S. Retrospective analysis of etiologic agents associated with respiratory diseases in pigs. Can. Vet. J. 2003, 44, 735–737. [Google Scholar] [PubMed]
- Oliveira, S.; Pijoan, C. Haemophilus parasuis: New trends on diagnosis, epidemiology and control. Vet. Microbiol. 2004, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Peet, R.L.; Fry, J.; Lloyd, J.; Henderson, J.; Curran, J.; Moir, D. Haemophilus parasuis septicaemia in pigs. Aust. Vet. J. 1983, 60, 187. [Google Scholar] [CrossRef] [PubMed]
- Vahle, J.L.; Haynes, J.S.; Andrews, J.J. Experimental reproduction of Haemophilus parasuis infection in swine: Clinical, bacteriological, and morphologic findings. J. Vet. Diagn. Investig. 1995, 7, 476–480. [Google Scholar] [CrossRef] [Green Version]
- Kielstein, P.; Rapp-Gabrielson, V.J. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J. Clin. Microbiol. 1992, 30, 862–865. [Google Scholar] [CrossRef] [Green Version]
- Howell, K.J.; Weinert, L.A.; Chaudhuri, R.R.; Luan, S.L.; Peters, S.E.; Corander, J.; Harris, D.; Angen, Ø.; Aragon, V.; Bensaid, A.; et al. The use of genome wide association methods to investigate pathogenicity, population structure and serovar in Haemophilus parasuis. BMC Genom. 2014, 15, 1179. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Blackall, P.J.; Pijoan, C. Characterization of the diversity of Haemophilus parasuis field isolates by use of serotyping and genotyping. Am. J. Vet. Res. 2003, 64, 435–442. [Google Scholar] [CrossRef]
- Brockmeier, S.L.; Register, K.B.; Kuehn, J.S.; Nicholson, T.L.; Loving, C.L.; Bayles, D.O.; Shore, S.M.; Phillips, G.J. Virulence and draft genome sequence overview of multiple strains of the swine pathogen Haemophilus parasuis. PLoS ONE 2014, 9, e103787. [Google Scholar] [CrossRef]
- Aragon, V.; Cerdà-Cuéllar, M.; Fraile, L.; Mombarg, M.; Nofrarías, M.; Olvera, A.; Sibila, M.; Solanes, D.; Segalés, J. Correlation between clinico-pathological outcome and typing of Haemophilus parasuis field strains. Vet. Microbiol. 2010, 142, 387–393. [Google Scholar] [CrossRef]
- Schuwerk, L.; Hoeltig, D.; Waldmann, K.H.; Strutzberg-Minder, K.; Valentin-Weigand, P.; Rohde, J. Serotyping and pathotyping of Glaesserella parasuis isolated 2012-2019 in Germany comparing different PCR-based methods. Vet. Res. 2020, 51, 137. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Osmundson, T.; Li, C.; Yan, H. Whole-genome sequence analyses of Glaesserella parasuis isolates reveals extensive genomic variation and diverse antibiotic resistance determinants. PeerJ 2020, 8, e9293. [Google Scholar] [CrossRef] [PubMed]
- Macedo, N.; Gottschalk, M.; Strutzberg-Minder, K.; Van, C.N.; Zhang, L.; Zou, G.; Zhou, R.; Marostica, T.; Clavijo, M.J.; Tucker, A.; et al. Molecular characterization of Glaesserella parasuis strains isolated from North America, Europe and Asia by serotyping PCR and LS-PCR. Vet. Res. 2021, 52, 68. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.J.; Peters, S.E.; Wang, J.; Hernandez-Garcia, J.; Weinert, L.A.; Luan, S.L.; Chaudhuri, R.R.; Angen, Ø.; Aragon, V.; Williamson, S.M.; et al. Development of a multiplex PCR assay for rapid molecular serotyping of Haemophilus parasuis. J. Clin. Microbiol. 2015, 53, 3812–3821. [Google Scholar] [CrossRef] [Green Version]
- Jia, A.; Zhou, R.; Fan, H.; Yang, K.; Zhang, J.; Xu, Y.; Wang, G.; Liao, M. Development of serotype-specific PCR assays for typing of Haemophilus parasuis isolates circulating in Southern China. J. Clin. Microbiol. 2017, 55, 3249–3257. [Google Scholar] [CrossRef] [Green Version]
- Olvera, A.; Pina, S.; Macedo, N.; Oliveira, S.; Aragon, V.; Bensaid, A. Identification of potentially virulent strains of Haemophilus parasuis using a multiplex PCR for virulence-associated autotransporters (vtaA). Vet. J. 2012, 191, 213–218. [Google Scholar] [CrossRef]
- Vossen, R.H.; Aten, E.; Roos, A.; den Dunnen, J.T. High-resolution melting analysis (HRMA): More than just sequence variant screening. Hum. Mutat. 2009, 30, 860–866. [Google Scholar] [CrossRef]
- Cui, Y.; Guo, F.; Cai, X.; Cao, X.; Guo, J.; Wang, H.; Yang, B.; Zhou, H.; Su, X.; Blackall, P.J.; et al. Ct value-based real time PCR serotyping of Glaesserella parasuis. Vet. Microbiol. 2021, 254, 109011. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, H.; Xue, Y.; Chen, K.; Liu, Z.; Xue, Q.; Wang, C. Analysis of efficacy obtained with a trivalent inactivated Haemophilus parasuis serovars 4, 5, and 12 vaccine and commercial vaccines against Glässer’s disease in piglets. Can. J. Vet. Res. 2017, 81, 22–27. [Google Scholar] [PubMed]
- Macedo, N.; Cheeran, M.C.; Rovira, A.; Holtcamp, A.; Torremorell, M. Effect of enrofloxacin on Haemophilus parasuis infection, disease and immune response. Vet. Microbiol. 2017, 199, 91–99. [Google Scholar] [CrossRef]
- Lacouture, S.; Rodriguez, E.; Strutzberg-Minder, K.; Gottschalk, M. Canada: Serotyping of Haemophilus parasuis field isolates from diseased pigs in Quebec by indirect hemagglutination assay and multiplex polymerase chain reaction (PCR). Can. Vet. J. 2017, 58, 802–804. [Google Scholar]
Primer Name | Sequence 5′-3′ | Target Gene | Reference | Amplicon Size (bp) | Concentration | Melting Temperature (Tm) |
---|---|---|---|---|---|---|
HRM1_GPS_F | AGCTTCCATAAAAGGGAAA | HSP_219690793 | this study | 96 | 500 nM | 75.8 ± 0.2 |
HRM1_GPS_R | TGGGAATATCAGACAGGAG | this study | 500 nM | |||
AV1-F vta | AAATATTTAGAGTTATTTGGAGTC | non-virulent vtaA | [5] | 221 | 1000 nM | 79.65 ± 0.3 |
NV1-R | CAGAATAAGCAAAATCAGC | [5] | 1000 nM |
Primer Name | Sequence 5′-3′ | Serovar | Target Gene | Reference | Amplicon Size (bp) | Concentration | Melting Temperature (Tm) |
---|---|---|---|---|---|---|---|
funB-H1_f | CTGTGTATAATCTATCCCCGATCATCAGC | serovar 1 | funB | [24] | 180 | 400 nM | 77.85 ± 0.15 |
funB-H1_r | GTCCAACAGAATTTGGACCAATTCCTG | serovar 1 | [24] | 400 nM | |||
2funEF | TCTAGAGAAGACGGGATTAGTGG | serovar 2 | funE | [28] | 84 | 400 nM | 75.6 ± 0.15 |
2funER | CGGAAGCCACGATTCTATTGC | serovar 2 | [28] | 400 nM | |||
5wcwKF | CACTGGATAGAGAGTGGCAG | serovar 5 | wcwK | [28] | 139 | 400 nM | 74.4± 0.1 |
5wcwKR | GGGCAGTTTTTTTCTATAGATCTT | serovar 5 | [28] | 400 nM | |||
7funQF | TTAAGGGGGATGTCAGAGCAAG | serovar 7 | funQ | [28] | 229 | 200 nM | 76.5 ± 0.1 |
7funQR | CCTGGTCATATAATGGCTGCAC | serovar 7 | [28] | 200 nM | |||
8scdAF | AAGCAGCAGGTTCTATGGAGTC | serovar 8 | scdA | [28] | 241 | 200 nM | 77.45 ± 0.15 |
8scdAR | AAAACGCCACGAAATGACATC | serovar 8 | [28] | 200 nM | |||
10funXF | AGAGAATTGGGCAAGGCATG | serovar 10 | funX | [28] | 134 | 300 nM | 73.6 ± 0.2 |
10funXR | CTCGCCCATAAATGTCACCAAC | serovar 10 | [28] | 300 nM | |||
15funIF | GGTTTTGTGTGGGGTGGATTTG | serovar 15 | funI | [28] | 113 | 400 nM | 72.7 ± 0.1 |
15funIR | CATTTGTTGGATGTACGCCATTG | serovar 15 | [28] | 400 nM |
Primer Name | Sequence 5′-3′ | Serovar | Target Gene | Reference | Amplicon Size (bp) | Concentration | Melting Temperature (Tm) |
---|---|---|---|---|---|---|---|
3_HRM_F | GTGTTTATCCTGACTTGGCTGTC | serovar 3 | glyC | this study | 129 | 450 nM | 76 ± 0.1 |
3glyCR | ATCCGCCCAATATGCCTTTC | serovar 3 | [28] | 450 nM | |||
4wciPF | ACAGGAGGGGTTGAAAAGACC | serovar 4 | wciP | [28] | 191 | 200 nM | 76.6 ± 0.1 |
4wciPR | CAAGATTCCCCCAATCATCTGC | serovar 4 | [28] | 200 nM | |||
6funLF | TGGAGCGAATCACACTTATCG | serovar 6 | funL | [28] | 122 | 350 nM | 74.4 ± 0.1 |
6funLR | CCGCTTCCCATACCATACAAC | serovar 6 | [28] | 350 nM | |||
9funVF | GGGACTGAAACTGGTTCTGTTC | serovar 9 | funV | [28] | 173 | 200 nM | 77 ± 0.1 |
9funVR | AATACTCCCCCACCAAAGAACC | serovar 9 | [28] | 200 nM | |||
11amtAF | TGGTGCTTGGTCTTTTTGCC | serovar 11 | amtA | [28] | 180 | 350 nM | 79.4 ± 0.1 |
11amtAR | AAAGAGTCGTGAACCCAACG | serovar 11 | [28] | 350 nM | |||
12_HRM_F | ATGAAAATTGATTTCGTACTACCTTGG | serovar 12 | wcwK | this study | 156 | 250 nM | 75.2 ± 0.1 |
12_HRM_R | AGACCTAAGAACATATCTTAGAGTTCC | serovar 12 | this study | 250 nM | |||
13waaLF | GGGGTTTTAGCATTTGTATTCGG | serovar 13 | waaL | [28] | 159 | 200 nM | 73.7 ± 0.15 |
13waaLR | ATTCGCTCCTTGCTCAACTC | serovar 13 | [28] | 200 nM | |||
14funABF | ACCTGCAGGCAATGTAACTC | serovar 14 | funAB | [28] | 271 | 300 nM | 72.4 ± 0.1 |
14funABR | ACCCATTATCCCCAACCCAAC | serovar 14 | [28] | 300 nM |
G. parasuis Isolates | Year | Serovar a | Virulence b | Origin | Anamnesis/Clinical Signs |
---|---|---|---|---|---|
SS626 SK1 | 2007 | 1 | virulent | lung | unknown |
SS626 SK2 | 2007 | 7 | virulent | lung | unknown |
PP396 | 2016 | 2 | virulent | joint | fever, increased herd mortality |
SS3873 | 2017 | 2 | virulent | joint | neurological dysfunction, fever |
SS3875 | 2017 | 2 | virulent | joint | neurological dysfunction |
SS3939 | 2017 | 2 | virulent | joint | inflammation joints |
PP733 | 2018 | 2 | virulent | brain | sudden death, fever, coughing |
PP749 | 2018 | 2 | virulent | lung | diarrhea, poor condition |
PP797 | 2019 | 13 | virulent | brain | meningitis, neurological dysfunction |
PP808 | 2019 | 4 | virulent | lung | pneumonia |
PP849 | 2020 | 7 | virulent | lung | coughing, dyspnea |
SS5061 | 2020 | 13 | virulent | joint | swollen joints |
PP879 | 2021 | 14 | virulent | lung | coughing |
21-640/1 | 2021 | 4 | virulent | lung | increased herd morbidity |
SS5603 | 2021 | 4 | virulent | joint | polyarthritis, oedema in head |
PP903 | 2021 | 7 | virulent | brain | neurological dysfunction |
22-180 | 2022 | 7 | virulent | brain | lameness |
22-676/4 | 2022 | 2 | virulent | brain | poor condition |
Species | Strain | Serovar | LS-PCR a |
---|---|---|---|
G. parasuis | nr. 4 | 1 | V |
G. parasuis | SW140 | 2 | V |
G. parasuis | SW114 | 3 | NV |
G. parasuis | SW124 | 4 | V |
G. parasuis | Nagasaki | 5 | V |
G. parasuis | 131 | 6 | NV |
G. parasuis | 174 | 7 | V |
G. parasuis | C5 | 8 | NV |
G. parasuis | D74 | 9 | NV |
G. parasuis | H555 | 10 | NV |
G. parasuis | H465 | 11 | V |
G. parasuis | H425 | 12 | V |
G. parasuis | 84-17975 | 13 | V |
G. parasuis | 84-22113 | 14 | V |
G. parasuis | 84-15995 | 15 | V |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scherrer, S.; Rademacher, F.; Stephan, R.; Peterhans, S. Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens 2022, 11, 752. https://doi.org/10.3390/pathogens11070752
Scherrer S, Rademacher F, Stephan R, Peterhans S. Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens. 2022; 11(7):752. https://doi.org/10.3390/pathogens11070752
Chicago/Turabian StyleScherrer, Simone, Fenja Rademacher, Roger Stephan, and Sophie Peterhans. 2022. "Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays" Pathogens 11, no. 7: 752. https://doi.org/10.3390/pathogens11070752
APA StyleScherrer, S., Rademacher, F., Stephan, R., & Peterhans, S. (2022). Identification of Glaesserella parasuis and Differentiation of Its 15 Serovars Using High-Resolution Melting Assays. Pathogens, 11(7), 752. https://doi.org/10.3390/pathogens11070752