Models of Protective Immunity against Schistosomes: Implications for Vaccine Development
Abstract
:1. Why Are Schistosome Vaccines So Problematic?
2. The Radiation-Attenuated (RA) Vaccine Model
3. Self-Cure in the Laboratory Rat (Rattus norvegicus)
4. Self-Cure in the Rhesus Macaque (Macaca Mulatta)
5. The Message for Vaccine Development
5.1. Schistosomes Are Hard to Kill In Vivo
- There is minimal evidence for killing of invading larvae in the skin in any model system, attractive as that might be. If slow development of immunity in humans is based on IgE responses, then it is emphatically not a route to a vaccine.
- After arming of the mouse (and rat) lungs by CD4+ T cells caused by a single dose of the RA vaccine, protection depends on blocked migration with some larval deflection into the alveoli. It is possible that the antibody-mediated protection displayed by IFNgR KO mice [33] works in the same way as the early elimination of challenge parasites observed in fast responder macaques [79]. Certainly, the larvae are not killed in the RA vaccinated mouse, but their progress is blocked.
- Antibody-mediated killing of adult worms by self-curing rhesus macaques is a protracted process of several weeks, involving immune pressure on multiple targets and differing specificities between individual animals due to MHC restriction of antigen presentation.
- Only in the rat self-cure process is there rapid and acute elimination of pre-adults. Soluble host-derived mediators (NO, histamine, serotonin, proteases) are the most likely agents, but the requirement for IgE and mast cells is not amenable to vaccine technology. However, the extended lifespan of worms in iNOS rats suggests a weak point that effector responses generating NO might usefully exploit.
5.2. What Are the Targets?
- The primary criterion is that the target(s) must be accessible to immune effectors in living parasites. Among current/recent human vaccine candidates, glutathione-S-transferases and fatty acid-binding protein Sm14 are located in the cytosol. The tetraspanin TSP-2 loops are likely exposed and accessible on the tegument surface. Smp80 calpain, while it lacks a signal peptide, is located at the tegument surface, and results from baboon vaccine experiments indicate it is accessible to antibodies [82].
- In recent years, transcriptomic and proteomic studies have identified a significant number of tegument surface constituents and components of esophageal gland and gastrodermal secretions that are largely untested in vaccine experiments (as many as 50 or 60). In parenthesis, there have been some very uncritical proteomic analyses of worm fractions and these issues have been dealt with in recent reviews [74,83].
- One unusual feature of the exposed proteins, revealed by peptide array analysis, is their often very low immunogenicity. Indeed, a bioinformatic analysis of MEG and VAL protein evolution across schistosome species suggests that they have been selected for immunological silence [84].
- Protection mediated by multiple targets seems more probable than a single magic bullet antigen. The feasibility of multi-epitope constructs has been demonstrated and these are now at the design/implementation stage for protection experiments.
5.3. What Does a Vaccine Need to Achieve?
- Negotiating the pulmonary vascular bed presents an obstacle in mice and rats that might be exploitable, and immunity conferred by arming of the lungs with memory/effector T cells appears to be reasonably persistent. Use of modified BCG as a vehicle, incorporating a multi-epitope construct, provides a potential way of achieving this by vaccination. Immunisation of mice with the rBCG-LTAK63 vaccine was recently shown to induce a persistent increase in memory and effector T cell numbers in lymph nodes and the lungs for at least 6 months after administration, which correlated with increased protection against Mycobacterium tuberculosis [85].
- Self-cure in the rhesus macaque offers the most as a paradigm for a human vaccine, but a strategy of eliciting persistent high titres and a rapid recall response from memory cells is paramount. The development of adjuvants that can accomplish this is an active field with the introduction of products like the synthetic glucopyranosyl lipid A (GLA) agonist of toll-like receptor-4 (TLR-4) [86]. This adjuvant has been extensively used in numerous studies with the Smp80 vaccine (e.g., [87]). Other options being developed include a nanoparticulate comprising bacterial outer membrane vesicles of Neisseria lactamica conjugated with biotin and decorated with expressed recombinant schistosome protein in fusion with biotin-binding rhizavidin [88].
- We do not knowwhether any of these formulations can maintain antibody titres against schistosome targets at levels high enough to stress worms to the point that they expire and simultaneously establish a memory population of B cells that can respond sufficiently rapidly to incoming larvae to arrest their migration and development. Experiments are underway in mice and rhesus macaques to test whether these criteria can be fulfilled using multi-epitope constructs. Persistence of protection for a minimum of six months seems to be a reasonable goal.
- A recent rhesus macaque experiment [79] indicated that a recall response in fast responder animals could be detected by one week after challenge. This was conducted with 700 cercariae, representing a biomass of ~25 μg protein. The developing larvae begin blood feeding and releasing esophageal and gastrodermal secretions in μg amounts from around day 8 [83], clearly sufficient to trigger a memory response. In the real world of a community living in an endemic region, most encounters will be with very small numbers of infective larvae on a sporadic basis. Can such larvae activate a sufficient memory response with their ng quantities of secretions or will they simply “slip in under the radar”?
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warren, K.S.; Mahmoud, A.A.; Cummings, P.; Murphy, D.J.; Houser, H.B. Schistosomiasis mansoni in Yemeni in California: Duration of infection, presence of disease, therapeutic management. Am. J. Trop. Med. Hyg. 1974, 23, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.R.; Russell, R.J.; Charters, A.D. A review of schistosomiasis in immigrants in Western Australia, demonstrating the unusual longevity of Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 385–388. [Google Scholar] [CrossRef]
- Wilkins, H.A.; Goll, P.H.; Marshall, T.F.C.; Moore, P.C. Dynamics of Schistosoma haematobium infection in a Gambian community. III. Acquisition and loss of infection. Trans R Soc Trop Med Hyg. 1984, 78, 227–232. [Google Scholar] [CrossRef]
- Butterworth, A.E. Immunological aspects of human schistosomiasis. Br. Med. Bull. 1998, 54, 357–368. [Google Scholar] [CrossRef]
- Fitzsimmons, C.M.; Jones, F.M.; Stearn, A.; Chalmers, I.W.; Hoffmann, K.F.; Wawrzyniak, J.; Wilson, S.; Kabatereine, N.B.; Dunne, D.W. The Schistosoma mansoni tegumental-allergen-like (TAL) protein family: Influence of developmental expression on human IgE responses. PLoS Negl. Trop. Dis. 2012, 6, e1593. [Google Scholar] [CrossRef]
- Dunne, D.W.; Webster, M.; Smith, P.; Langley, J.G.; Richardson, B.A.; Fulford, A.J.; Butterworth, A.E.; Sturrock, R.F.; Kariuki, H.C.; Ouma, J.H. The isolation of a 22 kDa band after SDS-PAGE of Schistosoma mansoni adult worms and its use to demonstrate that IgE responses against the antigen(s) it contains are associated with human resistance to reinfection. Parasite Immunol. 1997, 19, 79–89. [Google Scholar] [CrossRef]
- Oettle, R.C.; Dickinson, H.A.; Fitzsimmons, C.M.; Sacko, M.; Tukahebwa, E.M.; Chalmers, I.W.; Wilson, S. Protective human IgE responses are promoted by comparable life-cycle dependent Tegument Allergen-Like expression in Schistosoma haematobium and Schistosoma mansoni infection. PLoS Pathog. 2023, 25, e1011037. [Google Scholar] [CrossRef]
- Diemert, D.J.; Pinto, A.G.; Freire, J.; Jariwala, A.; Santiago, H.; Hamilton, R.G.; Periago, M.V.; Loukas, A.; Tribolet, L.; Mulvenna, J.; et al. Generalized urticaria induced by the Na-ASP-2 hookworm vaccine: Implications for the development of vaccines against helminths. J. Allergy Clin. Immunol. 2012, 130, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Li, X.H.; Castro-Borges, W. Schistosome vaccines: Problems, pitfalls and prospects. Emerg. Top. Life Sci. 2017, 1, 641–650. [Google Scholar] [PubMed]
- Butterworth, A.E.; Sturrock, R.F.; Houba, V.; Rees, P.H. Antibody-dependent cell-mediated damage to schistosomula in vitro. Nature 1974, 252, 503–505. [Google Scholar] [CrossRef]
- Wheater, P.R.; Wilson, R.A. Schistosoma mansoni: A histological study of migration in the laboratory mouse. Parasitology 1979, 79, 49–62. [Google Scholar] [CrossRef]
- Hockley, D.J.; McLaren, D.J. Schistosoma mansoni: Changes in the outer membrane of the tegument during development from cercaria to adult worm. Int. J. Parasitol. 1973, 3, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Skelly, P.J.; Shoemaker, C.B. The Schistosoma mansoni host-interactive tegument forms from vesicle eruptions of a cyton network. Parasitology 2001, 122, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Lawson, J.R. An examination of the skin phase of schistosome migration using a hamster cheek pouch preparation. Parasitology 1980, 80, 257–266. [Google Scholar] [CrossRef]
- Seitz, H.M.; Cottrell, B.J.; Sturrock, R.F. A histological study of skin reactions of baboons to Schistosoma mansoni schistosomula. Trans. R. Soc. Trop. Med. Hyg. 1987, 81, 385–390. [Google Scholar] [CrossRef]
- Cheever, A.W.; Duvall, R.H. Single and repeated infections of grivet monkeys with Schistosoma mansoni: Parasitological and pathological observations over a 31-month period. Am. J. Trop. Med. Hyg. 1974, 23, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, R.F.; Butterworth, A.E.; Houba, V. Schistosoma mansoni in the baboon (Papio anubis): Parasitological responses of Kenyan baboons to different exposures of a local parasite strain. Parasitology 1976, 73, 239–252. [Google Scholar] [CrossRef]
- Sturrock, R.F.; Cottrell, B.J.; Kimani, R. Observations on the ability of repeated, light exposures to Schistosoma mansoni cercariae to induce resistance to reinfection in Kenyan baboons (Papio anubis). Parasitology 1984, 88, 505–514. [Google Scholar] [CrossRef]
- Dean, D.A.; Mangold, B.L.; Georgi, J.R.; Jacobson, R.H. Comparison of Schistosoma mansoni migration patterns in normal and irradiated cercaria-immunized mice by means of autoradiographic analysis. Evidence that worm elimination occurs after the skin phase in immunized mice. Am. J. Trop. Med. Hyg. 1984, 33, 89–96. [Google Scholar] [CrossRef]
- James, S.L. Experimental models of immunization against schistosomes: Lessons for vaccine development. Immunol. Investig. 1992, 21, 477–479. [Google Scholar] [CrossRef]
- Coulson, P.S. The radiation-attenuated vaccine against schistosomes in animal models: Paradigm for a human vaccine? Adv. Parasitol. 1997, 39, 271–336. [Google Scholar]
- Hewitson, J.P.; Hamblin, P.A.; Mountford, A.P. Immunity induced by the radiation-attenuated schistosome vaccine. Parasite Immunol. 2005, 27, 271–280. [Google Scholar] [CrossRef]
- Bickle, Q.D. Radiation-attenuated schistosome vaccination--a brief historical perspective. Parasitology 2009, 36, 1621–1632. [Google Scholar] [CrossRef] [PubMed]
- Fukushige, M.; Mitchell, K.M.; Bourke, C.D.; Woolhouse, M.E.; Mutapi, F. A meta-analysis of experimental studies of attenuated schistosoma mansoni vaccines in the mouse model. Front. Immunol. 2015, 6, 85. [Google Scholar] [CrossRef] [PubMed]
- Constant, S.L.; Mountford, A.P.; Wilson, R.A. Phenotypic analysis of the cellular responses in regional lymphoid organs of mice vaccinated against Schistosoma mansoni. Parasitology 1990, 101, 15–22. [Google Scholar] [CrossRef]
- Coulson, P.S.; Wilson, R.A. Recruitment of lymphocytes to the lung through vaccination enhances the immunity of mice exposed to irradiated schistosomes Infect. Immun. 1997, 65, 42–48. [Google Scholar]
- Wilson, R.A.; Li, X.H.; Castro-Borges, W. Do schistosome vaccine trials in mice have an intrinsic flaw that generates spurious protection data? Parasit. Vectors 2016, 17, 89. [Google Scholar] [CrossRef]
- Crabtree, J.E.; Wilson, R.A. The role of pulmonary cellular reactions in the resistance of vaccinated mice to Schistosoma mansoni. Parasite Immunol. 1986, 8, 265–285. [Google Scholar] [CrossRef]
- Coulson, P.S.; Wilson, R.A. Examination of the mechanisms of pulmonary phase resistance to Schistosoma mansoni in vaccinated mice. Am. J. Trop. Med. Hyg. 1988, 38, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Minard, P.; Dean, D.A.; Jacobson, R.H.; Vannier, W.E.; Murrell, K.D. Immunization of mice with cobalt-60 irradiated Schistosoma mansoni cercariae Am. J. Trop. Med. Hyg. 1978, 27, 76–86. [Google Scholar] [CrossRef]
- Smith, M.A.; Clegg, J.A. Schistosoma mansoni: Decay of resistance induced by gamma irradiated cercariae in the mouse. Trans. R. Soc. Trop. Med. Hyg. 1984, 78, 190–192. [Google Scholar] [CrossRef] [PubMed]
- Mangold, B.L.; Dean, D.A. Passive transfer with serum and IgG antibodies of irradiated cercaria-induced resistance against Schistosoma mansoni in mice. J. Immunol. 1986, 136, 2644–2648. [Google Scholar] [CrossRef] [PubMed]
- Farias, L.P.; Vance, G.M.; Coulson, P.S.; Vitoriano-Souza, J.; Almiro-Piriz, D.S.; Wangwiwatsin, A.; Neves, L.X.; Castro-Borges, W.; McNicholas, S.; Wilson, K.S.; et al. Epitope Mapping of Exposed Tegument and Alimentary Tract Proteins Identifies Putative Antigenic Targets of the Attenuated Schistosome Vaccine. Front. Immunol. 2021, 11, 624613. [Google Scholar] [CrossRef]
- McLaren, D.J.; James, S.L. Ultrastructural studies of the killing of schistosomula of Schistosoma mansoni by activated macrophages in vitro. Parasite Immunol. 1985, 7, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.J.; James, S.L. Post lung-stage schistosomula of Schistosoma mansoni exhibit transient susceptibility to macrophage-mediated cytotoxicity in vitro that may relate to late phase killing in vivo. Parasite Immunol. 1986, 8, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Oswald, I.P.; Caspar, P.; Hieny, S.; Keefer, L.; Sher, A.; James, S.L. Developmental differences determine larval susceptibility to nitric oxide-mediated killing in a murine model of vaccination against Schistosoma mansoni. Infect. Immun. 1997, 65, 219–226. [Google Scholar] [CrossRef]
- Coulson, P.S.; Smythies, L.E.; Betts, C.; Mabbott, N.A.; Sternberg, J.M.; Wei, X.G.; Liew, F.Y.; Wilson, R.A. Nitric oxide produced in the lungs of mice immunized with the radiation-attenuated schistosome vaccine is not the major agent causing challenge parasite elimination. Immunology 1998, 93, 55–56. [Google Scholar] [CrossRef] [PubMed]
- Mabbott, N.A.; Sutherland, I.A.; Sternberg, J.M. Trypanosoma brucei is protected from the cytostatic effects of nitric oxide under in vivo conditions. Parasitol. Res. 1994, 80, 687–690. [Google Scholar] [CrossRef]
- James, S.L.; Cheever, A.W.; Caspar, P.; Wynn, T.A. Inducible nitric oxide synthase-deficient mice develop enhanced type 1 cytokine-associated cellular and humoral immune responses after vaccination with attenuated Schistosoma mansoni cercariae but display partially reduced resistance. Infect. Immun. 1998, 66, 3510–3518. [Google Scholar] [CrossRef]
- Kassim, O.O.; Dean, D.A.; Mangold, B.L.; Von Lichtenberg, F. Combined microautoradiographic and histopathologic analysis of the fate of challenge Schistosoma mansoni schistosomula in mice immunized with irradiated cercariae. Am. J. Trop. Med. Hyg. 1992, 47, 231–237. [Google Scholar] [CrossRef]
- Knopf, P.M.; Cioli, D.; Mangold, B.L.; Dean, D.A. Migration of Schistosoma mansoni in normal and passively immunized laboratory rats. Am. J. Trop. Med. Hyg. 1986, 35, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.J.; Bickle, Q.D.; Taylor, M.G. Immunization of rats against Schistosoma mansoni using irradiated cercariae, lung schistosomula and liver-stage worms. Parasitology 1984, 89 Pt 2, 327–344. [Google Scholar] [CrossRef]
- Ford, M.J.; Bickle, Q.D.; Taylor, M.G.; Andrews, B.J. Passive transfer of resistance and the site of immune-dependent elimination of the challenge infection in rats vaccinated with highly irradiated cercariae of Schistosoma mansoni. Parasitology 1984, 89, 461–482. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.J.; Dissous, C.; Pierce, R.J.; Taylor, M.G.; Bickle, Q.D.; Capron, A. The isotypes of antibody responsible for the ‘late’ passive transfer of immunity in rats vaccinated with highly irradiated cercariae. Parasitology 1987, 94, 509–522. [Google Scholar] [CrossRef]
- Yole, D.S.; Reid, G.D.; Wilson, R.A. Protection against Schistosoma mansoni and associated immune responses induced in the vervet monkey Cercopithecus aethiops by the irradiated cercaria vaccine. Am. J. Trop. Med. Hyg. 1996, 54, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Yole, D.S.; Pemberton, R.; Reid, G.D.; Wilson, R.A. Protective immunity to Schistosoma mansoni induced in the olive baboon Papio anubis by the irradiated cercaria vaccine. Parasitology 1996, 112, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, T.M.; Farah, I.O.; Yole, D.S.; Mwenda, J.M.; Van Dam, G.J.; Deelder, A.M.; Wilson, R.A.; Coulson, P.S. Parameters of the attenuated schistosome vaccine evaluated in the olive baboon. Infect. Immun. 2004, 72, 5526–5529. [Google Scholar] [CrossRef]
- Wilson, R.A.; Coulson, P.S. Immune effector mechanisms against schistosomiasis: Looking for a chink in the parasite’s armour. Trends Parasitol. 2009, 25, 423–431. [Google Scholar] [CrossRef]
- Richie, T.L.; Church, L.P.; Murshedkar, T.; Billingsley, P.F.; James, E.R.; Chen, M.C.; Abebe, Y.; Natasha, K.C.; Chakravarty, S.; Dolberg, D.; et al. Sporozoite Immunization: Innovative Translational Science to Support the Fight against Malaria. Expert Rev. Vaccines 2023, in press. [Google Scholar] [CrossRef]
- Lawson, J.R.; Wilson, R.A. The relationship between the age of Schistosoma mansoni cercariae and their ability to penetrate and infect the mammalian host. Parasitology 1983, 87, 481–492. [Google Scholar] [CrossRef]
- James, E.R. Parasite cryopreservation by vitrification. Cryobiology 2004, 49, 201–210. [Google Scholar] [CrossRef]
- Eberl, M.; Langermans, J.A.; Frost, P.A.; Vervenne, R.A.; van Dam, G.J.; Deelder, A.M.; Thomas, A.W.; Coulson, P.S.; Wilson, R.A. Cellular and humoral immune responses and protection against schistosomes induced by a radiation-attenuated vaccine in chimpanzees. Infect. Immun. 2001, 69, 5352–5362. [Google Scholar] [CrossRef]
- Yang, Y.Y.M.; Wilson, R.A.; Thomas, S.R.L.; Kariuki, T.M.; van Diepen, A.; Hokke, C.H. Micro array-assisted analysis of anti-schistosome glycan antibodies elicited by protective vaccination with irradiated cercariae. J. Infect. Dis. 2019, 219, 1671–1680. [Google Scholar] [CrossRef]
- Kariuki, T.M.; Farah, I.O.; Wilson, R.A.; Coulson, P.S. Antibodies elicited by the secretions from schistosome cercariae and eggs are predominantly against glycan epitopes. Parasite Immunol. 2008, 30, 554–562. [Google Scholar] [CrossRef]
- Eberl, M.; Langermans, J.A.; Vervenne, R.A.; Nyame, A.K.; Cummings, R.D.; Thomas, A.W.; Coulson, P.S.; Wilson, R.A. Antibodies toglycans dominate the host response to schistosome larvae and eggs: Is their role protective or subversive? J. Infect. Dis. 2001, 183, 1238–1247. [Google Scholar] [CrossRef] [PubMed]
- Kariuki, T.M.; Van Dam, G.J.; Deelder, A.M.; Farah, I.O.; Yole, D.S.; Wilson, R.A.; Coulson, P.S. Previous or ongoing schistosome infections do not compromise the efficacy of the attenuated cercaria vaccine. Infect. Immun. 2006, 74, 3979–3986. [Google Scholar] [CrossRef] [PubMed]
- Querec, T.D.; Akondy, R.S.; Lee, E.K.; Cao, W.; Nakaya, H.I.; Teuwen, D.; Pirani, A.; Gernert, K.; Deng, J.; Marzolf, B.; et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009, 10, 116–125. [Google Scholar] [CrossRef]
- Bucasas, K.L.; Franco, L.M.; Shaw, C.A.; Bray, M.S.; Wells, J.M.; Nino, D.; Arden, N.; Quarles, J.M.; Couch, R.B.; Belmont, J.W. Earlypatterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J. Infect. Dis. 2011, 203, 921–929. [Google Scholar] [CrossRef]
- Nakaya, H.I.; Wrammert, J.; Lee, E.K.; Racioppi, L.; Marie-Kunze, S.; Haining, W.N.; Means, A.R.; Kasturi, S.P.; Khan, N.; Li, G.M.; et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 2011, 12, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Farias, L.P.; Vitoriano-Souza, J.; Cardozo, L.E.; Gama, L.D.R.; Singh, Y.; Miyasato, P.A.; Almeida, G.T.; Rodriguez, D.; Barbosa, M.M.F.; Fernandes, R.S.; et al. Systems Biology Analysis of the Radiation-Attenuated Schistosome Vaccine Reveals a Role for Growth Factors in Protection and Hemostasis Inhibition in Parasite Survival. Front. Immunol. 2021, 12, 624191. [Google Scholar] [CrossRef]
- Wilson, R.A.; Coulson, P.S. Strategies for a schistosome vaccine: Can we manipulate the immune response effectively? Microbes Infect. 1999, 1, 535–543. [Google Scholar] [CrossRef]
- Phillips, M.; Reid, W.A.; Bruce, J.I.; Hedlund, K.; Colvin, R.C.; Campbell, R.; Diggs, C.L.; Sadun, E.H. The cellular and humoral immune response to Schistosoma mansoni infections in inbred rats. I. Mechanisms during initial exposure. Cell. Immunol. 1975, 19, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Ishizaka, T.; Ishizaka, K.; Johansson, S.G.; Bennich, H. Histamine release from human leukocytes by anti-gamma E antibodies. J. Immunol. 1969, 102, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Jarrett, W.F.; Jennings, F.W. Mast cells and macromolecular leak in intestinal immunological reactions. The influence of sex of rats infected with Nippostrongylus brasiliensis. Immunology 1971, 21, 17–31. [Google Scholar]
- Orr, T.S.; Blair, A.M. Potentiated reagin response to egg albumin and conalbumin in Nippostrongylus brasiliensis infected rats. Life Sci. 1969, 8, 1073–1077. [Google Scholar] [CrossRef]
- Rousseaux-Prevost, R.; Bazin, H.; Capron, A. IgE in experiemental schistosomiasis. I. Serum IgE levels after infection by Schistosoma mansoni in various strains of rats. Immunology 1877, 33, 501–505. [Google Scholar]
- Miller, H.R.; Newlands, G.F.; McKellar, A.; Inglis, L.; Coulson, P.S.; Wilson, R.A. Hepatic recruitment of mast cells occurs in rats but not mice infected with Schistosoma mansoni. Parasite Immunol. 1994, 3, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Cutts, L.; Wilson, R.A. Elimination of a primary schistosome infection from rats coincides with elevated IgE titres and mast cell degranulation. Parasite Immunol. 1977, 19, 91–102. [Google Scholar] [CrossRef]
- Hamdan, F.F.; Abramovitz, M.; Mousa, A.; Xie, J.; Durocher, Y.; Ribeiro, P. A novel Schistosoma mansoni G protein-coupled receptor is responsive to histamine. Mol. Biochem. Parasitol. 2002, 119, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Lai, D.H.; Wilson, R.A.; Chen, Y.F.; Wang, L.F.; Yu, Z.L.; Li, M.Y.; He, P.; Hide, G.; Sun, X.; et al. Nitric oxide blocks the development of the human parasite Schistosoma japonicum. Proc. Natl. Acad. Sci. USA 2017, 114, 10214–10219. [Google Scholar] [CrossRef]
- Shen, J.; Yu, S.F.; Peng, M.; Lai, D.H.; Hide, G.; Wu, Z.D.; Lun, Z.R. iNOS is essential to maintain a protective Th1/Th2 response and the production of cytokines/chemokines against Schistosoma japonicum infection in rats PLoS Negl. Trop. Dis. 2022, 16, e0010403. [Google Scholar] [CrossRef] [PubMed]
- Smithers, S.R.; Terry, R.J. Naturally acquired resistance to experimental infections of Schistosoma mansoni in the rhesus monkey (Macaca mulatta). Parasitology 1965, 55, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Smithers, S.R.; Terry, R.J. Immunity in schistosomiasis. Ann. N. Y. Acad. Sci. 1969, 160, 826–840. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Jones, M.K. Fifty years of the schistosome tegument: Discoveries, controversies, and outstanding questions. Int. J. Parasitol. 2021, 51, 1213–1232. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Langermans, J.A.; van Dam, G.J.; Vervenne, R.A.; Hall, S.L.; Borges, W.C.; Dillon, G.P.; Thomas, A.W.; Coulson, P.S. Elimination of Schistosoma mansoni adult worms by rhesus macaques: Basis for a therapeutic vaccine? PLoS Negl. Trop. Dis. 2008, 2, e290. [Google Scholar] [CrossRef]
- Li, X.H.; Xu, Y.X.; Vance, G.; Wang, Y.; Lv, L.B.; van Dam, G.J.; Cao, J.P.; Wilson, R.A. Evidence that rhesus macaques self-cure from a Schistosoma japonicum infection by disrupting worm esophageal function: A new route to an effective vaccine? PLoS Negl. Trop. Dis. 2015, 9, e0003925. [Google Scholar] [CrossRef]
- Fallon, P.G.; Gibbons, J.; Vervenne, R.A.; Richardson, E.J.; Fulford, A.J.; Kiarie, S.; Sturrock, R.F.; Coulson, P.S.; Deelder, A.M.; Langermans, J.A.; et al. Juvenile rhesus monkeys have lower type 2 cytokine responses than adults after primary infection with Schistosoma mansoni. J. Infect. Dis. 2003, 187, 939–945. [Google Scholar] [CrossRef]
- Lawrence, J.D. The ingestion of red blood cells by Schistosoma mansoni. J. Parasitol. 1973, 59, 60–63. [Google Scholar] [CrossRef]
- Amaral, M.S.; Santos, D.W.; Pereira, A.S.A.; Tahira, A.C.; Malvezzi, J.V.M.; Miyasato, P.A.; Freitas, R.P.; Kalil, J.; Tjon Kon Fat, E.M.; de Dood, C.J.; et al. Rhesus macaques self-curing from a schistosome infection can display complete immunity to challenge. Nat. Commun. 2021, 12, 6181. [Google Scholar] [CrossRef]
- Li, X.H.; Vance, G.M.; Cartwright, J.; Cao, J.P.; Wilson, R.A.; Castro-Borges, W. Mapping the epitopes of Schistosoma japonicum esophageal gland proteins for incorporation into vaccine constructs. PLoS ONE 2020, 15, e0229542. [Google Scholar] [CrossRef]
- Vance, G.M.; Khouri, M.I.; Pires da Silva Neto, A.; James, S.; Leite, L.C.C.; Farias, L.P.; Wilson, R.A. Antigenic epitope targets of rhesus macaques self-curing from Schistosoma mansoni infection. Front. Immunol. 2023. submitted. [Google Scholar]
- Zhang, W.; Molehin, A.J.; Rojo, J.U.; Sudduth, J.; Ganapathy, P.K.; Kim, E.; Siddiqui, A.J.; Freeborn, J.; Sennoune, S.R.; May, J.; et al. Sm-p80-based schistosomiasis vaccine: Double-blind preclinical trial in baboons demonstrates comprehensive prophylactic and parasite transmission-blocking efficacy. Ann. N. Y. Acad. Sci. 2018, 1425, 38–51. [Google Scholar] [CrossRef]
- Castro-Borges, W.; Wilson, R.A. Schistosome proteomics: Updates and clinical implications. Expert Rev. Proteom. 2022, 19, 247–261. [Google Scholar] [CrossRef]
- Philippsen, G.S.; Wilson, R.A.; DeMarco, R. Accelerated evolution of schistosome genes coding for proteins located at the host-parasite interface. Genome Biol. Evol. 2015, 7, 431–443. [Google Scholar] [CrossRef]
- Marques-Neto, L.M.; Trentini, M.M.; Kanno, A.I.; Rodriguez, D.; Leite, L.C.C. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front. Immunol. 2023, 14, 1205449. [Google Scholar] [CrossRef] [PubMed]
- Pantel, A.; Cheong, C.; Dandamudi, D.; Shrestha, E.; Mehandru, S.; Brane, L.; Ruane, D.; Teixeira, A.; Bozzacco, L.; Steinman, R.M.; et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T-cell immunity in vivo. Eur. J. Immunol. 2012, 42, 101–109. [Google Scholar] [CrossRef]
- Zhang, W.; Le, L.; Ahmad, G.; Molehin, A.J.; Siddiqui, A.J.; Torben, W.; Karmakar, S.; Rojo, J.U.; Sennoune, S.; Lazarus, S.; et al. Fifteen Years of Sm-p80-Based Vaccine Trials in Nonhuman Primates: Antibodies From Vaccinated Baboons Confer Protection in vivo and in vitro from Schistosoma mansoni and Identification of Putative Correlative Markers of Protection. Front Immunol. 2020, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, M.M.F.; Kanno, A.I.; Barazzone, G.C.; Rodriguez, D.; Pancakova, V.; Trentini, M.; Faquim-Mauro, E.L.; Freitas, A.P.; Khouri, M.I.; Lobo-Silva, J.; et al. Robust Immune Response Induced by Schistosoma mansoni TSP-2 Antigen Coupled to Bacterial Outer Membrane Vesicles. Int. J. Nanomed. 2021, 16, 7153–7168. [Google Scholar] [CrossRef]
- Koopman, J.P.R.; Driciru, E.; Roestenberg, M. Controlled human infection models to evaluate schistosomiasis and hookworm vaccines: Where are we now? Expert Rev. Vaccines 2021, 20, 1369–1371. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilson, R.A. Models of Protective Immunity against Schistosomes: Implications for Vaccine Development. Pathogens 2023, 12, 1215. https://doi.org/10.3390/pathogens12101215
Wilson RA. Models of Protective Immunity against Schistosomes: Implications for Vaccine Development. Pathogens. 2023; 12(10):1215. https://doi.org/10.3390/pathogens12101215
Chicago/Turabian StyleWilson, R Alan. 2023. "Models of Protective Immunity against Schistosomes: Implications for Vaccine Development" Pathogens 12, no. 10: 1215. https://doi.org/10.3390/pathogens12101215
APA StyleWilson, R. A. (2023). Models of Protective Immunity against Schistosomes: Implications for Vaccine Development. Pathogens, 12(10), 1215. https://doi.org/10.3390/pathogens12101215