Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay
Abstract
:1. Introduction
2. Results
2.1. Isolation and Identification of G. smithogilvyi
2.2. Phylogenetic Analysis of G. smithogilvyi
2.3. Species-Specific Primer Design
2.4. Multiplex PCR Optimisation
2.4.1. Annealing Temperature
2.4.2. Primer Concentration
2.5. Multiplex PCR Specificity
2.6. Multiplex PCR Detection Limit
2.7. Multiplex PCR Validation
2.8. Morphological Characterisation of Colony and Conidia of Isolates
2.9. Assessment of G. smithogilvyi Isolate Virulence In Vitro
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Fungal Isolation
4.2. DNA Extraction and Molecular Identification
4.3. Phylogenetic Analysis of G. smithogilvyi Isolates
4.4. Species-Specific Primer Design
4.5. Multiplex PCR Optimisation
4.6. Multiplex PCR Specificity
4.7. Multiplex PCR Detection Limit
4.8. Multiplex PCR Validation
4.9. Morphological Characterisation of Colonies
4.10. Morphological Characterisation of Conidia
4.11. Assessment of G. smithogilvyi Isolate Virulence
4.12. Statistical Analysis and Data Visualisation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gullino, P.; Mellano, M.G.; Beccaro, G.L.; Devecchi, M.; Larcher, F. Strategies for the Management of Traditional Chestnut Landscapes in Pesio Valley, Italy: A Participatory Approach. Land 2020, 9, 536. [Google Scholar] [CrossRef]
- Conedera, M.; Tinner, W.; Krebs, P.; de Rigo, D.; Caudullo, G. Castanea sativa in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston, Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. e0120–e0125. [Google Scholar]
- Pandit, A.H.; Mir, M.A.; Kour, A.; Bhat, K.M. Selection of Chestnuts (Castanea sativa) in Srinagar District of the Kashmir Valley, India. Int. J. Fruit Sci. 2011, 11, 111–118. [Google Scholar] [CrossRef]
- Casey, L.; Casey, B. Australia. In Following Chestnut Footprints (Castanea spp.): Cultivation and Culture, Folkrore and History, Traditions and Uses; Avanzato, D., Ed.; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2009; pp. 14–19. [Google Scholar]
- HortInnovation. Chestnut- Strategic Invesment Plan 2017–2021; Horticulture Innovation Australian Limited: Sydney, Australia, 2016; p. 31. [Google Scholar]
- HortInnovation. Australian Horticulture Statistics Handbook 2020/2021; Horticulture Innovation Australian Limited: Sydney, Australia, 2022; p. 464. [Google Scholar]
- Shuttleworth, L.A.; Liew, E.C.Y.; Guest, D.I. Survey of the incidence of chestnut rot in south-eastern Australia. Australas. Plant Pathol. 2013, 42, 63–72. [Google Scholar] [CrossRef]
- Shuttleworth, L.A.; Guest, D.I.; Liew, E.C.Y. Fungal Planet description sheet 108 Gnomoniopsis smithogilvyi L.A. Shuttleworth, E.C.Y. Liew & D.I. Guest, sp. nov. Persoonia 2012, 28, 142–143. [Google Scholar] [CrossRef]
- Visentin, I.; Gentile, S.; Valentino, D.; Gonthier, P.; Tamietti, G.; Cardinale, F. Gnomoniopsis castanea sp. nov.(Gnomoniaceae, Diaporthales) as the causal agent of nut rot in sweet chestnut. J. Plant Pathol. 2012, 94, 411–419. [Google Scholar] [CrossRef]
- Shuttleworth, L.A.; Guest, D.I. The infection process of chestnut rot, an important disease caused by Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) in Oceania and Europe. Australas. Plant Pathol. 2017, 46, 397–405. [Google Scholar] [CrossRef]
- Maresi, G.; Oliveira Longa, C.; Turchetti, T. Brown rot on nuts of Castanea sativa Mill: An emerging disease and its causal agent. IForest 2013, 6, 294–301. [Google Scholar] [CrossRef]
- Cisterna-Oyarce, V.; Carrasco-Fernández, J.; Castro, J.F.; Santelices, C.; Muñoz-Reyes, V.; Millas, P.; Buddie, A.G.; France, A. Gnomoniopsis smithogilvyi: Identification, characterization and incidence of the main pathogen causing brown rot in postharvest sweet chestnut fruits (Castanea sativa) in Chile. Australas. Plant Dis. Notes 2022, 17, 2. [Google Scholar] [CrossRef]
- Tziros, G. First report of nut rot caused by Gnomoniopsis castaneae on Castanea sativa in Greece. J. Plant Pathol. 2018, 101, 211. [Google Scholar] [CrossRef]
- Dar, M.A.; Rai, M. Gnomoniopsis smithogilvyi, a canker causing pathogen on Castanea sativa: First report. Mycosphere 2015, 6, 327–336. [Google Scholar] [CrossRef]
- Coelho, V.; Gouveia, E. Gnomoniopsis smithogilvyi, the causal agent of chestnut brown rot reported from Portugal. New Dis. Rep. 2021, 43, e12007. [Google Scholar] [CrossRef]
- Aguín-Casal, O.; Rial-Martínez, C.; Piñón-Esteban, P.; Sainz, M.J.; Regueira-Paz, N.; Mansilla Vázquez, J.P.; Salinero Corral, C. First report of Gnomoniopsis smithogilvyi causing chestnut brown rot on nuts and burrs of sweet chestnut in Spain. Plant Dis. 2022. [Google Scholar] [CrossRef]
- Dennert, F.G.; Broggini, G.A.L.; Gessler, C.; Storari, M. Gnomoniopsis castanea is the main agent of chestnut nut rot in Switzerland. Phytopathol. Mediterr. 2015, 54. [Google Scholar] [CrossRef]
- Silva-Campos, M.; Islam, M.T.; Cahill, D.M. Fungicide control of Gnomoniopsis smithogilvyi, causal agent of chestnut rot in Australia. Australas. Plant Pathol. 2022. [Google Scholar] [CrossRef]
- De Boer, S.H.; López, M.M. New grower-friendly methods for plant pathogen monitoring. Annu. Rev. Phytopathol. 2012, 50, 197–218. [Google Scholar] [CrossRef]
- Hariharan, G.; Prasannath, K. Recent Advances in Molecular Diagnostics of Fungal Plant Pathogens: A Mini Review. Front. Cell. Infect. Microbiol. 2021, 10. [Google Scholar] [CrossRef]
- Khan, M.; Wang, R.; Li, B.; Liu, P.; Weng, Q.; Chen, Q. Comparative Evaluation of the LAMP Assay and PCR-Based Assays for the Rapid Detection of Alternaria solani. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Choudhary, P.; Rai, P.; Yadav, J.; Verma, S.; Chakdar, H.; Goswami, S.K.; Srivastava, A.K.; Kashyap, P.L.; Saxena, A.K. A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice. Sci. Rep. 2020, 10, 22022. [Google Scholar] [CrossRef]
- Kashyap, P.L.; Kumar, S.; Kumar, R.S.; Sharma, A.; Jasrotia, P.; Singh, D.P.; Singh, G.P. Molecular Diagnostic Assay for Rapid Detection of Flag Smut Fungus (Urocystis agropyri) in Wheat Plants and Field Soil. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Kunadiya, M.B.; Dunstan, W.D.; White, D.; Hardy, G.E.S.J.; Grigg, A.H.; Burgess, T.I. A qPCR Assay for the Detection of Phytophthora cinnamomi Including an mRNA Protocol Designed to Establish Propagule Viability in Environmental Samples. Plant Dis. 2019, 103, 2443–2450. [Google Scholar] [CrossRef]
- Lau, H.Y.; Botella, J.R. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, T.C. Polymerase chain reaction: Basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 2012, e3998. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Busot, G.Y.; Mann, R.; Rodoni, B.; Stack, J.P. Multiple internal controls enhance reliability for PCR and real time PCR detection of Rathayibacter toxicus. Sci. Rep. 2021, 11, 8365. [Google Scholar] [CrossRef] [PubMed]
- Lione, G.; Giordano, L.; Sillo, F.; Gonthier, P. Testing and modelling the effects of climate on the incidence of the emergent nut rot agent of chestnut Gnomoniopsis castanea. Plant Pathol. 2015, 64, 852–863. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Luchi, N.; Rizzo, D.; Pepori, A.L.; Pecori, F.; Santini, A. Rapid diagnostics for Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) in chestnut nuts: New challenges by using LAMP and real-time PCR methods. AMB Express 2021, 11, 105. [Google Scholar] [CrossRef]
- Lione, G.; Giordano, L.; Sillo, F.; Brescia, F.; Gonthier, P. Temporal and spatial propagule deposition patterns of the emerging fungal pathogen of chestnut Gnomoniopsis castaneae in orchards of north-western Italy. Plant Pathol. 2021, 70, 2016–2033. [Google Scholar] [CrossRef]
- Arif, M.; Busot, G.Y.; Mann, R.; Rodoni, B.; Stack, J.P. Field-Deployable Recombinase Polymerase Amplification Assay for Specific, Sensitive and Rapid Detection of the US Select Agent and Toxigenic Bacterium, Rathayibacter toxicus. Biology 2021, 10, 620. [Google Scholar] [CrossRef]
- McCoy, A.G.; Miles, T.D.; Bilodeau, G.J.; Woods, P.; Blomquist, C.; Martin, F.N.; Chilvers, M.I. Validation of a Preformulated, Field Deployable, Recombinase Polymerase Amplification Assay for Phytophthora Species. Plants 2020, 9, 466. [Google Scholar] [CrossRef]
- Sikdar, P.; Okubara, P.; Mazzola, M.; Xiao, C.L. Development of PCR Assays for Diagnosis and Detection of the Pathogens Phacidiopycnis washingtonensis and Sphaeropsis pyriputrescens in Apple Fruit. Plant Dis. 2014, 98, 241–246. [Google Scholar] [CrossRef]
- Meyer, W.; Irinyi, L.; Hoang, M.T.V.; Robert, V.; Garcia-Hermoso, D.; Desnos-Ollivier, M.; Yurayart, C.; Tsang, C.-C.; Lee, C.-Y.; Woo, P.C.Y.; et al. Database establishment for the secondary fungal DNA barcode translational elongation factor 1α (TEF1α). Genome 2019, 62, 160–169. [Google Scholar] [CrossRef]
- Aasma; Asad, S.; Fayyaz, M.; Majeed, K.; Rehman, A.U.; Ali, S.; Liu, J.; Rasheed, A.; Wang, Y. Genetic Variability and Aggressiveness of Tilletia indica Isolates Causing Karnal Bunt in Wheat. J. Fungi 2022, 8, 219. [Google Scholar] [CrossRef]
- D’Arcy, C.J.; Eastburn, D.M.; Schumann, G.L. Illustrated Glossary of Plant Pathology. Available online: https://www.apsnet.org/edcenter/resources/illglossary/Pages/default.aspx (accessed on 1 June 2022).
- Pariaud, B.; Ravigné, V.; Halkett, F.; Goyeau, H.; Carlier, J.; Lannou, C. Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol. 2009, 58, 409–424. [Google Scholar] [CrossRef]
- Ahmed, F.A.; Larrea-Sarmiento, A.; Alvarez, A.M.; Arif, M. Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci. Rep. 2018, 8, 15972. [Google Scholar] [CrossRef]
- Roux, G.; Ravel, C.; Varlet-Marie, E.; Jendrowiak, R.; Bastien, P.; Sterkers, Y. Inhibition of polymerase chain reaction: Pathogen-specific controls are better than human gene amplification. PLoS ONE 2019, 14, e0219276. [Google Scholar] [CrossRef]
- Mittelberger, C.; Obkircher, L.; Oberkofler, V.; Ianeselli, A.; Kerschbamer, C.; Gallmetzer, A.; Reyes-Dominguez, Y.; Letschka, T.; Janik, K. Development of a universal endogenous qPCR control for eukaryotic DNA samples. Plant Methods 2020, 16, 53. [Google Scholar] [CrossRef]
- Chowdhury, I.A.; Yan, G. Development of Real-Time and Conventional PCR Assays for Identifying a Newly Named Species of Root-Lesion Nematode (Pratylenchus dakotaensis) on Soybean. Int. J. Mol. Sci. 2021, 22, 5872. [Google Scholar] [CrossRef]
- Garafutdinov, R.R.; Galimova, A.A.; Sakhabutdinova, A.R. The influence of quality of primers on the formation of primer dimers in PCR. Nucleosides Nucleotides Nucleic Acids 2020, 39, 1251–1269. [Google Scholar] [CrossRef]
- Sint, D.; Raso, L.; Traugott, M. Advances in multiplex PCR: Balancing primer efficiencies and improving detection success. Methods Ecol. Evol. 2012, 3, 898–905. [Google Scholar] [CrossRef]
- Iturralde Martinez, J.F.; Flores, F.J.; Koch, A.R.; Garzón, C.D.; Walker, N.R. Multiplex End-Point PCR for the Detection of Three Species of Ophiosphaerella Causing Spring Dead Spot of Bermudagrass. Plant Dis. 2019, 103, 2010–2014. [Google Scholar] [CrossRef]
- Chaisiri, C.; Liu, X.-Y.; Lin, Y.; Li, J.-B.; Xiong, B.; Luo, C.-X. Phylogenetic Analysis and Development of Molecular Tool for Detection of Diaporthe citri Causing Melanose Disease of Citrus. Plants 2020, 9, 329. [Google Scholar] [CrossRef]
- Vettraino, A.M.; Paolacci, A.; Vannini, A. Endophytism of Sclerotinia pseudotuberosa: PCR assay for specific detection in chestnut tissues. Mycol. Res. 2005, 109, 96–102. [Google Scholar] [CrossRef]
- Pasche, S.; Calmin, G.; Auderset, G.; Crovadore, J.; Pelleteret, P.; Mauch-Mani, B.; Barja, F.; Paul, B.; Jermini, M.; Lefort, F. Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland. Fungal. Genet. Biol. 2016, 87, 9–21. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics; Academic Press: Cambridge, MA, USA, 1990; Volume 18, pp. 315–322. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Vu, D.; Groenewald, M.; de Vries, M.; Gehrmann, T.; Stielow, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Stud. Mycol. 2019, 92, 135–154. [Google Scholar] [CrossRef]
- Possamai, G. Podridão da Castanha em Trás-os-Montes: Caracterização Morfológica, Ecofisiológica e Molecular do Agente Causal Gnomoniopsis Smithogilvyi; Universidade Tecnológica Federal do Paraná: Bragança, Portugal, 2020. [Google Scholar]
- Fernández, M.M.; Bezos, D.; Diez, J. Fungi associated with necrotic galls of Dryocosmus kuriphilus (Hymenoptera: Cynipidae) in northern Spain. Silva Fenn. 2018, 52. [Google Scholar] [CrossRef]
- Sillo, F.; Giordano, L.; Zampieri, E.; Lione, G.; De Cesare, S.; Gonthier, P. HRM analysis provides insights on the reproduction mode and the population structure of Gnomoniopsis castaneae in Europe. Plant Pathol. 2017, 66, 293–303. [Google Scholar] [CrossRef]
- Jiang, N.; Liang, L.-Y.; Tian, C.-M. Gnomoniopsis chinensis (Gnomoniaceae, Diaporthales), a new fungus causing canker of Chinese chestnut in Hebei Province, China. MycoKeys 2020, 67, 19–32. [Google Scholar] [CrossRef]
- Sogonov, M.V.; Castlebury, L.A.; Rossman, A.Y.; Mejía, L.C.; White, J.F. Leaf-inhabiting genera of the Gnomoniaceae, Diaporthales. Stud. Mycol. 2008, 62, 1–77. [Google Scholar] [CrossRef]
- Jiang, N.; Tian, C. An Emerging Pathogen from Rotted Chestnut in China: Gnomoniopsis daii sp. nov. Forests 2019, 10, 1016. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Shaffer, B.T.; McGhee, G.C.; Hardigan, M.A. First Report of Gnomoniopsis idaeicola Causing Cane Wilt and Canker in Commercial Blackberry Fields in Oregon. Plant. Dis. 2022. [Google Scholar] [CrossRef]
- Rakeman, J.L.; Bui, U.; LaFe, K.; Chen, Y.-C.; Honeycutt, R.J.; Cookson, B.T. Multilocus DNA Sequence Comparisons Rapidly Identify Pathogenic Molds. J. Clin. Microbiol. 2005, 43, 3324–3333. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, L.A.; Walker, D.M.; Guest, D.I. The chestnut pathogen Gnomoniopsis smithogilvyi (Gnomoniaceae, Diaporthales) and its synonyms. Mycotaxon 2016, 130, 929–940. [Google Scholar] [CrossRef]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, F.; Carnevale, S.; Vendramin, G.G. A new set of mono- and dinucleotide chloroplast microsatellites in Fagaceae. Mol. Ecol. Notes 2004, 4, 259–261. [Google Scholar] [CrossRef]
- Velazquez-Salinas, L.; Ramirez-Medina, E.; Rai, A.; Pruitt, S.; Vuono, E.A.; Espinoza, N.; Gladue, D.P.; Borca, M.V. Development Real-Time PCR Assays to Genetically Differentiate Vaccinated Pigs From Infected Pigs with the Eurasian Strain of African Swine Fever Virus. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Owczarzy, R.; Tataurov, A.V.; Wu, Y.; Manthey, J.A.; McQuisten, K.A.; Almabrazi, H.G.; Pedersen, K.F.; Lin, Y.; Garretson, J.; McEntaggart, N.O.; et al. IDT SciTools: A suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res. 2008, 36, W163–W169. [Google Scholar] [CrossRef]
Population | Sequence Properties | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean Length (bp) | Site Variability a (%) | Intrapopulation Divergence (%) | Interpopulation Divergence (%) | |||||||||
Variable | Conserved | Australia | Chile | Greece | India | Italy | Portugal | Spain | Switzerland | |||
Australia | 568 | 3.12 | 84.22 | 0.02 (± 0.02) b | - | 0.01 (± 0.01) | 0.01 (± 0.01) | 0.43 (± 0.13) | 1.02 (± 0.45) | 0.01 (± 0.01) | 0.35 (± 0.15) | 0.01 (± 0.01) |
Chile | 611 | 0.14 | 90.47 | 0.00 (± 0.00) | - | - | 0.00 (± 0.00) | 0.43 (± 0.13) | 1.06 (± 0.47) | 0.00 (± 0.00) | 0.35 (± 0.16) | 0.00 (± 0.00) |
Greece | 539 | 0 | 80.20 | 0.00 (± 0.00) | - | - | - | 0.43 (± 0.13) | 1.06 (± 0.47) | 0.00 (± 0.00) | 0.35 (± 0.16) | 0.00 (± 0.00) |
India | 554 | 4.01 | 80.35 | 0.78 (± 0.23) | - | - | - | - | 1.08 (± 0.39) | 0.43 (± 0.13) | 0.58 (± 0.18) | 0.43 (± 0.13) |
Italy | 559 | 0.14 | 84.07 | 0.00 (± 0.00) | - | - | - | - | - | 1.06 (± 0.47) | 0.35 (± 0.16) | 1.06 (± 0.47) |
Portugal | 567 | 0 | 84.37 | 0.00 (± 0.00) | - | - | - | - | - | - | 0.35 (± 0.16) | 0.00 (± 0.00) |
Spain | 535 | 0.15 | 76.04 | 0.35 (± 0.15) | - | - | - | - | - | - | - | 0.35 (± 0.16) |
Switzerland | 530 | 0 | 79.01 | 0.00 (± 0.00) | - | - | - | - | - | - | - | - |
Species | Target Gene | Primer Name | Primer Sequence 5′ to 3′ | GC (%) | Tm d (°C) | ΔG (kcal/mol) e | Product Length (bp) f | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Harpin | Self | Hetero | |||||||||
(a) | (b) | ||||||||||
G. smithogilvyi | TEF a | GsEFA-F | TCTTCATCGTCGATTCCTTG | 45 | 52.1 | 1.1 | −6.76 | −6.59 | −8.26 – −3.55 | 483 | This study |
GsEFA-R | GAGCTGTGGAACCAACACCAA | 52 | 57.9 | −0.6 | −6.34 | ||||||
ITS b | GsITS-F | GGCTTCCTATGGAAGTCCCTC | 57 | 57.0 | −2.83 | −8.19 | −6.21 | 367 | This study | ||
GsITS-R | CAAGAGCAACCGCCAGTCTT | 55 | 58.0 | −0.4 | −5.12 | ||||||
TUB c | GsTUB-F | ATCAACCCCTTCAGAGACGC | 55 | 57.1 | 0.13 | −3.61 | −7.07 | 203 | This study | ||
GsTUB-R | ACGTGAAGCTCAAGTACGCA | 50 | 56.8 | −0.96 | −6.34 |
Species | Isolate ID | Plant Host | Locality | ITS GenBank ID | Reference |
---|---|---|---|---|---|
G. smithogilvyi | BRI 1 | C. sativa | Bright, Australia | ON545732 | This study |
BRI 6 | ON545733 | ||||
BRI 3 | ON545734 | ||||
BRI 4 | ON545735 | ||||
BRI 5 | ON545736 | ||||
BRI 6 | ON545737 | ||||
FUM 1 | C. sativa | Fumina, Australia | ON545744 | ||
FUM 2 | ON545745 | ||||
FUM 3 | ON545746 | ||||
FUM 4 | ON545747 | ||||
FUM 5 | ON545748 | ||||
FUM 6 | ON545749 | ||||
STA 1 | C. sativa | Stanley, Australia | ON545750 | ||
STA 2 | ON545751 | ||||
STA 3 | ON545752 | ||||
STA 4 | ON545753 | ||||
STA 5 | ON545754 | ||||
STA 6 | ON545755 | ||||
WAN 1 | C. sativa | Wandiligong, Australia | ON545738 | ||
WAN 2 | ON545739 | ||||
WAN 3 | ON545740 | ||||
WAN 4 | ON545741 | ||||
WAN 5 | ON545742 | ||||
WAN 6 | ON545743 | ||||
G. smithogilvyi | CBS 133189 | Castanea sp. | Australia | KY952223 | [10] |
CBS 130189 | MH865606 | [50] | |||
CBS 130190 | NR_166040 | ||||
RGM 2903 | C. sativa | Chile | MT413428 | [12] | |
RGM 2904 | MT413429 | ||||
AU/DBT301 | C. sativa | India | KC963935 | [14] | |
AU/DBT302 | KC963936 | ||||
INDA(Hub3)A | JQ268071 | ||||
INDB(Hub2)A | JQ268072 | ||||
INDC(BSF5)A | JQ268073 | ||||
Gs1 | C. sativa | Portugal | MW165483 | [51] | |
Gs2 | MW165484 | ||||
Gs3 | MW165485 | ||||
Gs4 | MW165486 | ||||
G. smithogilvyi | Cas 5 | C. sativa | Cantabria, Spain | KU095876 | [52] |
EFA 962.4A | Galicia, Spain | OM319848 | [16] | ||
EFA 924A | OM319846 | ||||
Ge1 | C. sativa | Geneva, Switzerland | KP824754 | [47] | |
Ti1 | Ticino, Switzerland | KP824746 | |||
Ti3 | KP824748 | ||||
Ti4 | KP824750 | ||||
Ti5 | KP824752 | ||||
G. castaneaea | BID15 | C. sativa | Donato, Piedmont, Italy | LN999963 | [53] |
MA24 | Mattie, Piedmont, Italy | LN999969 | |||
PV26 | Peveragno, Piedmont, Italy | LN999967 | |||
VF6 | Villarfocchiardo Piedmont, Italy | LN999964 | |||
GCAS1 | C. sativa | Greece | MH107826 | [13] | |
GCAS2 | MH107827 | ||||
GCAS3 | MH107828 | ||||
GCAS4 | MH107829 | ||||
GCAS5 | MH107830 | ||||
G. chinensis | CFCC 52287 | C. mollissima | China | MG866033 | [54] |
CFCC 52288 | MG866034 | ||||
CFCC 52289 | MG866035 | ||||
G. comari | CBS 806.79 | Comarum palustre | Finland | EU254821 | [55] |
CBS 807.79 | Finland | EU254822 | |||
CBS 809.79 | Switzerland | EU254823 | |||
G. daii | CMF002A | C. mollissima | China | MN598671 | [56] |
CMF002B | MN598672 | ||||
CMF095 | MN598673 | ||||
G. fructicola | G_FRUC_VPRI-41909 | Fragaria sp. | Australia | ON545716 | This study |
CBS 125671 | Unknown | USA | MH863616 | [50] | |
CBS 254.61 | MH858043 | ||||
G. idaeicola | BDB3.2.1B | Rubus sp. | USA | OK348854 | [57] |
BDV-2 | OK348857 | ||||
G_IDAE_VPRI-41731 | R. fruticosus | Australia | ON545717 | This study | |
Mucor sp. | Iso1 | C. sativa | Australia | ON545707 | This study |
Penicillium sp. | Iso4 | ON545708 | |||
Clonostachys sp. | Iso8 | ON545718 | |||
Epicoccum sp. | Iso14 | ON545711 | |||
Nigrospora sp. | Iso15 | ON545710 | |||
Alternaria sp. | Iso25 | ON545709 | |||
Fusarium sp. | Iso26 | ON545712 | |||
Phoma sp. | Iso27 | ON545713 | |||
Cladosporium sp. | WN13 | ON545714 | |||
Aspergillus sp. | WM9 | ON545715 | |||
P. commune | CBS 311.48 | Unknown | Unknown | NR111143 | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Campos, M.; Nadiminti, P.; Cahill, D. Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay. Pathogens 2022, 11, 907. https://doi.org/10.3390/pathogens11080907
Silva-Campos M, Nadiminti P, Cahill D. Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay. Pathogens. 2022; 11(8):907. https://doi.org/10.3390/pathogens11080907
Chicago/Turabian StyleSilva-Campos, Matias, Pavani Nadiminti, and David Cahill. 2022. "Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay" Pathogens 11, no. 8: 907. https://doi.org/10.3390/pathogens11080907
APA StyleSilva-Campos, M., Nadiminti, P., & Cahill, D. (2022). Rapid and Accurate Detection of Gnomoniopsis smithogilvyi the Causal Agent of Chestnut Rot, through an Internally Controlled Multiplex PCR Assay. Pathogens, 11(8), 907. https://doi.org/10.3390/pathogens11080907