The Virucidal Effect of the Chlorination of Water at the Initial Phase of Disinfection May Be Underestimated If Contact Time Calculations Are Used
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Drinking Water Treatment Plant
2.2. Chlorine and Chlorine Dioxide Stock Solution Preparation
2.3. Assessing the Effect of Cell Culture Media on the Chlorine and Chlorine Dioxide Concentration in Ultrafiltrated Water
2.4. Host Cells and Virus Stocks
2.5. Viral Infectivity Titres
2.6. Chlorine and Chlorine Dioxide Treatment of Water Samples Containing Viruses
2.7. qPCR Determination of the Virus in the Cell Culture
2.8. Calculation of CT Values
3. Results
3.1. Testing of Cell Culture Media for Chlorine Consumption
3.2. Inactivation of Viruses by Chlorine and Chlorine Dioxide
3.3. Echovirus 30 (E30)
3.4. Rotavirus SA11 (RV SA11)
3.5. Human Adenovirus 2 (HAdV2)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, G.C. The Handbook of Chlorination, 2nd ed.; Van Nostrand Reinhold: New York, NY, USA, 1986. [Google Scholar]
- O’Brien, R.T.; Newman, J. Structural and compositional changes associated with chlorine inactivation of polioviruses. Appl. Environ. Microbiol. 1979, 38, 1034–1039. [Google Scholar] [CrossRef]
- Page, M.A.; Shisler, J.L.; Mariñas, B.J. Kinetics of adenovirus type 2 inactivation with free chlorine. Water Res. 2009, 43, 2916–2926. [Google Scholar] [CrossRef]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Sabiu, S.; Swalaha, F.M. A review on disinfection methods for inactivation of waterborne viruses. Front. Microbiol. 2022, 13, 991856. [Google Scholar] [CrossRef]
- Taylor, G.R.; Butler, M. A comparison of the virucidal properties of chlorine, chlorine dioxide, bromine chloride and iodine. J. Hyg. 1982, 89, 321–328. [Google Scholar] [CrossRef]
- Chen, Y.S.; Vaughn, J.M. Inactivation of human and simian rotaviruses by chlorine dioxide. Appl. Environ. Microbiol. 1990, 56, 1363–1366. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Xin, Z.T.; Wang, X.W.; Zheng, J.L.; Chao, F.H. Mechanisms of inactivation of hepatitis A virus in water by chlorine dioxide. Water Res. 2004, 38, 1514–1519. [Google Scholar] [CrossRef] [PubMed]
- Noszticzius, Z.; Wittmann, M.; Kály-Kullai, K.; Beregvári, Z.; Kiss, I.; Rosivall, L.; Szegedi, J. Chlorine dioxide is a size-selective antimicrobial agent. PLoS ONE 2013, 8, e79157. [Google Scholar] [CrossRef] [PubMed]
- Kály-Kullai, K.; Wittmann, M.; Noszticzius, Z.; Rosivall, L. Can chlorine dioxide prevent the spreading of coronavirus or other viral infections? Medical hypotheses. Physiol. Int. 2020, 107, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.M.; Sivagenesan, M.; Rice, E.W.; Chen, J. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone. Water Res. 2002, 36, 3141–3149. [Google Scholar] [CrossRef]
- Lim, M.Y.; Kim, J.M.; Ko, G. Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide. Water Res. 2010, 44, 3243–3251. [Google Scholar] [CrossRef]
- Xue, B.; Jin, M.; Yang, D.; Guo, X.; Chen, Z.; Shen, Z.; Wang, X.; Qiu, Z.; Wang, J.; Zhang, B.; et al. Effects of chlorine and chlorine dioxide on human rotavirus infectivity and genome stability. Water Res. 2013, 47, 3329–3338. [Google Scholar] [CrossRef] [PubMed]
- Harakeh, M.; Butler, M. Inactivation of human rotavirus, SA11 and other enteric viruses in effluent by disinfectants. J. Hyg. 1984, 93, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, J.M.; Chen, Y.S.; Thomas, M.Z. Inactivation of human and simian rotaviruses by chlorine. Appl. Environ. Microbiol. 1986, 51, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Sobsey, M.D. Inactivation of Health-Related Microorganisms in Water by Disinfection Processes. Water Sci. Technol. 1989, 21, 179–195. [Google Scholar] [CrossRef]
- Thurston-Enriquez, J.A.; Haas, C.N.; Jacangelo, J.; Gerba, C.P. Chlorine inactivation of adenovirus type 40 and feline calicivirus. Appl. Environ. Microbiol. 2003, 69, 3979–3985. [Google Scholar] [CrossRef] [PubMed]
- Keswick, B.H.; Satterwhite, T.K.; Johnson, P.C.; DuPont, H.L.; Secor, S.L.; Bitsura, J.A.; Gary, G.W.; Hoff, J.C. Inactivation of Norwalk virus in drinking water by chlorine. Appl. Environ. Microbiol. 1985, 50, 261–264. [Google Scholar] [CrossRef]
- Banyai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef]
- Parashar, U.D.; Hummelman, E.G.; Bresee, J.S.; Miller, M.A.; Glass, R.I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 2003, 9, 565–572. [Google Scholar] [CrossRef]
- Bosch, A. Human enteric viruses in the water environment: A minireview. Int. Microbiol. 1998, 1, 191–196. [Google Scholar]
- Yeargin, T.; Buckley, D.; Fraser, A.; Jiang, X. The survival and inactivation of enteric viruses on soft surfaces: A systematic review of the literature. Am. J. Infect. Control 2016, 44, 1365–1373. [Google Scholar] [CrossRef]
- Fong, T.T.; Lipp, E.K. Enteric viruses of humans and animals in aquatic environments: Health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. MMBR 2005, 69, 357–371. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, G.; Pourshaban, M.; Iaconelli, M.; Muscillo, M. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy. Ann. Dell’istituto Super. Di Sanita 2010, 46, 266–273. [Google Scholar] [CrossRef]
- Saguti, F.; Churqui, M.P.; Kjellberg, I.; Wang, H.; Ottoson, J.; Paul, C.; Bergstedt, O.; Norder, H.; Nyström, K. The UV Dose Used for Disinfection of Drinking Water in Sweden Inadequately Inactivates Enteric Virus with Double-Stranded Genomes. Int. J. Environ. Res. Public Health 2022, 19, 8669. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Kjellberg, I.; Sikora, P.; Rydberg, H.; Lindh, M.; Bergstedt, O.; Norder, H. Hepatitis E virus genotype 3 strains and a plethora of other viruses detected in raw and still in tap water. Water Res. 2020, 168, 115141. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Announcement of the Drinking Water Contaminant Candidate List 4; United States Environmental Protection Agency: Washington, DC, USA, 2021. [Google Scholar]
- Pontius, F.W. Drinking Water Regulation and Health; John Wiley and Sons: New York, NY, USA, 2003; p. 1029. [Google Scholar]
- USEPA. Guidance Manual for Compliance with the Filtration and Disinfection Requirements for Public Water Systems Using Surface Water Sources; U.S. Environmental Protection Agency, Office of Water: Washington, DC, USA, 1990. [Google Scholar]
- European-Comission. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Ødegaard, E.H.; Østerhus, S.W.; Pott, B.M. Microbial Barrier Analysis (MBA)—A Guideline; Norwegian Water BA: Hamar, Norway, 2014; p. 74. [Google Scholar]
- Wang, H.; Sikora, P.; Rutgersson, C.; Lindh, M.; Brodin, T.; Bjorlenius, B.; Larsson, D.G.J.; Norder, H. Differential removal of human pathogenic viruses from sewage by conventional and ozone treatments. Int. J. Hyg. Environ. Health 2018, 221, 479–488. [Google Scholar] [CrossRef]
- Lei, C.; Yang, J.; Hu, J.; Sun, X. On the Calculation of TCID (50) for Quantitation of Virus Infectivity. Virol. Sin. 2021, 36, 141–144. [Google Scholar] [CrossRef] [PubMed]
- ATCC. Is It Possible to Determine from the TCID [50] How Many Plaque Forming Units to Expect? ATCC: Manassas, VI, USA, 2019. [Google Scholar]
- Brandt, M.J.; Johnson, K.M.; Elphinston, A.J.; Ratnayaka, D.D. Disinfection of Water. In Twort’s Water Supply, 7th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; pp. 475–511. [Google Scholar]
- WHO. Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Petousi, I.; Thomaidi, V.; Kalogerakis, N.; Fountoulakis, M.S. Removal of pathogens from greywater using green roofs combined with chlorination. Environ. Sci. Pollut. Res. Int. 2023, 30, 22560–22569. [Google Scholar] [CrossRef]
- Pinto da Silva, C.; Xavier de Campos, S. Combined process of chemically enhanced sedimentation and rapid filtration for urban wastewater treatment for potable reuse. Environ. Technol. 2022, 1–12. [Google Scholar] [CrossRef]
- Forsberg, E. Verifiera Desinfektions Effekten Med Naturligt Förekommande Mikroorganismer; Svenskt Vatten Utveckling: Gothenburg, Sweden, 2014. [Google Scholar]
- Berman, D.; Hoff, J.C. Inactivation of simian rotavirus SA11 by chlorine, chlorine dioxide, and monochloramine. Appl. Environ. Microbiol. 1984, 48, 317–323. [Google Scholar] [CrossRef]
- Thurston-Enriquez, J.A.; Haas, C.N.; Jacangelo, J.; Gerba, C.P. Inactivation of enteric adenovirus and feline calicivirus by chlorine dioxide. Appl. Environ. Microbiol. 2005, 71, 3100–3105. [Google Scholar] [CrossRef]
- Huang, J.; Wang, L.; Ren, N.; Li, L.X.; Fun, S.R.; Yang, G. Disinfection effect of chlorine dioxide on viruses, algae, and animal planktons in water. Water Res. 1997, 31, 455–460. [Google Scholar] [CrossRef]
- Ngwenya, N.; Ncube, E.J.; Parsons, J. Recent advances in drinking water disinfection: Successes and challenges. Rev. Environ. Contam. Toxicol. 2013, 222, 111–170. [Google Scholar] [CrossRef] [PubMed]
- Gall, A.M.; Shisler, J.L.; Mariñas, B.J. Analysis of the viral replication cycle of adenovirus serotype 2 after inactivation by free chlorine. Environ. Sci. Technol. 2015, 49, 4584–4590. [Google Scholar] [CrossRef]
- Wang, H.; Neyvaldt, J.; Enache, L.; Sikora, P.; Mattsson, A.; Johansson, A.; Lindh, M.; Bergstedt, O.; Norder, H. Variations among Viruses in Influent Water and Effluent Water at a Wastewater Plant over One Year as Assessed by Quantitative PCR and Metagenomics. Appl. Environ. Microbiol. 2020, 86, e02073-20. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.Q.; Halkosalo, A.; Salminen, M.; Szakal, E.D.; Puustinen, L.; Vesikari, T. One-step quantitative RT-PCR for the detection of rotavirus in acute gastroenteritis. J. Virol. Methods 2008, 153, 238–240. [Google Scholar] [CrossRef]
Virus | Time (min) | Chlorine | Chlorine Dioxide | ||||||
---|---|---|---|---|---|---|---|---|---|
Not Treated Virus Log10 TCID50/mL (qPCR Ct Value) | Treated Virus Log10 TCID50/mL (qPCR Ct Value) | Not treated Virus Log10 TCID50/mL (qPCR Ct Value) | Treated Virus Log10 TCID50/mL (qPCR Ct Value) | ||||||
Exp α I | Exp II | Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | ||
E30 | 2 | 3.00 | 3.25 (14.3) | 0.00 | 0.00 (und *) | 3.75 | 3.50 (14.3) | 0.00 | 0.25 (17.99) |
10 | 3.50 | 3.75 (13.9) | 0.00 | 0.00 (und) | 3.25 | 4.00 (14.8) | 0.00 | 0.00 (und) | |
30 | 3.50 | 3.25 (14.2) | 0.00 | 0.00 (17.6) | 3.75 | 4.25(14.0) | 0.00 | 0.00 (und) | |
60 | 3.75 | 3.00 (14.2) | 0.00 | 0.00 (und) | 3.75 | 3.25 (und) | 0.00 | 0.00 (14.0) | |
120 | 3.50 | 3.25 (14.6) | 0.00 | 0.00 (und) | 4.25 | 3.75 (17.8) | 0.00 | 0.00 (und) | |
RV SA11 | 2 | 5.00 (25.7) | 5.00 (29.5) | 2.25 (24.1) | 1.25 (25.2) | 4.75 (25.2) | 5.00 (29.4) | 1.25 (25.9) | 1.25 (29.5) |
10 | 4.50 (24.9) | 4.25 (28.7) | 0.00 (36.6) | 0.00 (38.4) | 4.50 (25.6) | 5.25 (28.2) | 0.00 (27.6) | 0.00 (36.9) | |
30 | 4.25 (24.5) | 4.00 (27.9) | 0.00 (39.2) | 0.00 (36.1) | 4.75 (25.2) | 5.00 (28.8) | 0.00 (37.3) | 0.00 (38.1) | |
60 | 5.00 (24.5) | 4.00 (28.6) | 0.00 (29.2) | 0.00 (36.0) | 4.00 (25.5) | 4.50 (27.2) | 0.00 (28.6) | 0.00 (37.8) | |
120 | 4.50 (25.3) | 3.50 (28.7) | 0.00 (39.0) | 0.00 (37.0) | 4.50 (25.7) | 4.25 (26.9) | 0.00 (und) | 0.00 (37.6) | |
HAdV2 | 2 | 3.75 (8.8) | 5.00 (9.6) | 0.00 (26.5) | 0.75 (9.3) | 4.50 (8.2) | 5.00 (9.5) | 0.00 (25.0) | 0.00 (26.0) |
10 | 3.75 (7.7) | 4.50 (8.9) | 0.00 (27.2) | 0.00 (11.9) | 4.25 (7.4) | 4.75 (9.2) | 0.00 (23.6) | 0.00 (24.5) | |
30 | 3.75 (8.0) | 4.50 (9.1) | 0.00 (27.5) | 0.00 (26.2) | 3.50 (8.1) | 5.00 (9.6) | 0.00 (22.4) | 0.00 (23.5) | |
60 | 3.75 (8.2) | 4.50(9.0) | 0.00 (27.3) | 0.00 (28.2) | 3.75 (8.3) | 3.75 (9.3) | 0.00 (20.2) | 0.00 (23.5) | |
120 | 4.00 (7.4) | 5.00 (8.9) | 0.00 (26.9) | 0.00 (24.6) | 4.00 (9.3) | 4.75 (9.8) | 0.00 (22.8) | 0.00 (22.6) |
Time (min) | Chlorine | Chlorine Dioxide | ||||||
---|---|---|---|---|---|---|---|---|
Free Chlorine (mg/L) | CT (min·mg/L) | Chlorine Dioxide (mg/L) | CT (min·mg/L) | |||||
Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | |
0 | 1.31 | 1.31 | 0.53 | 0.53 | ||||
2 | 0.37 | 0.50 | 1.79 | 1.81 | 0.20 | 0.26 | 0.73 | 0.79 |
10 | 0.17 | 0.29 | 3.95 | 4.97 | 0.26 | 0.18 | 2.57 | 2.55 |
30 | 0.15 | 0.21 | 7.15 | 9.97 | 0.17 | 0.26 | 6.87 | 6.95 |
60 | - | 0.11 | - | 14.77 | 0.11 | 0.13 | 11.07 | 12.80 |
120 | 0.12 | 0.11 | 13.00 | 21.37 | 0.07 | 0.09 | 16.47 | 19.40 |
Time (min) | Chlorine | Chlorine Dioxide | ||||||
---|---|---|---|---|---|---|---|---|
Free Chlorine (mg/L) | CT (min·mg/L) | Chlorine Dioxide (mg/L) | CT (min·mg/L) | |||||
Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | |
0 | 1.20 | 1.13 | 0.52 | 0.49 | ||||
2 | 0.41 | 0.31 | 1.61 | 1.44 | 0.25 | 0.16 | 0.80 | 0.80 |
10 | 0.25 | 0.26 | 4.25 | 3.72 | 0.21 | 0.29 | 2.64 | 2.60 |
30 | 0.20 | 0.18 | 8.75 | 8.12 | 0.09 | 0.19 | 5.64 | 7.40 |
60 | 0.14 | 0.14 | 13.85 | 12.92 | 0.09 | 0.12 | 8.34 | 12.05 |
118 | 0.10 | 0.11 | 21.05 | 20.42 | 0.03 | 0.06 | 11.94 | 17.45 |
Time (min) | Chlorine | Chlorine Dioxide | ||||||
---|---|---|---|---|---|---|---|---|
Free Chlorine (mg/L) | CT (min·mg/L) | Chlorine Dioxide (mg/L) | CT (min·mg/L) | |||||
Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | Exp I | Exp II | |
0 | 1.31 | 1.31 | 0.56 | 0.47 | ||||
2 | 0.55 | 0.35 | 1.86 | 1.66 | 0.25 | 0.35 | 0.85 | 0.85 |
10 | 0.32 | 0.21 | 5.34 | 2.24 | 0.22 | 0.24 | 2.73 | 3.21 |
30 | 0.15 | 0.14 | 10.04 | 5.74 | 0.16 | 0.21 | 6.53 | 7.71 |
60 | 0.10 | 0.12 | 13.79 | 9.64 | 0.10 | 0.21 | 10.43 | 14.01 |
120 | 0.08 | 0.13 | 19.19 | 17.14 | 0.03 | 0.08 | 14.33 | 22.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saguti, F.; Kjellberg, I.; Churqui, M.P.; Wang, H.; Tunovic, T.; Ottoson, J.; Bergstedt, O.; Norder, H.; Nyström, K. The Virucidal Effect of the Chlorination of Water at the Initial Phase of Disinfection May Be Underestimated If Contact Time Calculations Are Used. Pathogens 2023, 12, 1216. https://doi.org/10.3390/pathogens12101216
Saguti F, Kjellberg I, Churqui MP, Wang H, Tunovic T, Ottoson J, Bergstedt O, Norder H, Nyström K. The Virucidal Effect of the Chlorination of Water at the Initial Phase of Disinfection May Be Underestimated If Contact Time Calculations Are Used. Pathogens. 2023; 12(10):1216. https://doi.org/10.3390/pathogens12101216
Chicago/Turabian StyleSaguti, Fredy, Inger Kjellberg, Marianela Patzi Churqui, Hao Wang, Timur Tunovic, Jakob Ottoson, Olof Bergstedt, Helene Norder, and Kristina Nyström. 2023. "The Virucidal Effect of the Chlorination of Water at the Initial Phase of Disinfection May Be Underestimated If Contact Time Calculations Are Used" Pathogens 12, no. 10: 1216. https://doi.org/10.3390/pathogens12101216
APA StyleSaguti, F., Kjellberg, I., Churqui, M. P., Wang, H., Tunovic, T., Ottoson, J., Bergstedt, O., Norder, H., & Nyström, K. (2023). The Virucidal Effect of the Chlorination of Water at the Initial Phase of Disinfection May Be Underestimated If Contact Time Calculations Are Used. Pathogens, 12(10), 1216. https://doi.org/10.3390/pathogens12101216