Antimicrobial Resistance and Virulence Factors Assessment in Escherichia coli Isolated from Swine in Italy from 2017 to 2021
Abstract
:1. Introduction
2. Results
2.1. Detection of Virulence Factors Genes
2.2. Antimicrobial Susceptibility
2.2.1. AMR Results and Comparison between Virulence-Positive and Negative Isolates
2.2.2. Trend in AMR from 2017 to 2021
2.2.3. Multi-Resistant Isolates
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Isolation of Escherichia Coli
4.3. Virulence Genes Characterization
4.4. Antimicrobial Susceptibility Test
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority (EFSA); European Centre for Disease prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021, 19, e06490. [Google Scholar] [CrossRef]
- European Medicine Agency; European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020, Eleventh ESVAC Report; European Medicine Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Fairbrother, J.M.; Nadeau, E. Colibacillosis. In Disease of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; Volume 52, pp. 807–834. [Google Scholar]
- Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016, 7, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Lekagul, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef] [PubMed]
- Do, K.-H.; Byun, J.-W.; Lee, W.-K. Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea. J. Anim. Sci. Technol. 2020, 62, 543–552. [Google Scholar] [CrossRef] [PubMed]
- García-Meniño, I.; García, V.; Alonso, M.P.; Blanco, J.E.; Blanco, J.; Mora, A. Clones of enterotoxigenic and Shiga toxin-producing Escherichia coli implicated in swine enteric colibacillosis in Spain and rates of antibiotic resistance. Veter. Microbiol. 2020, 252, 108924. [Google Scholar] [CrossRef] [PubMed]
- Hayer, S.S.; Rovira, A.; Olsen, K.; Johnson, T.J.; Vannucci, F.; Rendahl, A.; Perez, A.; Alvarez, J. Prevalence and trend analysis of antimicrobial resistance in clinical Escherichia coli isolates collected from diseased pigs in the USA between 2006 and 2016. Transbound. Emerg. Dis. 2020, 67, 1930–1941. [Google Scholar] [CrossRef] [PubMed]
- Renzhammer, R.; Loncaric, I.; Roch, F.-F.; Pinior, B.; Käsbohrer, A.; Spergser, J.; Ladinig, A.; Unterweger, C. Prevalence of Virulence Genes and Antimicrobial Resistances in E. coli Associated with Neonatal Diarrhea, Postweaning Diarrhea, and Edema Disease in Pigs from Austria. Antibiotics 2020, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Brand, P.; Gobeli, S.; Perreten, V. Pathotyping and antibiotic resistance of porcine enterovirulent Escherichia coli strains from Switzerland (2014–2015). Schweiz Arch Tierheilkd 2017, 159, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Gherpelli, Y.; Biasi, G.; Merialdi, G.; Maioli, G.; Martelli, P. Antimicrobial resistance of F4+ Escherichia coli isolated from swine in Italy. Transbound. Emerg. Dis. 2015, 62, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.P.; Burns, L.; Woodford, N.; Threlfall, E.J.; Naidoo, J.; Cooke, E.M.; George, R.C. Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J. Med. Microbiol. 1994, 40, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Zarrilli, R.; Tripodi, M.-F.; Di Popolo, A.; Fortunato, R.; Bagattini, M.; Crispino, M.; Florio, A.; Triassi, M.; Utili, R. Molecular epidemiology of high-level aminoglycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J. Antimicrob. Chemother. 2005, 56, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassi, P.; Salvarani, C.; Pangallo, G.; Scali, F.; Luppi, A.; Trevisi, P.; Rugna, G.; Motta, V.; Diegoli, G.; Merialdi, G. A three years survey on antimicrobial use in a sample of 30 swine farms in Emilia Romagna (Italy). In Proceeding of the XLVI Annual Meeting of Italian Society of Swine pathology and breeding (SIPAS), Peschiera, Italy, 9–10 September 2021. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). Third Joint Inter-Agency Report on Integrated Analysis of Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing Animals in the EU/EEA, JIACRA III 2016–2018; ECDC, EFSA, EMA: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol. 2014, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.B.; Birk, T.; Borck Høg, B.; Stehr, L.; Aabo, S.; Korsgaard, H. Cross and co resistance among Danish porcine E. coli isolates. Res. Vet. Sci. 2018, 119, 247–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, V.; Gambino, M.; Pedersen, K.; Haugegaard, S.; Olsen, J.E.; Herrero-Fresno, A. F4- and F18-Positive Enterotoxigenic Escherichia coli isolates from diarrhea of postweaning pigs: Genomic Characterization. Appl. Environ. Microbiol. 2020, 10, e01913–e01920. [Google Scholar] [CrossRef] [PubMed]
- Casey, T.A.; Bosworth, B.T. Design and Evaluation of a Multiplex Polymerase Chain Reaction Assay for the Simultaneous Identification of Genes for Nine Different Virulence Factors Associated with Escherichia Coli that Cause Diarrhea and Edema Disease in Swine. J. Veter. Diagn. Investig. 2009, 21, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Standard VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Virotype | Disease | |
---|---|---|
Adhesins | Toxins | |
F5, F6, F41 | STa | ND |
F4 | STa, STb, LT, EAST-1, α-hemolysin | ND |
F4, AIDA | STa, STb, LT, EAST-1, α-hemolysin | PWD |
F18, AIDA | STa, STb, LT, Stx (VT) EAST-1, α-hemolysin | PWD |
Antibiotics | Overall Isolates | Isolates Positive for Virulence Genes | Isolates Negative for Virulence Genes | ETEC F4+ | ETEC F18+ |
---|---|---|---|---|---|
N° (%) | N° (%) | N° (%) | N° (%) | N° (%) | |
NA | 598 (72.4) | 497 (74.1) | 101 (65.2) | 113 (78.5) | 178 (77.4) |
AMC | 534 (64.8) | 416 (62) * | 119 (76.8) * | 87 (60.4) | 137 (59.6) |
AMP | 791 (95.9) | 639 (95.2) | 153 (98.7) | 137 (95.1) | 219 (95.2) |
CZ | 654 (79.3) | 519 (77.3) * | 136 (87.7) * | 116 (80.6) | 177 (77) |
ENR | 471 (57.1) | 386 (57.5) | 86 (55.5) | 92 (63.9) | 120 (52.2) |
FFC | 527 (63.9) | 443 (66) | 85 (54.8) | 89 (61.8) * | 187 (81.3) * |
GEN | 506 (61.4) | 431 (64.2) * | 76 (49) * | 82 (56.9) * | 184 (80) * |
KAN | 489 (59.3) | 406 (60.5) | 84 (54.2) | 78 (54.2) * | 156 (67.8) * |
TET | 740 (89.7) | 601 (89.6) | 140 (90.3) | 123 (85.4) | 216 (93.9) |
SXT | 617 (74.8) | 506 (75.4) | 112 (72.3) | 88 (61.1) * | 195 (84.8) * |
Total isolates | 826 | 671 | 155 | 144 | 230 |
% of Resistances in the Overall Strains | ||||||||
---|---|---|---|---|---|---|---|---|
Year of Isolation | Statistical Analysis | |||||||
n° antibiotics | Total | 2017 | 2018 | 2019 | 2020 | 2021 | r | p |
0 | 0.5 | 0.9 | 0 | 0.5 | 0.8 | 0 | - | - |
1 | 1.5 | 2.8 | 2.4 | 0.9 | 1.2 | 0.8 | −0.90 | <0.05 * |
2 | 2.9 | 2.8 | 3.2 | 2.8 | 3.9 | 0.8 | −0.45 | >0.05 |
3 | 3.8 | 2.8 | 4.8 | 2.8 | 3.5 | 5.8 | 0.56 | >0.05 |
4 | 6.3 | 6.5 | 6.4 | 4.6 | 7.8 | 5.8 | −0.00 | >0.05 |
5 | 8.6 | 8.4 | 6.4 | 7.8 | 8.9 | 11.7 | 0.74 | >0.05 |
6 | 10.2 | 13.1 | 8.8 | 12.4 | 8.2 | 9.2 | −0.59 | >0.05 |
7 | 13.8 | 12.1 | 12.8 | 17.1 | 13.2 | 11.7 | −0.04 | >0.05 |
8 | 16.8 | 15 | 20.8 | 19.8 | 14.4 | 14.2 | −0.39 | >0.05 |
9 | 17.4 | 14 | 20 | 15.7 | 20.2 | 15 | 0.12 | >0.05 |
10 | 18.3 | 21.5 | 14.4 | 15.7 | 17.9 | 25 | 0.38 | >0.05 |
>6 | 76.5 | 75.7 | 76.8 | 80.6 | 73.9 | 75 | 0.38 | >0.05 |
N° tested isolates | 826 | 107 | 125 | 217 | 257 | 120 | ||
% of Resistances of F18+ Strains | ||||||||
Year of Isolation | Statistical Analysis | |||||||
n° antibiotics | Total | 2017 | 2018 | 2019 | 2020 | 2021 | r | p |
0 | 1.3 | 5 | 0 | 1.3 | 1.3 | 0 | - | - |
1 | 0.9 | 0 | 2.9 | 0 | 1.3 | 0 | −0.20 | >0.05 |
2 | 1.7 | 0 | 0 | 1.3 | 3.9 | 0 | 0.36 | >0.05 |
3 | 0.4 | 0 | 0 | 1.3 | 0 | 0 | 0 | >0.05 |
4 | 3 | 5 | 5.9 | 1.3 | 2.6 | 4.2 | −0.42 | >0.05 |
5 | 6.5 | 10 | 0 | 10.5 | 3.9 | 8.3 | 0.02 | >0.05 |
6 | 10 | 20 | 5.9 | 11.8 | 10.5 | 0 | −0.75 | >0.05 |
7 | 13.5 | 5 | 8.8 | 17.1 | 15.8 | 8.3 | 0.41 | >0.05 |
8 | 20.4 | 25 | 41.2 | 17.1 | 13.2 | 20.8 | −0.53 | >0.05 |
9 | 20.9 | 20 | 23.5 | 18.4 | 25 | 12.5 | −0.44 | >0.05 |
10 | 21.3 | 10 | 11.8 | 19.7 | 22.4 | 45.8 | 0.91 | <0.05 * |
>6 | 86.1 | 80 | 91.2 | 84.2 | 86.8 | 87.5 | 0.41 | >0.05 |
N° tested isolates | 230 | 20 | 34 | 76 | 76 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassi, P.; Bosco, C.; Bonilauri, P.; Luppi, A.; Fontana, M.C.; Fiorentini, L.; Rugna, G. Antimicrobial Resistance and Virulence Factors Assessment in Escherichia coli Isolated from Swine in Italy from 2017 to 2021. Pathogens 2023, 12, 112. https://doi.org/10.3390/pathogens12010112
Bassi P, Bosco C, Bonilauri P, Luppi A, Fontana MC, Fiorentini L, Rugna G. Antimicrobial Resistance and Virulence Factors Assessment in Escherichia coli Isolated from Swine in Italy from 2017 to 2021. Pathogens. 2023; 12(1):112. https://doi.org/10.3390/pathogens12010112
Chicago/Turabian StyleBassi, Patrizia, Claudia Bosco, Paolo Bonilauri, Andrea Luppi, Maria Cristina Fontana, Laura Fiorentini, and Gianluca Rugna. 2023. "Antimicrobial Resistance and Virulence Factors Assessment in Escherichia coli Isolated from Swine in Italy from 2017 to 2021" Pathogens 12, no. 1: 112. https://doi.org/10.3390/pathogens12010112
APA StyleBassi, P., Bosco, C., Bonilauri, P., Luppi, A., Fontana, M. C., Fiorentini, L., & Rugna, G. (2023). Antimicrobial Resistance and Virulence Factors Assessment in Escherichia coli Isolated from Swine in Italy from 2017 to 2021. Pathogens, 12(1), 112. https://doi.org/10.3390/pathogens12010112