Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China
Abstract
:1. Introduction
2. Results
2.1. Prevalence and Antimicrobial Susceptibility of Intestinal S. aureus Isolates
2.2. Molecular Typing of the S. aureus Isolates
2.3. Phylogenetic Analysis of MSSA Isolates
2.4. Antimicrobials Resistance (AMR) and Virulence Genes Analysis of the MSSA Isolates
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Isolation and Identification
4.3. Antimicrobial Susceptibility Testing
4.4. Whole Genome Sequencing (WGS)
4.5. Molecular Characteristics Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.L.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Kluytmans, J.; van Belkum, A.; Verbrugh, H. Nasal carriage of Staphylococcus aureus: Epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997, 10, 505–520. [Google Scholar] [CrossRef]
- Batra, R.; Eziefula, A.C.; Wyncoll, D.; Edgeworth, J. Throat and rectal swabs may have an important role in MRSA screening of critically ill patients. Intensive Care Med. 2008, 34, 1703–1706. [Google Scholar] [CrossRef] [PubMed]
- Gagnaire, J.; Verhoeven, P.O.; Grattard, F.; Rigaill, J.; Lucht, F.; Pozzetto, B.; Berthelot, P.; Botelho-Nevers, E. Epidemiology and clinical relevance of Staphylococcus aureus intestinal carriage: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2017, 15, 767–785. [Google Scholar] [CrossRef] [PubMed]
- Boyce, J.M.; Havill, N.L.; Maria, B. Frequency and Possible Infection Control Implications of Gastrointestinal Colonization with Methicillin-Resistant Staphylococcus aureus. J. Clin. Microbiol. 2005, 43, 5992–5995. [Google Scholar] [CrossRef]
- Acton, D.S.; Plat-Sinnige, M.J.T.; Van Wamel, W.; De Groot, N.; Van Belkum, A. Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact? Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 115–127. [Google Scholar] [CrossRef]
- Ai, X.; Gao, F.; Yao, S.; Liang, B.; Mai, J.; Xiong, Z.; Chen, X.; Liang, Z.; Yang, H.; Ou, Z.; et al. Prevalence, Characterization, and Drug Resistance of Staphylococcus aureus in Feces from Pediatric Patients in Guangzhou, China. Front. Med. 2020, 7, 127. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Dahlman, D.; Jalalvand, F.; Blomé, M.A.; Håkansson, A.; Janson, H.; Quick, S.; Nilsson, A.C. High Perineal and Overall Frequency of Staphylococcus aureus in People Who Inject Drugs, Compared to Non-Injectors. Curr. Microbiol. 2017, 74, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Benito, D.; Lozano, C.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Detection of Methicillin-Susceptible Staphylococcus aureus ST398 and ST133 Strains in Gut Microbiota of Healthy Humans in Spain. Microb. Ecol. 2013, 66, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.J.; Pultz, N.J.; Bhalla, A.; Aron, D.C.; Donskey, C.J. Coexistence of Vancomycin-Resistant Enterococci and Staphylococcus aureus in the Intestinal Tracts of Hospitalized Patients. Clin. Infect. Dis. 2003, 37, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Schaumburg, F.; Mugisha, L.; Kappeller, P.; Fichtel, C.; Köck, R.; Köndgen, S.; Becker, K.; Boesch, C.; Peters, G.; Leendertz, F. Evaluation of Non-Invasive Biological Samples to Monitor Staphylococcus aureus Colonization in Great Apes and Lemurs. PLoS ONE 2013, 8, e78046. [Google Scholar] [CrossRef]
- Li, Y.; Tang, Y.; Ren, J.; Huang, J.; Li, Q.; Ingmer, H.; Jiao, X. Identification and molecular characterization of Staphylococcus aureus and multi-drug resistant MRSA from monkey faeces in China. Transbound. Emerg. Dis. 2020, 67, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Olatimehin, A.; Shittu, A.; Onwugamba, F.C.; Mellmann, A.; Becker, K.; Schaumburg, F. Staphylococcus aureus Complex in the Straw-Colored Fruit Bat (Eidolon helvum) in Nigeria. Front. Microbiol. 2018, 9, 162. [Google Scholar] [CrossRef]
- Wu, T.-H.; Lee, C.-Y.; Yang, H.-J.; Fang, Y.-P.; Chang, Y.-F.; Tzeng, S.-L.; Lu, M.-C. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus among nasal carriage strains isolated from emergency department patients and healthcare workers in central Taiwan. J. Microbiol. Immunol. Infect. 2019, 52, 248–254. [Google Scholar] [CrossRef]
- Benito, D.; Lozano, C.; Jiménez, E.; Albújar, M.; Gómez, A.; Rodríguez, J.; Torres, C. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol. Ecol. 2015, 91, fiv007. [Google Scholar] [CrossRef]
- Malachowa, N.; DeLeo, F.R. Mobile genetic elements of Staphylococcus aureus. Cell Mol. Life Sci. 2010, 67, 3057–3071. [Google Scholar] [CrossRef]
- Srinivasan, A.; Seifried, S.E.; Zhu, L.; Srivastava, D.K.; Perkins, R.; Shenep, J.L.; Bankowski, M.J.; Hayden, R.T. Increasing prevalence of nasal and rectal colonization with methicillin-resistant Staphylococcus aureus in children with cancer. Pediatr. Blood Cancer 2010, 55, 1317–1322. [Google Scholar] [CrossRef]
- Chambers, H.F.; DeLeo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Yamagishi, J.; Kojima, T.; Oyamada, Y.; Fujimoto, K.; Hattori, H.; Nakamura, S.; Inoue, M. Alterations in the DNA topoisomerase IV grlA gene responsible for quinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1996, 40, 1157–1163. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, F.-J.; Petridou, J.; Fluit, A.C.; Hadding, U.; Peters, G.; von Eiff, C. Distribution of Macrolide-Resistance Genes in Staphylococcus aureus Blood-Culture Isolates from Fifteen German University Hospitals. Eur. J. Clin. Microbiol. 2000, 19, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Saribas, Z.; Tunckanat, F.; Pinar, A. Prevalence of erm genes encoding macrolide-lincosamide-streptogramin (MLS) resistance among clinical isolates of Staphylococcus aureus in a Turkish university hospital. Clin. Microbiol. Infect. 2006, 12, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Hasman, H.; Moodley, A.; Guardabassi, L.; Stegger, M.; Skov, R.L.; Aarestrup, F.M. Spa type distribution in Staphylococcus aureus originating from pigs, cattle and poultry. Vet. Microbiol. 2010, 141, 326–331. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Zhao, M.; Liu, Y.; Yu, Y.; Chen, H.; Sun, Q.; Chen, H.; Jiang, W.; Liu, Y.; et al. Characterization of Community Acquired Staphylococcus aureus Associated with Skin and Soft Tissue Infection in Beijing: High Prevalence of PVL+ ST398. PLoS ONE 2012, 7, e38577. [Google Scholar] [CrossRef]
- Wang, X.; Lin, D.; Huang, Z.; Zhang, J.; Xie, W.; Liu, P.; Jing, H.; Wang, J. Clonality, virulence genes, and antibiotic resistance of Staphylococcus aureus isolated from blood in Shandong, China. BMC Microbiol. 2021, 21, 281. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, Z.; Shang, W.; Hu, Q.; Zhu, J.; Yang, J.; Peng, H.; Zhang, X.; Liu, H.; Cong, Y.; et al. Molecular and Phenotypic Characterization Revealed High Prevalence of Multidrug-Resistant Methicillin-Susceptible Staphylococcus aureus in Chongqing, Southwestern China. Microb. Drug Resist. 2017, 23, 241–246. [Google Scholar] [CrossRef]
- Chen, T.-R.; Chiou, C.-S.; Tsen, H.-Y. Use of novel PCR primers specific to the genes of staphylococcal enterotoxin G, H, I for the survey of Staphylococcus aureus strains isolated from food-poisoning cases and food samples in Taiwan. Int. J. Food Microbiol. 2004, 92, 189–197. [Google Scholar] [CrossRef]
- Ullah, N.; Nasir, S.; Ishaq, Z.; Anwer, F.; Raza, T.; Rahman, M.; Alshammari, A.; Alharbi, M.; Bae, T.; Rahman, A.; et al. Comparative Genomic Analysis of a Panton–Valentine Leukocidin-Positive ST22 Community-Acquired Methicillin-Resistant Staphylococcus aureus from Pakistan. Antibiotics 2022, 11, 496. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Treangen, T.J.; Ondov, B.D.; Koren, S.; Phillippy, A.M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014, 15, 524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antimicrobials | MSSA (n = 64) | MRSA (n = 16) | S. aureus (n = 80) |
---|---|---|---|
Erythromycin (E) | 29 a (45.3 b) | 2 (12.5) | 31 (38.8) |
Clindamycin (DA) | 4 (6.3) | - c | 4 (5.0) |
Cefoxitin (FOX) | - | 16 (100.0) | 16 (20.0) |
Penicillin (P) | 59 (92.2) | 16 (100.0) | 75 (93.8) |
Tetracycline (TE) | 11 (17.2) | - | 11 (13.8) |
Rifampicin (RD) | - | - | - |
Linezolid (LZD) | - | - | - |
Gentamicin (CN) | 5 (7.8) | - | 5 (6.3) |
Vancomycin (VA) | - | - | - |
Kanamycin (K) | 9 (14.1) | 1 (6.3) | 10 (12.5) |
Ciprofloxacin (CIP) | 12 (18.8) | 1 (6.3) | 13 (16.3) |
Nitrofurantoin (F) | - | - | - |
Trimethoprim-trimethoprim (SXT) | 10 (15.6) | - | 10 (12.5) |
Chloramphenicol (C) | 1 (1.6) | - | 1 (1.3) |
CC (No.) | MLST (No.) | MSSA (No.) | MRSA (No.) | S. aureus (No.) |
---|---|---|---|---|
CC1 (13) | ST2315 (5), ST188 (5), ST1 (2) ST2990 (1) | 13 | 0 | 13 |
CC8 (12) | ST630 (10), ST1821 (1), ST7202 (1) | 9 | 3 | 12 |
CC15 (10) | ST15 (8), ST6763 (2) | 10 | 0 | 10 |
CC5 (10) | ST5 (4), Unknown (4), ST6 (2) | 9 | 1 | 10 |
CC398 (10) | ST398 (10), | 8 | 2 | 10 |
CC88 (6) | ST88 (6) | 0 | 6 | 6 |
CC59 (4) | ST59 (4) | 0 | 4 | 4 |
CC7 (3) | ST7 (3) | 3 | 0 | 3 |
CC30 (2) | ST30 (1), ST5870 (1) | 2 | 0 | 2 |
Others | ST1281 (5), ST672 (1), ST944 (1), ST6696 (1), Unknown (2) | 10 | 0 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Tang, Y.; Jiang, Z.; Wang, Z.; Li, Q.; Jiao, X. Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China. Pathogens 2022, 11, 978. https://doi.org/10.3390/pathogens11090978
Li Y, Tang Y, Jiang Z, Wang Z, Li Q, Jiao X. Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China. Pathogens. 2022; 11(9):978. https://doi.org/10.3390/pathogens11090978
Chicago/Turabian StyleLi, Yang, Yuanyue Tang, Zhongyi Jiang, Zhenyu Wang, Qiuchun Li, and Xinan Jiao. 2022. "Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China" Pathogens 11, no. 9: 978. https://doi.org/10.3390/pathogens11090978
APA StyleLi, Y., Tang, Y., Jiang, Z., Wang, Z., Li, Q., & Jiao, X. (2022). Molecular Characterization of Methicillin-Sensitive Staphylococcus aureus from the Intestinal Tracts of Adult Patients in China. Pathogens, 11(9), 978. https://doi.org/10.3390/pathogens11090978