Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment
Abstract
:1. Introduction
2. Results
2.1. Parasitological and Hematological Response during Peripartum
2.2. Effect of Energy and Protein
2.3. Interaction of Energy and Protein in the Physiological Stage
3. Discussion
4. Materials and Methods
4.1. Location
4.2. Ewe Management
4.3. Diets and Treatments
4.4. Sampling, Parasitological and Blood Analysis
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-Acosta, J.F.; Hoste, H.; Sandoval-Castro, C.A.; Torres-Fajardo, R.A.; Ventura-, J.; González-pech, P.G.; Mancilla-montelongo, M.G.; Ojeda-Robertos, N.F. The Art of War against Gastrointestinal Nematodes in Sheep and Goat Herds of the Tropics. Rev. Acad. Ciénc. Anim. 2019, 17, 39–46. [Google Scholar]
- Lalramhluna, M.; Bordoloi, G.; Pandit, S.; Baidya, S.; Joardar, S.N.; Patra, A.K.; Jas, R. Parasitological and Immunological Response to Haemonchus Contortus Infection: Comparison between Resistant Garole and Susceptible Sahabadi Sheep. Vet. Parasitol. Reg. Stud. Rep. 2020, 22, 100477. [Google Scholar] [CrossRef] [PubMed]
- Zaralis, K.; Tolkamp, B.J.; Houdijk, J.G.M.; Wylie, A.R.G.; Kyriazakis, I. Consequences of Protein Supplementation for Anorexia, Expression of Immunity and Plasma Leptin Concentrations in Parasitized Ewes of Two Breeds. Br. J. Nutr. 2009, 101, 499–509. [Google Scholar] [CrossRef]
- Simpson, H.V. Pathophysiology of Abomasal Parasitism: Is the Host or Parasite Responsible? Vet. J. 2000, 160, 177–191. [Google Scholar] [CrossRef]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of Gastro-Intestinal Nematode Infection on Sheep Performance: A Systematic Review and Meta-Analysis. Parasites Vectors 2015, 8, 557. [Google Scholar] [CrossRef]
- Notter, D.R.; Burke, J.M.; Miller, J.E.; Morgan, J.L.M. Factors Affecting Fecal Egg Counts in Periparturient Katahdin Ewes and Their Lambs. J. Anim. Sci. 2017, 95, 103–112. [Google Scholar] [CrossRef]
- David, C.M.G.; Costa, R.L.D.; Parren, G.A.E.; Rua, M.A.S.; Nordi, E.C.P.; Paz, C.C.P.; Quirino, C.R.; Figueiredo, R.S.; Bohland, E. Hematological, Parasitological and Biochemical Parameters in Sheep during the Peripartum Period. Rev. Colomb. Cienc. Pecu. 2020, 33, 81–95. [Google Scholar] [CrossRef]
- Hamer, K.; McIntyre, J.; Morrison, A.A.; Jennings, A.; Kelly, R.F.; Leeson, S.; Bartley, D.J.; Chaudhry, U.; Busin, V.; Sargison, N. The Dynamics of Ovine Gastrointestinal Nematode Infections within Ewe and Lamb Cohorts on Three Scottish Sheep Farms. Prev. Vet. Med. 2019, 171, 104752. [Google Scholar] [CrossRef]
- González-Garduño, R.; Arece-García, J.; Torres-Hernández, G. Physiological, Immunological and Genetic Factors in the Resistance and Susceptibility to Gastrointestinal Nematodes of Sheep in the Peripartum Period: A Review. Helminthologia 2021, 58, 134–151. [Google Scholar] [CrossRef]
- Kaçar, C.; Kaya, S.; Kuru, M.; Erkiliç, E.E.; Öǧün, M.; Oral, H.; Demir, M.C. Determination of Natural Antibodies, Beta-Hydroxybutyric Acid, and Non-Esterified Fatty Acid Levels in the Serum of Peripartum Tuj and Hemsin Sheep. Vet. World 2021, 14, 1002–1006. [Google Scholar] [CrossRef]
- Cabiddu, A.; Dattena, M.; Decandia, M.; Molle, G.; Lopreiato, V.; Minuti, A.; Trevisi, E. The Effect of Parity Number on the Metabolism, Inflammation, and Oxidative Status of Dairy Sheep during the Transition Period. J. Dairy Sci. 2020, 103, 8564–8575. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.H.; Wilkens, M.R.; Möller, B.; Ganter, M.; Breves, G. Blood Leukocyte Composition and Function in Periparturient Ewes Kept on Different Dietary Magnesium Supply. BMC Vet. Res. 2020, 16, 484. [Google Scholar] [CrossRef]
- Alam, R.T.M.; Hassanen, E.A.A.; El-Mandrawy, S.M.A. Haemonchus Contortus Infection in Sheep and Goats: Alterations in Haematological, Biochemical, Immunological, Trace Element and Oxidative Stress Markers. J. Appl. Anim. Res. 2020, 48, 357–364. [Google Scholar] [CrossRef]
- Carvalho, N.; das Neves, J.H.; Pennacchi, C.S.; de Castilhos, A.M.; Amarante, A.F.T.D. Performance of Lambs under Four Levels of Dietary Supplementation and Artificially Mix-Infected with Haemonchus contortus and Trichostrongylus colubriformis. Rev. Bras. Parasitol. Vet. 2021, 30. [Google Scholar] [CrossRef]
- Méndez-Ortíz, F.A.; Sandoval-Castro, C.A.; Vargas-Magaña, J.J.; Sarmiento-Franco, L.; Torres-Acosta, J.F.J.; Ventura-Cordero, J. Impact of Gastrointestinal Parasitism on Dry Matter Intake and Live Weight Gain of Lambs: A Meta-Analysis to Estimate the Metabolic Cost of Gastrointestinal Nematodes. Vet. Parasitol. 2019, 265, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Arece-García, J.; López-Leyva, Y.; González-Garduño, R.; Torres-Hernández, G.; Rojo-Rubio, R.; Marie-Magdeleine, C. Effect of Selective Anthelmintic Treatments on Health and Production Parameters in Pelibuey Ewes during Lactation. Trop. Anim. Health Prod. 2017, 48, 283–287. [Google Scholar] [CrossRef]
- Katsogiannou, E.; Athanasiou, L.; Christodoulopoulos, G.; Plozopoulou, Z. Diagnostic Approach of Anemia in Ruminants. J. Hell. Vet. Med. Soc. 2018, 69, 1033–1046. [Google Scholar] [CrossRef]
- Macarthur, F.A.; Kahn, L.P.; Windon, R.G. The Influence of Dietary Manipulations and Gastrointestinal Nematodes on Twin-Bearing Merino Ewes and Determinants of Lamb Survival. Livest. Sci. 2014, 167, 342–352. [Google Scholar] [CrossRef]
- Cériac, S.; Archimède, H.; Feuillet, D.; Félicité, Y.; Giorgi, M.; Bambou, J.C. Supplementation with Rumen-Protected Proteins Induces Resistance to Haemonchus contortus in Goats. Sci. Rep. 2019, 9, 1237. [Google Scholar] [CrossRef]
- Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Hoste, H.; Aguilar-Caballero, A.J.; Cámara-Sarmiento, R.; Alonso-Díaz, M.A. Nutritional Manipulation of Sheep and Goats for the Control of Gastrointestinal Nematodes under Hot Humid and Subhumid Tropical Conditions. Small Rumin. Res. 2012, 103, 28–40. [Google Scholar] [CrossRef]
- Cériac, S.; Jayles, C.; Arquet, R.; Feuillet, D.; Félicité, Y.; Archimède, H.; Bambou, J.C. The Nutritional Status Affects the Complete Blood Count of Goats Experimentally Infected with Haemonchus contortus. BMC Vet. Res. 2017, 13, 326. [Google Scholar] [CrossRef] [PubMed]
- Crawford, C.D.; Mata-Padrino, D.J.; Belesky, D.P.; Bowdridge, S.A. Effects of Supplementation Containing Rumen By-Pass Protein on Parasitism in Grazing Lambs. Small Rumin. Res. 2020, 190, 106161. [Google Scholar] [CrossRef]
- Sakkas, P.; Houdijk, J.G.M.; Athanasiadou, S.; Kyriazakis, I. Sensitivity of Periparturient Breakdown of Immunity to Parasites to Dietary Protein Source. J. Anim. Sci. 2012, 90, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Hoste, H.; Torres-Acosta, J.F.J.; Quijada, J.; Chan-Perez, I.; Dakheel, M.M.; Kommuru, D.S.; Mueller-Harvey, I.; Terrill, T.H. Interactions between Nutrition and Infections with Haemonchus Contortus and Related Gastrointestinal Nematodes in Small Ruminants; Elsevier: Amsterdam, The Netherlands, 2016; Volume 93, ISBN 9780128103951. [Google Scholar]
- Jones, L.A.; Houdijk, J.G.M.; Sakkas, P.; Bruce, A.D.; Mitchell, M.; Knox, D.P.; Kyriazakis, I. Dissecting the Impact of Protein versus Energy Host Nutrition on the Expression of Immunity to Gastrointestinal Parasites during Lactation. Int. J. Parasitol. 2011, 41, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Regulation of Immune Cell Functions by Metabolic Reprogramming. J. Immunol. Res. 2018, 2018, 8605471. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G. Six Costs of Immunity to Gastrointestinal Nematode Infections. Parasite Immunol. 2008, 30, 63–70. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Takeshima, Y.; Fujio, K. Basic Mechanism of Immune System Activation by Mitochondria. Immunol. Med. 2020, 43, 142–147. [Google Scholar] [CrossRef]
- Hernández-Castellano, L.E.; Moreno-Indias, I.; Sánchez-Macías, D.; Morales-delaNuez, A.; Torres, A.; Argüello, A.; Castro, N. Sheep and Goats Raised in Mixed Flocks Have Diverse Immune Status around Parturition. J. Dairy Sci. 2019, 102, 8478–8485. [Google Scholar] [CrossRef]
- Mahieu, M.; Aumont, G. Periparturient Rise in Martinik Hair Sheep and Perspectives for Gastrointestinal Nematode Control. Trop. Anim. Health Prod. 2007, 39, 387–390. [Google Scholar] [CrossRef]
- Houdijk, J.G.M. Influence of Periparturient Nutritional Demand on Resistance to Parasites in Livestock. Parasite Immunol. 2008, 30, 113–121. [Google Scholar] [CrossRef]
- Falzon, L.C.; Menzies, P.I.; Shakya, K.P.; Jones-Bitton, A.; Vanleeuwen, J.; Avula, J.; Jansen, J.T.; Peregrine, A.S. A Longitudinal Study on the Effect of Lambing Season on the Periparturient Egg Rise in Ontario Sheep Flocks. Prev. Vet. Med. 2013, 110, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Arsenopoulos, K.V.; Fthenakis, G.C.; Katsarou, E.I.; Papadopoulos, E. Haemonchosis: A Challenging Parasitic Infection of Sheep and Goats. Animals 2021, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Sotomaior, C.S.; Bezerra, A.C.D.; da Silva, W.E.; Leite, J.H.G.M.; de Sousa, J.E.R.; de Viz, F.F.B.J.; Façanha, D.A.E. Sensitivity and Specificity of the FAMACHA© System in Tropical Hair Sheep. Trop. Anim. Health Prod. 2019, 51, 1767–1771. [Google Scholar] [CrossRef] [PubMed]
- Whitley, N.C.; Burke, J.M.; Smith, E.; Lyte, K.; Terrill, T.H. Determining the Efficacy of Red Cell® in Combination with Anthelmintics against Gastrointestinal Nematode Parasitism in Sheep and Goats. Small Rumin. Res. 2022, 209, 106656. [Google Scholar] [CrossRef]
- Awad, A.H.; Ali, A.M.; Hadree, D.H. Some Haematological and Biochemical Parameters Assessments in Sheep Infection by Haemonchus contortus. Tikrit J. Pure Sci. 2016, 21, 11–15. [Google Scholar]
- Kyriazakis, I.; Houdijk, J. Immunonutrition: Nutritional Control of Parasites. Small Rumin. Res. 2006, 62, 79–82. [Google Scholar] [CrossRef]
- Romero-Escobedo, E.; Torres-Hernández, G.; Becerril-Pérez, C.M.; Alarcón-Zúñiga, B.; Apodaca-Sarabia, C.A.; Díaz-Rivera, P. A Comparison of Criollo and Suffolk Ewes for Resistance to Haemonchus contortus during the Periparturient Period. J. Appl. Anim. Res. 2018, 46, 17–23. [Google Scholar] [CrossRef]
- Moreau, E.; Chauvin, A. Immunity against Helminths: Interactions with the Host and the Intercurrent Infections. J. Biomed. Biotchnol. 2010, 2010, 428593. [Google Scholar] [CrossRef]
- Ortolani, E.L.; Leal, M.L.D.R.; Minervino, A.H.H.; Aires, A.R.; Coop, R.L.; Jackson, F.; Suttle, N.F. Effects of Parasitism on Cellular Immune Response in Sheep Experimentally Infected with Haemonchus contortus. Vet. Parasitol. 2013, 196, 230–234. [Google Scholar] [CrossRef]
- Mitre, E.; Klion, A.D. Eosinophils and Helminth Infection: Protective or Pathogenic? Semin. Immunopathol. 2021, 43, 363–381. [Google Scholar] [CrossRef]
- Lechner, A.; Bohnacker, S.; Esser-von Bieren, J. Macrophage Regulation & Function in Helminth Infection. Semin. Immunol. 2021, 53, 101526. [Google Scholar] [CrossRef] [PubMed]
- Hendawy, S.H.M. Immunity to Gastrointestinal Nematodes in Ruminants: Effector Cell Mechanisms and Cytokines. J. Parasit. Dis. 2018, 42, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Elías, A.; Lezcano, O.; Lezcano, P.; Cordero, J.; Quintana, L. Reseña Descriptiva Sobre El Desarrollo de Una Tecnología de Enriquecimiento Proteico de La Caña de Azúcar Mediante Fermentación En Estado Sólido (Saccharina). Rev. Cuba. Cienc. Agrícolas 1990, 24, 1–12. [Google Scholar]
- AOAC International. Official Methods of Analysis, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Galyean, M.L.; Cole, N.A.; Tedeschi, L.O.; Branine, M.E. Board-Invited Review: Efficiency of Converting Digestible Energy to Metabolizable Energy and Reevaluation of the California Net Energy System Maintenance Requirements and Equations for Predicting Dietary Net Energy Values for Beef Cattle. J. Anim. Sci. 2016, 94, 1329–1341. [Google Scholar] [CrossRef] [PubMed]
- Thienpont, D.; Rochette, F.; Vanparijs, O.F.J. Diagnosing Helminthiasis by Coprological Examination, 3rd ed.; Janssen Research Foundation: Beerse, Belgium, 2003. [Google Scholar]
- Dawkins, H.; Windon, R.; Eagleson, G. Eosinophil Responses in Sheep Selected for High and Low Responsiveness to Trichostrongylus colubriformis. Int. J. Parasitol. 1989, 19, 199–205. [Google Scholar] [CrossRef]
- van Wyk, J.A.; Mayhew, E. Morphological Identification of Parasitic Nematode Infective Larvae of Small Ruminants and Cattle: A Practical Lab Guide. Onderstepoort J. Vet. Res. 2013, 80, 1–14. [Google Scholar] [CrossRef]
- SAS. SAS/STAT User´s Guide, Release 6; SAS Institute: Cary, NC, USA, 2017. [Google Scholar]
Physiological Stage | Fecal Egg Counts | Packed Cell Volume (%) | Peripheral Eosinophils (Cells × 103 µL) | ||||
---|---|---|---|---|---|---|---|
Week | Change | Percentage δ | Change | Percentage δ | Change | Percentage δ | |
Pregnancy | 18 | 44 | 21.0 ns | 0.14 | 0.5 ns | - | - |
19 | 81 | 29.7 ns | −3.53 | −12.4 ns | - | - | |
20 | 1493 | 447.8 ** | −2.80 | −9.6 ns | −0.10 | −13.1 ns | |
21 | 1623 | 572.7 ** | −1.45 | −5.2 ns | 0.10 | 14.7 ns | |
Lactation | 1 | 1915 | 326.0 ** | −3.40 | −12.8 ns | 0.06 | 10.3 ns |
2 | 1099 | 132.9 ** | −1.90 | −7.3 ns | −0.18 | −21.4 ns | |
3 | 1963 | 184.3 ** | −4.60 | −17.8 * | −0.37 | −31.8 * | |
4 | 2476 | 363.2 ** | −5.95 | −21.5 ** | −0.54 | −59.0 ** | |
5 | 1835 | 374.8 ** | −12.03 | −42.2 ** | −0.75 | −78.3 ** | |
6 | 4652 | 1562.6 ** | −13.20 | −44.9 ** | −0.58 | −59.1 * | |
7 | 1104 | 315.4 ** | −6.36 | −22.0 ** | −0.23 | −29.9 * |
Effect | Fecal Egg Counts | Packed Cell Volume (%) | Peripheral Eosinophils Cells × 103 µL | |||
---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | |
Protein level | * | * | ns | |||
High | 837 a | 141 | 26.5 a | 0.46 | 0.73 a | 0.59 |
Low | 1680 b | 248 | 24.6 b | 0.59 | 0.77 a | 0.74 |
Energy level | ns | ns | ns | |||
High | 1271 a | 205 | 25.0 a | 0.54 | 0.77 a | 0.81 |
Low | 1263 a | 209 | 25.9 a | 0.55 | 0.72 a | 0.50 |
Physiological stage | ** | ** | ** | |||
Pregnancy | 1085 b | 264 | 26.7 a | 0.73 | 0.71 ab | 1.48 |
Lactation | 2709 c | 359 | 21.9 b | 0.69 | 0.59 b | 0.56 |
Non-productive | 427 a | 96 | 27.7 a | 0.4 | 0.90 a | 0.79 |
Low Energy | High Energy | |||
---|---|---|---|---|
Item | Low | High | Low | High |
protein | protein | Protein | protein | |
Ingredients, g/kg | ||||
Cornmeal | 30 | 30 | 260 | 205 |
Soybean paste flour | 50 | 200 | 10 | 150 |
Sugar cane | 830 | 650 | 670 | 600 |
Mineral mix | 5 | 5 | 5 | 5 |
Urea | 15 | 20 | 15 | 20 |
Molasses | 0 | 0 | 40 | 20 |
Wheat bran | 70 | 95 | 0 | 0 |
Chemical composition | ||||
Dry Matter (g/kg) | 349 | 433 | 501 | 545 |
Crude Protein, g/kg DM | 87.4 | 150 | 85.5 | 154 |
Neutral Detergent Fiber, g/kg DM | 609 | 540 | 497 | 479 |
Acid Detergent Fiber, g/kg DM | 379 | 317 | 304 | 284 |
Ethereal Extract, g/kg DM | 7.2 | 7.9 | 7.9 | 7.5 |
Crude Ashes, g/kg DM | 52.6 | 54.6 | 44.9 | 47.5 |
Metabolizable Energy [46], MJ/kg DM | 9.59 | 9.72 | 10.26 | 10.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Leyva, Y.; González-Garduño, R.; Cruz-Tamayo, A.A.; Arece-García, J.; Huerta-Bravo, M.; Ramírez-Valverde, R.; Torres-Hernández, G.; López-Arellano, M.E. Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment. Pathogens 2022, 11, 941. https://doi.org/10.3390/pathogens11080941
López-Leyva Y, González-Garduño R, Cruz-Tamayo AA, Arece-García J, Huerta-Bravo M, Ramírez-Valverde R, Torres-Hernández G, López-Arellano ME. Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment. Pathogens. 2022; 11(8):941. https://doi.org/10.3390/pathogens11080941
Chicago/Turabian StyleLópez-Leyva, Yoel, Roberto González-Garduño, Alvar Alonzo Cruz-Tamayo, Javier Arece-García, Maximino Huerta-Bravo, Rodolfo Ramírez-Valverde, Glafiro Torres-Hernández, and M. Eugenia López-Arellano. 2022. "Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment" Pathogens 11, no. 8: 941. https://doi.org/10.3390/pathogens11080941
APA StyleLópez-Leyva, Y., González-Garduño, R., Cruz-Tamayo, A. A., Arece-García, J., Huerta-Bravo, M., Ramírez-Valverde, R., Torres-Hernández, G., & López-Arellano, M. E. (2022). Protein Supplementation as a Nutritional Strategy to Reduce Gastrointestinal Nematodiasis in Periparturient and Lactating Pelibuey Ewes in a Tropical Environment. Pathogens, 11(8), 941. https://doi.org/10.3390/pathogens11080941