Tick-Borne Diseases of Humans and Animals in West Africa
Abstract
:1. Introduction
2. Bacterial Diseases
2.1. Tick-Borne Spotted Fever Group Rickettsioses
2.2. Tick-Borne Relapsing Fevers
2.3. Anaplasmosis
2.4. Ehrlichiosis
2.5. Bartonellosis
2.6. Coxiella burnetii Infection
3. Protozoal Diseases
3.1. Theileriosis
3.2. Babesiosis
3.3. Hepatozoonosis
4. Viral Diseases
4.1. Crimean–Congo Haemorrhagic Fever (CCHF)
4.2. African Swine Virus
5. Tick-Borne Diseases in Children and Pregnant Women
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATBF | African tick-bite fever |
ASFV | African swine fever virus |
ASF | African swine fever |
CCHF | Crimean–Congo haemorrhagic fever |
DNA | Deoxyribonucleic acid |
EU | European Union |
HGA | Human granulocytic anaplasmosis |
HME | Human monocytic ehrlichiosis |
MALDI-TOF MS | Matrix-assisted desorption/ionization time-of-flight mass spectrometry |
ICCT | Infectious canine cyclic thrombocytopaenia |
MSF | Mediterranean spotted fever |
PCR | Polymerase chain reaction |
RNA | Ribonucleic Acid |
SFG | Spotted fever group |
TBD | Tick-borne diseases |
TBRF | Tick-borne relapsing fevers |
TG | Typhus group |
WOAH | World Organization for Animal Health |
References
- Walker, A.R.; Bouattour, A.; Camicas, J.L.; Estrada-Peña, A.; Horak, I.G.; Latif, A.A.; Pegram, R.G.; Preston, P.M. Ticks of Domestic Animals in Africa: A Guide to Identification of Species; The University of Edinburgh: Edinburgh, UK, 2003; pp. 52–228. [Google Scholar]
- Kernif, T.; Leulmi, H.; Raoult, D.; Parola, P. Emerging tick-borne bacterial pathogens. Microbiol. Spectr. 2016, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; MacLeod, E.T. Hard ticks (Acari: Ixodidae) and tick-borne diseases of sheep and goats in Africa: A review. Ticks Tick Borne Dis. 2023, 14, 102232. [Google Scholar] [CrossRef]
- Parola, P.; Raoult, D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin. Infect. Dis. 2001, 32, 897–928. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Estrada-Pena, A.; Venzal, J.M.; Kocan, K.M.; Sonenshine, D.E. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front. Biosci. 2008, 13, 6938–6946. [Google Scholar] [CrossRef]
- Ghosh, S.; Azhahianambi, P.; Yadav, M.P. Upcoming and future strategies of tick control: A review. J. Vector Borne Dis. 2007, 44, 79–89. [Google Scholar]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef]
- Kivaria, F.M. Climate change and the epidemiology of tick-borne diseases of cattle in Africa. Vet. J. 2010, 184, 7–8. [Google Scholar] [CrossRef]
- Gray, J.S.; Dautel, H.; Estrada-Pena, A.; Kahl, O.; Lindgren, E. Effects of climate change on ticks and tick-borne diseases in europe. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 593232. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L. The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annu. Rev. Entomol. 2021, 66, 373–388. [Google Scholar] [CrossRef]
- Communauté économique des états de l’Afrique de l’ouest. Available online: https://fr.wikipedia.org/wiki/Afrique_de_l%27Ouest (accessed on 16 March 2021).
- Mackenzie, J.S.; Jeggo, M. The one health approach-why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- Parola, P.; Paddock, C.D.; Socolovschi, C.; Labruna, M.B.; Mediannikov, O.; Kernif, T.; Abdad, M.Y.; Stenos, J.; Bitam, I.; Fournier, P.E.; et al. Update on tick-borne rickettsioses around the world: A geographic approach. Clin. Microbiol. Rev. 2013, 26, 657–702. [Google Scholar] [CrossRef]
- Abdad, M.Y.; Abou, A.R.; Fournier, P.E.; Stenos, J.; Vasoo, S. A concise review of the épidemiology and diagnostics of rickettsioses: Rickettsia and Orientia spp. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, C.S.E.; Troyo, A. A review of the genus Rickettsia in central America. Res. Rep. Trop. Med. 2018, 9, 103–112. [Google Scholar]
- Dieme, C.; Bechah, Y.; Socolovschi, C.; Audoly, G.; Berenger, J.M.; Faye, O.; Raoult, D.; Parola, P. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc. Natl. Acad. Sci. USA 2015, 112, 8088–8093. [Google Scholar] [CrossRef]
- Pace, E.J.; O’Reilly, M. Tickborne Diseases: Diagnosis and management. Am. Fam. Physician 2020, 101, 530–540. [Google Scholar] [PubMed]
- Delord, M.; Socolovschi, C.; Parola, P. Rickettsioses and Q fever in travelers (2004–2013). Travel Med. Infect. Dis. 2014, 12, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Niang, M.; Parola, P.; Tissot-Dupont, H.; Baidi, L.; Brouqui, P.; Raoult, D. Prevalence of antibodies to Rickettsia conorii, Ricketsia africae, Rickettsia typhi and Coxiella burnetii in Mauritania. Eur. J. Epidemiol. 1998, 14, 817–818. [Google Scholar] [CrossRef]
- Kalivogi, S.; Buaro, M.E.; Konstantinov, O.K.; Plotnikova, L.F. The immune structure against q fever and tick-bite spotted fever group rickettsioses in the population and domestic animals of the Republic of Guinea. Med. Parazitol. 2013, 1, 28–30. [Google Scholar]
- Mediannikov, O.; Diatta, G.; Fenollar, F.; Sokhna, C.; Trape, J.F.; Raoult, D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl. Trop. Dis. 2010, 4, e821. [Google Scholar] [CrossRef]
- Adjou Moumouni, P.F.; Terkawi, M.A.; Jirapattharasate, C.; Cao, S.; Liu, M.; Nakao, R.; Umemiya-Shirafuji, R.; Yokoyama, N.; Sugimoto, C.; Fujisaki, K.; et al. Molecular detection of spotted fever group rickettsiae in Amblyomma variegatum ticks from Benin. Ticks Tick Borne Dis. 2016, 7, 828–833. [Google Scholar] [CrossRef]
- Diarra, A.Z.; Almeras, L.; Laroche, M.; Berenger, J.M.; Kone, A.K.; Bocoum, Z.; Dabo, A.; Doumbo, O.; Raoult, D.; Parola, P. Molecular and MALDI-TOF identification of ticks and tick-associated bacteria in Mali. PLoS Negl. Trop. Dis. 2017, 11, e0005762. [Google Scholar] [CrossRef]
- Ehounoud, C.B.; Yao, K.P.; Dahmani, M.; Achi, Y.L.; Amanzougaghene, N.; Kacou, N.A.; N’Guessan, J.D.; Raoult, D.; Fenollar, F.; Mediannikov, O. Multiple pathogens including potential New species in tick vectors in Cote d’Ivoire. PLoS Negl. Trop. Dis. 2016, 10, e0004367. [Google Scholar] [CrossRef]
- Lorusso, V.; Gruszka, K.A.; Majekodunmi, A.; Igweh, A.; Welburn, S.C.; Picozzi, K. Rickettsia africae in Amblyomma variegatum ticks, Uganda and Nigeria. Emerg. Infect. Dis. 2013, 19, 1705–1707. [Google Scholar] [CrossRef]
- Mediannikov, O.; Diatta, G.; Zolia, Y.; Balde, M.C.; Kohar, H.; Trape, J.F.; Raoult, D. Tick-borne rickettsiae in Guinea and Liberia. Ticks Tick Borne Dis. 2012, 3, 43–48. [Google Scholar] [CrossRef]
- Nnabuife, H.E.; Matur, B.; Ogo, N.I.; Goselle, O.; Shittu, I.; Mkpuma, N.; Obishakin, E.; Chima, N.; Kamani, J. Rickettsia africae and Rickettsia massiliae in ixodid ticks infesting small ruminants in agro-pastoral settlements in Plateau State, Nigeria. Exp. Appl. Acarol. 2023, 89, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Ogo, N.I.; de Mera, I.G.; Galindo, R.C.; Okubanjo, O.O.; Inuwa, H.M.; Agbede, R.I.; Torina, A.; Alongi, A.; Vicente, J.; Gortázar, C.; et al. Molecular identification of tick-borne pathogens in Nigerian ticks. Vet. Parasitol. 2012, 187, 572–577. [Google Scholar] [CrossRef]
- Parola, P.; Inokuma, H.; Camicas, J.L.; Brouqui, P.; Raoult, D. Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African ticks. Emerg. Infect. Dis. 2001, 7, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Reye, A.L.; Arinola, O.G.; Hubschen, J.M.; Muller, C.P. Pathogen prevalence in ticks collected from the vegetation and livestock in Nigeria. Appl. Environ. Microbiol. 2012, 78, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Sambou, M.; Faye, N.; Bassene, H.; Diatta, G.; Raoult, D.; Mediannikov, O. Identification of rickettsial pathogens in ixodid ticks in northern Senegal. Ticks Tick Borne Dis. 2014, 5, 552–556. [Google Scholar] [CrossRef]
- Socolovschi, C.; Huynh, T.P.; Davoust, B.; Gomez, J.; Raoult, D.; Parola, P. Transovarial and trans-stadial transmission of Rickettsiae africae in Amblyomma variegatum ticks. Clin. Microbiol. Infect. 2009, 15, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Tomassone, L.; De, M.D.; Adakal, H.; Rodighiero, P.; Pressi, G.; Grego, E. Detection of Rickettsia aeschlimannii and Rickettsia africae in ixodid ticks from Burkina Faso and Somali region of Ethiopia by new real-time PCR assays. Ticks Tick Borne Dis. 2016, 7, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Yessinou, R.E.; Cazan, C.D.; Panait, L.C.; Mollong, E.; Biguezoton, A.S.; Bonnet, S.I.; Farougou, S.; Groschup, M.H.; Mihalca, A.D. New geographical records for tick-borne pathogens in ticks collected from cattle in Benin and Togo. Vet. Med. Sci. 2023, 9, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Nimo-Paintsil, S.C.; Mosore, M.; Addo, S.O.; Lura, T.; Tagoe, J.; Ladzekpo, D.; Addae, C.; Bentil, R.E.; Behene, E.; Dafeamekpor, C.; et al. Ticks and prevalence of tick-borne pathogens from domestic animals in Ghana. Parasit. Vectors 2022, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Yessinou, R.E.; Adehan, S.; Hedegbetan, G.C.; Cassini, R.; Mantip, S.E.; Farougou, S. Molecular characterization of Rickettsia spp., Bartonella spp., and Anaplasma phagocytophilum in hard ticks collected from wild animals in Benin, West Africa. Trop. Anim. Health Prod. 2022, 54, 306. [Google Scholar] [CrossRef] [PubMed]
- Adjou Moumouni, P.F.; Aplogan, G.L.; Katahira, H.; Gao, Y.; Guo, H.; Efstratiou, A.; Jirapattharasate, C.; Wang, G.; Liu, M.; Ringo, A.E.; et al. Prevalence, risk factors, and genetic diversity of veterinary important tick-borne pathogens in cattle from Rhipicephalus microplus-invaded and non-invaded areas of Benin. Ticks Tick Borne Dis. 2018, 9, 450–464. [Google Scholar] [CrossRef]
- Adamu, M.; Troskie, M.; Oshadu, D.O.; Malatji, D.P.; Penzhorn, B.L.; Matjila, P.T. Occurrence of tick-transmitted pathogens in dogs in Jos, Plateau State, Nigeria. Parasit. Vectors 2014, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Adjou Moumouni, P.F.; Guo, H.; Gao, Y.; Liu, M.; Ringo, A.E.; Galon, E.M.; Vudriko, P.; Umemiya-Shirafuji, R.; Inoue, N.; Suzuki, H.; et al. Identification and genetic characterization of Piroplasmida and Anaplasmataceae agents in feeding Amblyomma variegatum ticks from Benin. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 137–143. [Google Scholar] [CrossRef]
- Anifowose, O.I.; Takeet, M.I.; Talabi, A.O.; Otesile, E.B. Molecular detection of Ehrlichia ruminantium in engorged Amblyomma variegatum and cattle in Ogun State, Nigeria. J. Parasit. Dis. 2020, 44, 403–410. [Google Scholar] [CrossRef]
- Faburay, B.; Geysen, D.; Munstermann, S.; Taoufik, A.; Postigo, M.; Jongejan, F. Molecular detection of Ehrlichia ruminantium infection in Amblyomma variegatum ticks in Gambia. Exp. Appl. Acarol. 2007, 42, 61–74. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Yao, K.P.; Belem, A.M.G.; Farougou, S.; Oosthuizen, M.; Saegerman, C.; Lempereur, L. Cross border transhumance involvement in ticks and tick-borne pathogens dissemination and first evidence of Anaplasma centrale in Burkina Faso. Ticks Tick Borne Dis. 2021, 12, 101781. [Google Scholar] [CrossRef] [PubMed]
- Mediannikov, O.; Fenollar, F.; Socolovschi, C.; Diatta, G.; Bassene, H.; Molez, J.F.; Sokhna, C.; Trape, J.F.; Raoult, D. Coxiella burnetii in humans and ticks in rural Senegal. PLoS Negl. Trop. Dis. 2010, 4, e654. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Zannou, O.M.; Biguezoton, A.S.; Kouassi, P.Y.; Belem, A.; Farougou, S.; Oosthuizen, M.; Saegerman, C.; Lempereur, L. Cattle ticks and associated tick-borne pathogens in Burkina Faso and Benin: Apparent northern spread of Rhipicephalus microplus in Benin and first evidence of Theileria velifera and Theileria annulata. Ticks Tick Borne Dis. 2021, 12, 101733. [Google Scholar] [CrossRef]
- Kartashov, M.Y.; Naidenova, E.V.; Zakharov, K.S.; Yakovlev, S.A.; Skarnovich, M.O.; Boumbaly, S.; Nikiforov, K.A.; Plekhanov, N.A.; Kritzkiy, A.A.; Ternovoi, V.A.; et al. Detection of Babesia caballi, Theileria mutans and Th. velifera in ixodid ticks collected from cattle in Guinea in 2017–2018. Vet. Parasitol. Reg. Stud. Rep. 2021, 24, 100564. [Google Scholar] [CrossRef]
- Tomassone, L.; Pagani, P.; De, M.D. Detection of Babesia caballi in Amblyomma variegatum ticks (Acari: Ixodidae) collected from cattle in the Republic of Guinea. Parassitologia 2005, 47, 247–251. [Google Scholar] [PubMed]
- Akuffo, R.; Brandful, J.A.; Zayed, A.; Adjei, A.; Watany, N.; Fahmy, N.T.; Hughes, R.; Doman, B.; Voegborlo, S.V.; Aziati, D.; et al. Crimean-Congo hemorrhagic fever virus in livestock ticks and animal handler seroprevalence at an abattoir in Ghana. BMC Infect. Dis. 2016, 16, 324. [Google Scholar] [CrossRef]
- Zeller, H.G.; Cornet, J.P.; Diop, A.; Camicas, J.L. Crimean-Congo hemorrhagic fever in ticks (Acari: Ixodidae) and ruminants: Field observations of an epizootic in Bandia, Senegal (1989–1992). J. Med. Entomol. 1997, 34, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; Raileanu, C.; Tauchmann, O.; Fischer, S.; Vasic, A.; Schäfer, M.; Biu, A.A.; Ogo, I.N.; Thekisoe, O.; Silaghi, C. Prevalence and molecular characterization of ticks and tick-borne pathogens of one-humped camels (Camelus dromedarius) in Nigeria. Parasit. Vectors 2020, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- d’Oliveira, C.; van der Weide, M.; Jacquiet, P.; Jongejan, F. Detection of Theileria annulata by the PCR in ticks (Acari:Ixodidae) collected from cattle in Mauritania. Exp. Appl. Acarol. 1997, 21, 279–291. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Taioe, M.O.; Ogo, N.I.; Sivakumar, T.; Biu, A.A.; Mbaya, A.W.; Xuan, X.; Yokoyama, N.; Thekisoe, O. Molecular evidence of Babesia caballi and Theileria equi in equines and ticks in Nigeria: Prevalence and risk factors analysis. Parasitology 2020, 147, 1238–1248. [Google Scholar] [CrossRef]
- Kamani, J.; Baneth, G.; Apanaskevich, D.A.; Mumcuoglu, K.Y.; Harrus, S. Molecular detection of Rickettsia aeschlimannii in Hyalomma spp. ticks from camels (Camelus dromedarius) in Nigeria, West Africa. Med. Vet. Entomol. 2015, 29, 205–209. [Google Scholar] [CrossRef]
- Saluzzo, J.F.; Digoutte, J.P.; Camicas, J.L.; Chauvancy, G. Crimean-Congo haemorrhagic fever and Rift Valley fever in south-eastern Mauritania. Lancet 1985, 1, 116. [Google Scholar] [CrossRef]
- Zeller, H.G.; Cornet, J.P.; Camicas, J.L. Crimean-Congo haemorrhagic fever virus infection in birds: Field investigations in Senegal. Res. Virol. 1994, 145, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, V.; Wijnveld, M.; Majekodunmi, A.O.; Dongkum, C.; Fajinmi, A.; Dogo, A.G.; Thrusfield, M.; Mugenyi, A.; Vaumourin, E.; Igweh, A.C.; et al. Tick-borne pathogens of zoonotic and veterinary importance in Nigerian cattle. Parasit. Vectors 2016, 9, 217. [Google Scholar] [CrossRef] [PubMed]
- Elbir, H.; FotsoFotso, A.; Diatta, G.; Trape, J.F.; Arnathau, C.; Renaud, F.; Durand, P. Ubiquitous bacteria Borrelia crocidurae in Western African ticks Ornithodoros sonrai. Parasit. Vectors 2015, 8, 477. [Google Scholar] [CrossRef] [PubMed]
- Ndiaye, E.H.I.; Diouf, F.S.; Ndiaye, M.; Bassene, H.; Raoult, D.; Sokhna, C.; Parola, P.; Diatta, G. Tick-borne relapsing fever Borreliosis, a major public health problem overlooked in Senegal. PLoS Negl. Trop. Dis. 2021, 15, e0009184. [Google Scholar] [CrossRef] [PubMed]
- Ouarti, B.; Sall, M.; Ndiaye, E.H.I.; Diatta, G.; Diarra, A.Z.; Berenger, J.M.; Sokhna, C.; Granjon, L.; Le Fur, J.; Parola, P. Pathogen detection in Ornithodoros sonrai ticks and invasive house Mice Mus musculus domesticus in Senegal. Microorganisms 2022, 10, 2367. [Google Scholar] [CrossRef]
- Schwan, T.G.; Anderson, J.M.; Lopez, J.E.; Fischer, R.J.; Raffel, S.J.; McCoy, B.N.; Safronetz, D.; Sogoba, N.; Maïga, O.; Traoré, C.F. Endemic foci of the tick-borne relapsing fever spirochete Borrelia crocidurae in Mali, West Africa, and the potential for human infection. PLoS Negl. Trop. Dis. 2012, 6, e1924. [Google Scholar] [CrossRef]
- Trape, J.F.; Diatta, G.; Arnathau, C.; Bitam, I.; Sarih, M.; Belghyti, D.; Bouattour, A.; Elguero, E.; Vial, L.; Mané, Y.; et al. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS ONE 2013, 8, e78473. [Google Scholar] [CrossRef]
- Mediannikov, O.; Diatta, G.; Kasongo, K.; Raoult, D. Identification of Bartonellae in the soft tick species Ornithodoros sonrai in Senegal. Vector Borne Zoonotic Dis. 2014, 14, 26–32. [Google Scholar] [CrossRef]
- Dahmana, H.; Granjon, L.; Diagne, C.; Davoust, B.; Fenollar, F.; Mediannikov, O. Rodents as hosts of pathogens and related zoonotic disease risk. Pathogens 2020, 9, 202. [Google Scholar] [CrossRef]
- Vial, L.; Wieland, B.; Jori, F.; Etter, E.; Dixon, L.; Roger, F. African swine fever virus DNA in soft ticks, Senegal. Emerg. Infect. Dis. 2007, 13, 1928–1931. [Google Scholar] [CrossRef]
- Akinboade, O.A.; Dipeolu, O.O. Bovine babesiosis in Nigeria: Detection of Babesia organisms in salivary glands of Boophilus decoloratus collected on trade cattle. Zentralbl. Veterinarmed. B 1983, 30, 153–155. [Google Scholar] [CrossRef]
- Makenov, M.T.; Toure, A.H.; Korneev, M.G.; Sacko, N.; Porshakov, A.M.; Yakovlev, S.A.; Radyuk, E.V.; Zakharov, K.S.; Shipovalov, A.V.; Boumbaly, S.; et al. Rhipicephalus microplus and its vector-borne haemoparasites in Guinea: Further species expansion in West Africa. Parasitol. Res. 2021, 120, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- McCoy, B.N.; Maiga, O.; Schwan, T.G. Detection of Borrelia theileri in Rhipicephalus geigyi from Mali. Ticks Tick Borne Dis. 2014, 5, 401–403. [Google Scholar] [CrossRef]
- Biguezoton, A.; Noel, V.; Adehan, S.; Adakal, H.; Dayo, G.K.; Zoungrana, S.; Farougou, S.; Chevillon, C. Ehrlichia ruminantium infects Rhipicephalus microplus in West Africa. Parasit. Vectors 2016, 9, 354. [Google Scholar] [CrossRef]
- Dahmani, M.; Davoust, B.; Sambou, M.; Bassene, H.; Scandola, P.; Ameur, T.; Raoult, D.; Fenollar, F.; Mediannikov, O. Molecular investigation and phylogeny of species of the Anaplasmataceae infecting animals and ticks in Senegal. Parasit. Vectors 2019, 12, 495. [Google Scholar] [CrossRef]
- Ratmanov, P.; Bassene, H.; Fenollar, F.; Tall, A.; Sokhna, C.; Raoult, D.; Mediannikov, O. The correlation of Q fever and Coxiella burnetii DNA in household environments in rural Senegal. Vector Borne Zoonotic Dis. 2013, 13, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Baneth, G.; Gutierrez, R.; Nachum-Biala, Y.; Mumcuoglu, K.Y.; Harrus, S. Coxiella burnetii and Rickettsia conorii: Two zoonotic pathogens in peridomestic rodents and their ectoparasites in Nigeria. Ticks Tick Borne Dis. 2018, 9, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Matei, I.A.; D’Amico, G.; Yao, P.K.; Ionica, A.M.; Kanyari, P.W.; Daskalaki, A.A.; Dumitrache, M.O.; Sándor, A.D.; Gherman, C.M.; Qablan, M.; et al. Molecular detection of Anaplasma platys infection in free-roaming dogs and ticks from Kenya and Ivory Coast. Parasit. Vectors 2016, 9, 157. [Google Scholar] [CrossRef]
- Socolovschi, C.; Gomez, J.; Marie, J.L.; Davoust, B.; Guigal, P.M.; Raoult, D.; Parola, P. Ehrlichia canis in Rhipicephalus sanguineus ticks in the Ivory Coast. Ticks Tick Borne Dis. 2012, 3, 411–413. [Google Scholar] [CrossRef]
- Clarke, L.L.; Ballweber, L.R.; Allen, K.; Little, S.E.; Lappin, M.R. Prevalence of select vector-borne disease agents in owned dogs of Ghana. J. S. Afr. Vet. Assoc. 2014, 85, 996. [Google Scholar] [CrossRef] [PubMed]
- Elelu, N.; Ola-Fadunsin, S.D.; Bankole, A.A.; Raji, M.A.; Ogo, N.I.; Cutler, S.J. Prevalence of tick infestation and molecular characterization of spotted fever Rickettsia massiliae in Rhipicephalus species parasitizing domestic small ruminants in north-central Nigeria. PLoS ONE 2022, 17, e0263843. [Google Scholar] [CrossRef] [PubMed]
- Socolovschi, C.; Gaudart, J.; Bitam, I.; Huynh, T.P.; Raoult, D.; Parola, P. Why are there so few Rickettsia conorii conorii-infected Rhipicephalus sanguineus ticks in the wild? PLoS Negl. Trop. Dis. 2012, 6, e1697. [Google Scholar] [CrossRef] [PubMed]
- Brouqui, P.; Parola, P.; Fournier, P.E.; Raoult, D. Spotted fever rickettsioses in southern and eastern Europe. FEMS Immunol. Med. Microbiol. 2007, 49, 2–12. [Google Scholar] [CrossRef]
- Dupont, H.T.; Brouqui, P.; Faugere, B.; Raoult, D. Prevalence of antibodies to Coxiella burnetti, Rickettsia conorii, and Rickettsia typhi in seven African countries. Clin. Infect. Dis. 1995, 21, 1126–1133. [Google Scholar] [CrossRef]
- Raoult, D.; Fournier, P.E.; Abboud, P.; Caron, F. First documented human Rickettsia aeschlimannii infection. Emerg. Infect. Dis. 2002, 8, 748–749. [Google Scholar] [CrossRef]
- Berrelha, J.; Briolant, S.; Muller, F.; Rolain, J.M.; Marie, J.L.; Pages, F.; Raoult, D.; Parola, P. Rickettsia felis and Rickettsia massiliae in Ivory Coast, Africa. Clin. Microbiol. Infect. 2009, 15, 251–252. [Google Scholar] [CrossRef]
- Elbir, H.; Raoult, D.; Drancourt, M. Relapsing fever borreliae in Africa. Am. J. Trop. Med. Hyg. 2013, 89, 288–292. [Google Scholar] [CrossRef]
- Jakab, A.; Kahlig, P.; Kuenzli, E.; Neumayr, A. Tick borne relapsing fever—A systematic review and analysis of the literature. PLoS Negl. Trop. Dis. 2022, 16, e0010212. [Google Scholar] [CrossRef]
- Ehounoud, C.B.; Fenollar, F.; Dahmani, M.; N’Guessan, J.D.; Raoult, D.; Mediannikov, O. Bacterial arthropod-borne diseases in West Africa. Acta Trop. 2017, 171, 124–137. [Google Scholar] [CrossRef]
- Parola, P.; Diatta, G.; Socolovschi, C.; Mediannikov, O.; Tall, A.; Bassene, H.; Trape, J.F.; Raoult, D. Tick-borne relapsing fever borreliosis, rural senegal. Emerg. Infect. Dis. 2011, 17, 883–885. [Google Scholar] [CrossRef]
- Cutler, S.J.; Abdissa, A.; Trape, J.F. New concepts for the old challenge of African relapsing fever borreliosis. Clin. Microbiol. Infect. 2009, 15, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Trape, J.F.; Duplantier, J.M.; Bouganali, H.; Godeluck, B.; Legros, F.; Cornet, J.P.; Camicas, J.L. Tick-borne borreliosis in west Africa. Lancet 1991, 337, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Vial, L.; Diatta, G.; Tall, A.; Bouganali, H.; Bouganali, H.; Durand, P.; Sokhna, C.; Rogier, C.; Renaud, F.; Trape, J.F. Incidence of tick-borne relapsing fever in west Africa: Longitudinal study. Lancet 2006, 368, 37–43. [Google Scholar] [CrossRef]
- Trape, J.F.; Godeluck, B.; Diatta, G.; Rogier, C.; Legros, F.; Albergel, J.; Pepin, Y.; Duplantier, J.M. The spread of tick-borne borreliosis in West Africa and its relationship to sub-Saharan drought. Am. J. Trop. Med. Hyg. 1996, 54, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Brahim, H.; Perrier-Gros-Claude, J.D.; Postic, D.; Baranton, G.; Jambou, R. Identifying relapsing fever Borrelia, Senegal. Emerg. Infect. Dis. 2005, 11, 474–475. [Google Scholar] [CrossRef]
- Sokhna, C.; Mediannikov, O.; Fenollar, F.; Bassene, H.; Diatta, G.; Tall, A.; Trape, J.F.; Drancourt, M.; Raoult, D. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl. Trop. Dis. 2013, 7, e1999. [Google Scholar] [CrossRef]
- Patrat-Delon, S.; Drogoul, A.S.; Le, H.H.; Biziraguzenyuka, J.; Rabier, V.; Arvieux, C.; Michelet, C.; Chevrier, S.; Tattevin, P. Recurrent tick-borne fever: A possible diagnosis in patients returning from Senegal. Med. Mal. Infect. 2008, 38, 396–399. [Google Scholar] [CrossRef]
- El, H.I.; Diatta, G.; Diarra, A.Z.; Bassene, H.; Sokhna, C.; Parola, P. Quantitative polymerase chain ceaction from malaria rapid diagnostic tests to betect Borrelia crocidurae, the agent of tick-borne relapsing fever, in febrile patients in Senegal. Am. J. Trop. Med. Hyg. 2023, 108, 968–976. [Google Scholar]
- Nordstrand, A.; Bunikis, I.; Larsson, C.; Tsogbe, K.; Schwan, T.G.; Nilsson, M.; Bergström, S. Tick-borne relapsing fever diagnosis obscured by malaria, Togo. Emerg. Infect. Dis. 2007, 13, 117–123. [Google Scholar] [CrossRef]
- Toure, M.; Petersen, P.T.; Bathily, S.N.; Sanogo, D.; Wang, C.W.; Schioler, K.L.; Konradsen, F.; Doumbia, S.; Alifrangis, M. Molecular evidence of malaria and zoonotic diseases among rapid diagnostic test-negative febrile patients in low-transmission season, Mali. Am. J. Trop. Med. Hyg. 2017, 96, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Diatta, G.; Duplantier, J.M.; Granjon, L.; Ba, K.; Chauvancy, G.; Ndiaye, M.; Trape, J.F. Borrelia infection in small mammals in West Africa and its relationship with tick occurrence inside burrows. Acta Trop. 2015, 152, 131–140. [Google Scholar] [CrossRef]
- Godeluck, B.; Duplantier, J.M.; Ba, K.; Trape, J.F. A longitudinal survey of Borrelia crocidurae prevalence in rodents and insectivores in Senegal. Am. J. Trop. Med. Hyg. 1994, 50, 165–168. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Koney, E.B.; Dogbey, O.; Walker, A.R. Incidence and prevalence of tick-borne haemoparasites in domestic ruminants in Ghana. Vet. Parasitol. 2004, 124, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Bankole, A.A.; Kumsa, B.; Mamo, G.; Ogo, N.I.; Elelu, N.; Morgan, W.; Cutler, S.J. Comparative analysis of tick-borne relapsing fever spirochaetes from Ethiopia and Nigeria. Pathogens 2023, 12, 81. [Google Scholar] [CrossRef]
- Cutler, S.J.; Idris, J.M.; Ahmed, A.O.; Elelu, N. Ornithodoros savignyi, the tick vector of “Candidatus Borrelia kalaharica” in Nigeria. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef]
- Dumic, I.; Jevtic, D.; Veselinovic, M.; Nordstrom, C.W.; Jovanovic, M.; Mogulla, V.; Veselinovic, E.M.; Hudson, A.; Simeunovic, G.; Petcu, E.; et al. Human granulocytic anaplasmosis-a systematic review of published cases. Microorganisms 2022, 10, 1433. [Google Scholar] [CrossRef]
- Salinas-Estrella, E.; Amaro-Estrada, I.; Cobaxin-Cardenas, M.E.; Preciado de la Torre, J.F.; Rodriguez, S.D. Bovine anaplasmosis: Will there ever be an almighty effective vaccine? Front. Vet. Sci. 2022, 9, 946545. [Google Scholar] [CrossRef]
- Woldehiwet, Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 108–122. [Google Scholar] [CrossRef]
- Carrade, D.D.; Foley, J.E.; Borjesson, D.L.; Sykes, J.E. Canine granulocytic anaplasmosis: A review. J. Vet. Intern. Med. 2009, 23, 1129–1141. [Google Scholar] [CrossRef]
- Sanchez, E.; Vannier, E.; Wormser, G.P.; Hu, L.T. Diagnosis, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: A Review. JAMA 2016, 315, 1767–1777. [Google Scholar] [CrossRef]
- Aquino, L.C.; Kamani, J.; Haruna, A.M.; Paludo, G.R.; Hicks, C.A.; Helps, C.R.; Tasker, S. Analysis of risk factors and prevalence of haemoplasma infection in dogs. Vet. Parasitol. 2016, 221, 111–117. [Google Scholar] [CrossRef]
- Djiba, M.L.; Mediannikov, O.; Mbengue, M.; Thiongane, Y.; Molez, J.F.; Seck, M.T.; Fenollar, F.; Raoult, D.; Ndiaye, M. Survey of Anaplasmataceae bacteria in sheep from Senegal. Trop. Anim. Health Prod. 2013, 45, 1557–1561. [Google Scholar] [CrossRef]
- Battilani, M.; De, A.S.; Balboni, A.; Dondi, F. Genetic diversity and molecular epidemiology of Anaplasma. Infect. Genet. Evol. 2017, 49, 195–211. [Google Scholar] [CrossRef]
- Gueye, A.; Camicas, J.L.; Diouf, A.; Mbengue, M. Ticks and hemoparasitoses of livestock in Senegal. II. The Sahelian area. Rev. Elev. Med. Vet. Pays Trop. 1987, 40, 119–125. [Google Scholar]
- Gueye, A.; Mbengue, M.; Diouf, A. Ticks and hemoparasitic diseases in cattle in Senegal. IV. The southern Sudan area. Rev. Elev. Med. Vet. Pays Trop. 1990, 42, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Gueye, A.; Mbengue, M.; Diouf, A.; Sonko, M.L. Ticks and hemoparasitoses in livestock in Senegal. V. The northern Guinea area. Rev. Elev. Med. Vet. Pays Trop. 1993, 46, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.C.; Bah, M.; Kora, S.; Cassama, M.; Clifford, D.J. Susceptibility to different tick genera in Gambian N’Dama and Gobra zebu cattle exposed to naturally occurring tick infestations. Trop. Anim. Health Prod. 1995, 27, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Elelu, N.; Ferrolho, J.; Couto, J.; Domingos, A.; Eisler, M.C. Molecular diagnosis of the tick-borne pathogen Anaplasma marginale in cattle blood samples from Nigeria using qPCR. Exp. Appl. Acarol. 2016, 70, 501–510. [Google Scholar] [CrossRef]
- Heylen, D.J.A.; Kumsa, B.; Kimbita, E.; Frank, M.N.; Muhanguzi, D.; Jongejan, F.; Adehan, S.B.; Toure, A.; Aboagye-Antwi, F.; Ogo, N.I.; et al. Tick-borne pathogens and body condition of cattle in smallholder rural livestock production systems in East and West Africa. Parasit. Vectors 2023, 16, 117. [Google Scholar] [CrossRef]
- Kamani, J.; Schaer, J.; Umar, A.G.; Pilarshimwi, J.Y.; Bukar, L.; Gonzalez-Miguel, J.; Harrus, S. Molecular detection and genetic characterization of Anaplasma marginale and Anaplasma platys in cattle in Nigeria. Ticks Tick Borne Dis. 2022, 13, 101955. [Google Scholar] [CrossRef]
- Kamani, J.; Irene, S.; Qasim, A.M.M.M.; Olubade, T.A.; Abasiama, M.S.; Gajibo, A.; Balami, P.U.; Shands, M.; Harrus, S. Nucleotide sequence types (ntSTs) of Anaplasma marginale in cattle in Nigeria based on the major surface protein 5 (msp5) gene. Acta Trop. 2022, 233, 106544. [Google Scholar] [CrossRef] [PubMed]
- Toure, A.; Sanogo, M.; Sghiri, A.; Sahibi, H. Incidences of Rhipicephalus (Boophilus) microplus (Canestrini, 1888) transmitted pathogens in cattle in West Africa. Acta Parasitol. 2022, 67, 1282–1289. [Google Scholar] [CrossRef]
- Dahmani, M.; Marié, J.L.; Scandola, P.; Brah, S.; Davoust, B.; Mediannikov, O. Anaplasma ovis infects sheep in Niger. Small Rumin. Res. 2017, 151, 32–35. [Google Scholar] [CrossRef]
- Gruenberger, I.; Liebich, A.V.; Ajibade, T.O.; Obebe, O.O.; Ogbonna, N.F.; Wortha, L.N.; Unterköfler, M.S.; Fuehrer, H.P.; Ayinmode, A.B. Vector-borne pathogens in duard Dogs in Ibadan, Nigeria. Pathogens 2023, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Heylen, D.; Day, M.; Schunack, B.; Fourie, J.; Labuschange, M.; Johnson, S.; Githigia, S.M.; Akande, F.A.; Nzalawahe, J.S.; Tayebwa, D.S.; et al. A community approach of pathogens and their arthropod vectors (ticks and fleas) in dogs of African Sub-Sahara. Parasit. Vectors 2021, 14, 576. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, V.; Wijnveld, M.; Latrofa, M.S.; Fajinmi, A.; Majekodunmi, A.O.; Dogo, A.G.; Igweh, A.C.; Otranto, D.; Jongejan, F.; Welburn, S.C.; et al. Canine and ovine tick-borne pathogens in camels, Nigeria. Vet. Parasitol. 2016, 228, 90–92. [Google Scholar] [CrossRef]
- Gotsch, S.; Leschnik, M.; Duscher, G.; Burgstaller, J.P.; Wille-Piazzai, W.; Joachim, A. Ticks and haemoparasites of dogs from Praia, Cape Verde. Vet. Parasitol. 2009, 166, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Lauzi, S.; Maia, J.P.; Epis, S.; Marcos, R.; Pereira, C.; Luzzago, C.; Santos, M.; Puente-Payo, P.; Giordano, A.; Pajoro, M.; et al. Molecular detection of Anaplasma platys, Ehrlichia canis, Hepatozoon canis and Rickettsia monacensis in dogs from Maio Island of Cape Verde archipelago. Ticks Tick Borne Dis. 2016, 7, 964–969. [Google Scholar] [CrossRef]
- Zobba, R.; Murgia, C.; Dahmani, M.; Mediannikov, O.; Davoust, B.; Piredda, R.; Schianchi, E.; Scagliarini, A.; Pittau, M.; Alberti, A. Emergence of Anaplasma species related to A. phagocytophilum and A. platys in Senegal. Int. J. Mol. Sci. 2022, 24, 35. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.F.; Biondo, A.W.; Guimaraes, A.M.; dos Santos, A.P.; Dos Santos, R.P.; Dutra, L.H.; Diniz, P.P.; de Morais, H.A.; Messick, J.B.; Labruna, M.B.; et al. Ehrlichiosis in Brazil. Rev. Bras. Parasitol. Vet. 2011, 20, 1–12. [Google Scholar] [CrossRef]
- Wakeel, A.; Zhu, B.; Yu, X.J.; McBride, J.W. New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect. 2010, 12, 337–345. [Google Scholar] [CrossRef]
- Rikihisa, Y. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 155–166. [Google Scholar] [CrossRef]
- Uhaa, I.J.; MacLean, J.D.; Greene, C.R.; Fishbein, D.B. A case of human ehrlichiosis acquired in Mali: Clinical and laboratory findings. Am. J. Trop. Med. Hyg. 1992, 46, 161–164. [Google Scholar] [CrossRef]
- Brouqui, P.; Le, C.C.; Kelly, P.J.; Laurens, R.; Tounkara, A.; Sawadogo, S.; lo-Marcel, V.; Gondao, L.; Faugere, B.; Delmont, J. Serologic evidence for human ehrlichiosis in Africa. Eur. J. Epidemiol. 1994, 10, 695–698. [Google Scholar] [CrossRef]
- Thomas, R.J.; Dumler, J.S.; Carlyon, J.A. Current management of human granulocytic anaplasmosis, human monocytic ehrlichiosis and Ehrlichia ewingii ehrlichiosis. Expert Rev. Anti Infect. Ther. 2009, 7, 709–722. [Google Scholar] [CrossRef]
- Allsopp, B.A. Heartwater—Ehrlichia ruminantium infection. Rev. Sci. Tech. 2015, 34, 557–568. [Google Scholar] [CrossRef]
- Faburay, B.; Munstermann, S.; Geysen, D.; Bell-Sakyi, L.; Ceesay, A.; Bodaan, C.; Jongejan, F. Point seroprevalence survey of Ehrlichia ruminantium infection in small ruminants in Gambia. Clin. Diagn. Lab. Immunol. 2005, 12, 508–512. [Google Scholar] [CrossRef]
- Knopf, L.; Komoin-Oka, C.; Betschart, B.; Jongejan, F.; Gottstein, B.; Zinsstag, J. Seasonal epidemiology of ticks and aspects of cowdriosis in N’Dama village cattle in the Central Guinea savannah of Cote d’Ivoire. Prev. Vet. Med. 2002, 53, 21–30. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Koney, E.B.; Dogbey, O.; Sumption, K.J.; Walker, A.R.; Bath, A.; Jongejan, F. Detection by two enzyme-linked immunosorbent assays of antibodies to Ehrlichia ruminantium in field sera collected from sheep and cattle in Ghana. Clin. Diagn. Lab. Immunol. 2003, 10, 917–925. [Google Scholar] [CrossRef]
- Bell-Sakyi, L.; Koney, E.B.; Dogbey, O.; Walker, A.R. Ehrlichia ruminantium seroprevalence in domestic ruminants in Ghana: I. Longitudinal survey in the Greater Accra Region. Vet. Microbiol. 2004, 100, 175–188. [Google Scholar] [CrossRef]
- Faburay, B.; Geysen, D.; Munstermann, S.; Bell-Sakyi, L.; Jongejan, F. Longitudinal monitoring of Ehrlichia ruminantium infection in Gambian lambs and kids by pCS20 PCR and MAP1-B ELISA. BMC Infect. Dis. 2007, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Adakal, H.; Gavotte, L.; Stachurski, F.; Konkobo, M.; Henri, H.; Zoungrana, S.; Huber, K.; Vachiery, N.; Martinez, D.; Morand, S.; et al. Clonal origin of emerging populations of Ehrlichia ruminantium in Burkina Faso. Infect. Genet. Evol. 2010, 10, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Davoust, B.; Bourry, O.; Gomez, J.; Lafay, L.; Casali, F.; Leroy, E.; Parzy, D. Surveys on seroprevalence of canine monocytic ehrlichiosis among dogs living in the Ivory Coast and Gabon and evaluation of a quick commercial test kit dot-ELISA. Ann. N. Y. Acad. Sci. 2006, 1078, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Davoust, B.; Parzy, D.; Demoncheaux, J.P.; Tine, R.; Diarra, M.; Marie, J.L.; Mediannikov, O. Usefulness of a rapid immuno-migration test for the detection of canine monocytic ehrlichiosis in Africa. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 31–37. [Google Scholar] [CrossRef]
- Daramola, O.O.; Takeet, M.I.; Oyewusi, I.K.; Oyekunle, M.A.; Talabi, A.O. Detection and molecular characterisation of Ehrlichia canis in naturally infected dogs in South West Nigeria. Acta Vet. Hung. 2018, 66, 85–95. [Google Scholar] [CrossRef]
- Happi, A.N.; Toepp, A.J.; Ugwu, C.A.; Petersen, C.A.; Sykes, J.E. Detection and identification of blood-borne infections in dogs in Nigeria using light microscopy and the polymerase chain reaction. Vet. Parasitol. Reg. Stud. Rep. 2018, 11, 55–60. [Google Scholar] [CrossRef]
- Kamani, J.; Baneth, G.; Mumcuoglu, K.Y.; Waziri, N.E.; Eyal, O.; Guthmann, Y.; Harrus, S. Molecular detection and characterization of tick-borne pathogens in dogs and ticks from Nigeria. PLoS Negl. Trop. Dis. 2013, 7, e2108. [Google Scholar] [CrossRef]
- Kamani, J.; Lee, C.C.; Haruna, A.M.; Chung, P.J.; Weka, P.R.; Chung, Y.T. First detection and molecular characterization of Ehrlichia canis from dogs in Nigeria. Res. Vet. Sci. 2013, 94, 27–32. [Google Scholar] [CrossRef]
- Davoust, B.; Mediannikov, O.; Chene, J.; Massot, R.; Tine, R.; Diarra, M.; Demoncheaux, J.P.; Scandola, P.; Beugnet, F.; Chabanne, L. Study of ehrlichiosis in kennel dogs under treatment and prevention during seven months in Dakar (Senegal). Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 613–617. [Google Scholar] [CrossRef]
- Medkour, H.; Laidoudi, Y.; Athias, E.; Bouam, A.; Dizoe, S.; Davoust, B.; Mediannikov, O. Molecular and serological detection of animal and human vector-borne pathogens in the blood of dogs from Cote d’Ivoire. Comp. Immunol. Microbiol. Infect. Dis. 2020, 69, 101412. [Google Scholar] [CrossRef] [PubMed]
- Cheslock, M.A.; Embers, M.E. Human bartonellosis: An underappreciated public health problem? Trop. Med. Infect. Dis. 2019, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Shamekhi, A.F. Bartonellosis in chronic kidney disease: An unrecognized and unsuspected diagnosis. Ther. Apher. Dial. 2017, 21, 430–440. [Google Scholar] [CrossRef]
- Mannerings, A.O.; Osikowicz, L.M.; Restif, O.; Nyarko, E.; Suu-Ire, R.; Cunningham, A.A.; Wood, J.L.; Kosoy, M.Y. Exposure to bat-associated Bartonella spp. among humans and other animals, Ghana. Emerg. Infect. Dis. 2016, 22, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Madder, M.; Day, M.; Schunack, B.; Fourie, J.; Labuschange, M.; van der Westhuizen, W.; Johnson, S.; Githigia, S.M.; Akande, F.A.; Nzalawahe, J.S.; et al. A community approach for pathogens and their arthropod vectors (ticks and fleas) in cats of sub-Saharan Africa. Parasit. Vectors 2022, 15, 321. [Google Scholar] [CrossRef]
- Angelakis, E.; Billeter, S.A.; Breitschwerdt, E.B.; Chomel, B.B.; Raoult, D. Potential for tick-borne bartonelloses. Emerg. Infect. Dis. 2010, 16, 385–391. [Google Scholar] [CrossRef]
- Diatta, G.; Mediannikov, O.; Sokhna, C.; Bassene, H.; Socolovschi, C.; Ratmanov, P.; Fenollar, F.; Raoult, D. Prevalence of Bartonella quintana in patients with fever and head lice from rural areas of Sine-Saloum, Senegal. Am. J. Trop. Med. Hyg. 2014, 91, 291–293. [Google Scholar] [CrossRef]
- Bai, Y.; Malania, L.; Alvarez, C.D.; Moran, D.; Boonmar, S.; Chanlun, A.; Suksawat, F.; Maruyama, S.; Knobel, D.; Kosoy, M. Global distribution of Bartonella infections in domestic bovine and characterization of Bartonella bovis strains using multi-locus sequence typing. PLoS ONE 2013, 8, e80894. [Google Scholar] [CrossRef]
- Dahmani, M.; Sambou, M.; Scandola, P.; Raoult, D.; Fenollar, F.; Mediannikov, O. Bartonella bovis and Candidatus Bartonella davousti in cattle from Senegal. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 63–69. [Google Scholar] [CrossRef]
- Raoult, D.; La, S.B.; Kelly, P.J.; Davoust, B.; Gomez, J. Bartonella bovis in cattle in Africa. Vet. Microbiol. 2005, 105, 155–156. [Google Scholar]
- Martin-Alonso, A.; Houemenou, G.; Abreu-Yanes, E.; Valladares, B.; Feliu, C.; Foronda, P. Bartonella spp. in small mammals, Benin. Vector Borne Zoonotic Dis. 2016, 16, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Morick, D.; Mumcuoglu, K.Y.; Harrus, S. Prevalence and diversity of Bartonella species in commensal rodents and ectoparasites from Nigeria, West Africa. PLoS Negl. Trop. Dis. 2013, 7, e2246. [Google Scholar] [CrossRef] [PubMed]
- Diarra, A.Z.; Kone, A.K.; Doumbo, N.S.; Laroche, M.; Diatta, G.; Atteynine, S.A.; Coulibaly, M.; Sangare, A.K.; Kouriba, B.; Djimde, A.; et al. Molecular detection of microorganisms associated with small mammals and their ectoparasites in Mali. Am. J. Trop. Med. Hyg. 2020, 103, 2542–2551. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Baneth, G.; Mitchell, M.; Mumcuoglu, K.Y.; Gutierrez, R.; Harrus, S. Bartonella species in bats (Chiroptera) and bat flies (Nycteribiidae) from Nigeria, West Africa. Vector Borne Zoonotic Dis. 2014, 14, 625–632. [Google Scholar] [CrossRef]
- Eldin, C.; Melenotte, C.; Mediannikov, O.; Ghigo, E.; Million, M.; Edouard, S.; Mege, J.L.; Maurin, M.; Raoult, D. From Q Fever to Coxiella burnetii infection: A paradigm change. Clin. Microbiol. Rev. 2017, 30, 115–190. [Google Scholar] [CrossRef]
- Lyagoubi, M.; Fassin, D.; Rogeaux, O.; Gentilini, M. Q fever in Guinea-Bissau. 1 case. Bull. Soc. Pathol. Exot. Filiales 1989, 82, 575–577. [Google Scholar]
- Blondeau, J.; Yates, L.; Martin, R.; Marrie, T.; Ukoli, P.; Thomas, A. Q fever in Sokoto, Nigeria. Ann. N. Y. Acad. Sci. 1990, 590, 281–282. [Google Scholar] [CrossRef]
- Julvez, J.; Michault, A.; Kerdelhue, C. Serological study of rickettsia infections in Niamey, Niger. Med. Trop. 1997, 57, 153–156. [Google Scholar]
- Kobbe, R.; Kramme, S.; Kreuels, B.; Adjei, S.; Kreuzberg, C.; Panning, M.; Adjei, O.; Fleischer, B.; May, J. Q fever in young children, Ghana. Emerg. Infect. Dis. 2008, 14, 344–346. [Google Scholar] [CrossRef]
- Gidel, R.; Athawet, B. Serological survey of human brucellosis and rickettsial diseases in a group of a nomad population in the sahelian regions of Upper Volta. Ann. Soc. Belg. Med. Trop. 1975, 55, 77–83. [Google Scholar]
- Dean, A.S.; Bonfoh, B.; Kulo, A.E.; Boukaya, G.A.; Amidou, M.; Hattendorf, J.; Pilo, P.; Schelling, E. Epidemiology of brucellosis and q fever in linked human and animal populations in northern togo. PLoS ONE 2013, 8, e71501. [Google Scholar] [CrossRef] [PubMed]
- Bok, J.; Hogerwerf, L.; Germeraad, E.A.; Roest, H.I.; Faye-Joof, T.; Jeng, M.; Nwakanma, D.; Secka, A.; Stegeman, A.; Goossens, B.; et al. Coxiella burnetii (Q fever) prevalence in associated populations of humans and small ruminants in Gambia. Trop. Med. Int. Health 2017, 22, 323–331. [Google Scholar] [CrossRef] [PubMed]
- van der Hoek, W.; Sarge-Njie, R.; Herremans, T.; Chisnall, T.; Okebe, J.; Oriero, E.; Versteeg, B.; Goossens, B.; van der Sande, M.; Kampmann, B.; et al. Short communication: Prevalence of antibodies against Coxiella burnetii (Q fever) in children in Gambia, West Africa. Trop. Med. Int. Health 2013, 18, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Adamu, S.G.; Kabir, J.; Umoh, J.U.; Raji, M.A. Seroprevalence of Coxiella burnetii in sheep flocks in Kaduna State, Northwestern Nigeria. Acta Vet. Hung. 2021, 69, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Adesiyun, A.A.; Jagun, A.G.; Kwaga, J.K.; Tekdek, L.B. Shedding of Coxiella burnetii in milk by Nigerian dairy and dual purposes cows. Int. J. Zoonoses 1985, 12, 1–5. [Google Scholar] [PubMed]
- Boni, M.; Davoust, B.; Tissot-Dupont, H.; Raoult, D. Survey of seroprevalence of Q fever in dogs in the southeast of France, French Guyana, Martinique, Senegal and the Ivory Coast. Vet. Microbiol. 1998, 64, 1–5. [Google Scholar] [CrossRef]
- Dione, M.M.; Sery, A.; Sidibe, C.A.K.; Wieland, B.; Fall, A. Exposure to multiple pathogens—Serological evidence for Rift Valley fever virus, Coxiella burnetii, Bluetongue virus and Brucella spp. in cattle, sheep and goat in Mali. PLoS Negl. Trop. Dis. 2022, 16, e0010342. [Google Scholar] [CrossRef]
- Folitse, R.D.; Opoku-Agyemang, T.; Amemor, E.; Opoku, E.D.; Bentum, K.E.; Emikpe, B.O. Serological evidence of Coxiella burnetii infection in slaughtered sheep and goats at Kumasi Abattoir, Ghana. J. Immunoassay Immunochem. 2020, 41, 152–157. [Google Scholar] [CrossRef]
- Kanoute, Y.B.; Gragnon, B.G.; Schindler, C.; Bonfoh, B.; Schelling, E. Reprint of “epidemiology of brucellosis, Q Fever and Rift Valley fever at the human and livestock interface in northern Cote d’Ivoire”. Acta Trop. 2017, 175, 121–129. [Google Scholar] [CrossRef]
- Klaasen, M.; Roest, H.J.; van der Hoek, W.; Goossens, B.; Secka, A.; Stegeman, A. Coxiella burnetii seroprevalence in small ruminants in Gambia. PLoS ONE 2014, 9, e85424. [Google Scholar] [CrossRef]
- Foronda, P.; Plata-Luis, J.; del Castillo-Figueruelo, B.; Fernandez-Alvarez, A.; Martin-Alonso, A.; Feliu, C.; Cabral, M.D.; Valladares, B. Serological survey of antibodies to Toxoplasma gondii and Coxiella burnetii in rodents in north-western African islands (Canary Islands and Cape Verde). Onderstepoort J. Vet. Res. 2015, 82, e1–e4. [Google Scholar] [CrossRef]
- Breurec, S.; Poueme, R.; Fall, C.; Tall, A.; Diawara, A.; Bada-Alambedji, R.; Broutin, C.; Leclercq, A.; Garin, B. Microbiological quality of milk from small processing units in Senegal. Foodborne Pathog. Dis. 2010, 7, 601–604. [Google Scholar] [CrossRef]
- Mangombi-Pambou, J.; Granjon, L.; Labarrere, C.; Kane, M.; Niang, Y.; Fournier, P.E.; Delerce, J.; Fenollar, F.; Mediannikov, O. New genotype of Coxiella burnetii causing epizootic Q fever outbreak in rodents, northern Senegal. Emerg. Infect. Dis. 2023, 29, 1078–1081. [Google Scholar] [CrossRef]
- Amanzougaghene, N.; Fenollar, F.; Sangare, A.K.; Sissoko, M.S.; Doumbo, O.K.; Raoult, D.; Mediannikov, O. Detection of bacterial pathogens including potential new species in human head lice from Mali. PLoS ONE 2017, 12, e0184621. [Google Scholar] [CrossRef]
- Soosaraei, M.; Haghi, M.M.; Etemadifar, F.; Fakhar, M.; Teshnizi, S.H.; Hezarjaribi, H.Z.; Asfaram, S. Status of theileriosis among herbivores in Iran: A systematic review and meta-analysis. Vet. World 2018, 11, 332–341. [Google Scholar] [CrossRef]
- Morrison, W.I. The aetiology, pathogenesis and control of theileriosis in domestic animals. Rev. Sci. Tech. 2015, 34, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Clift, S.J.; Collins, N.E.; Oosthuizen, M.C.; Steyl, J.C.A.; Lawrence, J.A.; Mitchell, E.P. The pathology of pathogenic theileriosis in african wild artiodactyls. Vet. Pathol. 2020, 57, 24–48. [Google Scholar] [CrossRef]
- Kamani, J.; Bartova, E.; Kasparkova, N.; Mohammed, S.J.; Budikova, M.; Sedlak, K. Seroprevalence of Theileria equi, Babesia caballi, and Trichinella spp. infections in horses and donkeys from Nigeria, West Africa. Trop. Anim. Health Prod. 2021, 53, 338. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; Sivakumar, T.; Tuvshintulga, B.; Nugraha, A.B.; Ahedor, B.; Mofokeng, L.; Luka, J.; Mohammed, A.; Mbaya, A.W.; Biu, A.A.; et al. Serosurvey for equine piroplasms in horses and donkeys from north-western Nigeria using IFAT and ELISA. J. Immunoassay Immunochem. 2021, 42, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Ehizibolo, D.O.; Kamani, J.; Ehizibolo, P.O.; Egwu, K.O.; Dogo, G.I.; Salami-Shinaba, J.O. Prevalence and significance of parasites of horses in some states of northern Nigeria. J. Equine Sci. 2012, 23, 1–4. [Google Scholar] [CrossRef]
- Mshelia, P.W.; Kappmeyer, L.; Johnson, W.C.; Kudi, C.A.; Oluyinka, O.O.; Balogun, E.O.; Richard, E.E.; Onoja, E.; Sears, K.P.; Ueti, M.W. Molecular detection of Theileria species and Babesia caballi from horses in Nigeria. Parasitol. Res. 2020, 119, 2955–2963. [Google Scholar] [CrossRef]
- Sunday Idoko, I.; Tirosh-Levy, S.; Leszkowicz, M.M.; Mohammed, A.B.; Sikiti, G.B.; Wesley, N.D.; Steinman, A. Genetic characterization of piroplasms in donkeys and horses from Nigeria. Animals 2020, 10, 324. [Google Scholar] [CrossRef]
- Kim, C.M.; Blanco, L.B.; Alhassan, A.; Iseki, H.; Yokoyama, N.; Xuan, X.; Igarashi, I. Diagnostic real-time PCR assay for the quantitative detection of Theileria equi from equine blood samples. Vet. Parasitol. 2008, 151, 158–163. [Google Scholar] [CrossRef]
- Dahmana, H.; Amanzougaghene, N.; Davoust, B.; Normand, T.; Carette, O.; Demoncheaux, J.P.; Mulot, B.; Fabrizy, B.; Scandola, P.; Chik, M.; et al. Great diversity of Piroplasmida in Equidae in Africa and Europe, including potential new species. Vet. Parasitol. Reg. Stud. Rep. 2019, 18, 100332. [Google Scholar] [CrossRef]
- Beugnet, F.; Moreau, Y. Babesiosis. Rev. Sci. Tech. 2015, 34, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Ord, R.L.; Lobo, C.A. Human babesiosis: Pathogens, prevalence, diagnosis and treatment. Curr. Clin. Microbiol. Rep. 2015, 2, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Simon, M.S.; Mathison, B.A.; Kirkman, L.A. Babesia microti: From mice to ticks to an increasing number of highly susceptible humans. J. Clin. Microbiol. 2017, 55, 2903–2912. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Shock, B.C. Natural history of zoonotic Babesia: Role of wildlife reservoirs. Int. J. Parasitol. Parasites Wildl. 2013, 2, 18–31. [Google Scholar] [CrossRef]
- Dumic, I.; Patel, J.; Hart, M.; Niendorf, E.R.; Martin, S.; Ramanan, P. Splenic rupture as the first manifestation of Babesia Microti infection: Report of a case and review of literature. Am. J. Case Rep. 2018, 19, 335–341. [Google Scholar] [CrossRef]
- Dumic, I.; Madrid, C.; Rueda, P.L.; Nordstrom, C.W.; Taweesedt, P.T.; Ramanan, P. Splenic complications of Babesia microti infection in humans: A systematic review. Can. J. Infect. Dis. Med. Microbiol. 2020, 2020, 6934149. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.M.; Johnson, J.E.; Reece, R.; Mermel, L.A. Babesiosis-associated splenic rupture: Case series from a hyperendemic region. Clin. Infect. Dis. 2019, 69, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Vermeil, C.; Menut, J.; Miegeville, M.; Cruziat, J.; Julienne, F.; Morin, O.; Roger, A.P.; Marjolet, M.; Bouillard, C. Babesiasis, pediatric malaria: Does confusion exist in Africa? Bull. Soc. Pathol. Exot. Filiales 1983, 76, 797–804. [Google Scholar]
- Akinboade, O.A.; Dipeolu, O.O.; Ogunji, F.O.; Adegoke, G.O. The parasites obtained and bacteria isolated from house rats (Rattus rattus Linnaeus, 1758) caught in human habitations in Ibadan, Nigeria. Int. J. Zoonoses 1981, 8, 26–32. [Google Scholar]
- Bock, R.; Jackson, L.; de Vos, A.; Jorgensen, W. Babesiosis of cattle. Parasitology 2004, 129, S247–S269. [Google Scholar] [CrossRef] [PubMed]
- Kuttler, K.L.; Clifford, D.J.; Touray, B.N. Prevalence of anaplasmosis and babesiosis in N’Dama cattle of the Gambia. Trop. Anim. Health Prod. 1988, 20, 37–41. [Google Scholar] [CrossRef]
- Miller, D.K.; Diall, O.; Craig, T.M.; Wagner, G.G. Serological prevalence of bovine babesiosis in Mali. Trop. Anim. Health Prod. 1984, 16, 71–77. [Google Scholar] [CrossRef]
- Ajayi, S.A.; Dipeolu, O.O. Prevalence of Anaplasma marginale, Babesia bigemina and B. bovis in Nigerian cattle using serological methods. Vet. Parasitol. 1986, 22, 147–149. [Google Scholar] [CrossRef]
- Akinboade, O.A.; Dipeolu, O.O. Comparison of blood smear and indirect fluorescent antibody techniques in detection of haemoparasite infections in trade cattle in Nigeria. Vet. Parasitol. 1984, 14, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Toure, A.; Sanogo, M.; Sghiri, A.; Sahibi, H. Diagnostic accuracy of an indirect enzyme linked immunosorbent assay (iELISA) for screening of Babesia bovis in cattle from West Africa. Life 2023, 13, 203. [Google Scholar] [CrossRef]
- Nagano, D.; Sivakumar, T.; De De Macedo, A.C.; Inpankaew, T.; Alhassan, A.; Igarashi, I.; Yokoyama, N. The genetic diversity of merozoite surface antigen 1 (MSA-1) among Babesia bovis detected from cattle populations in Thailand, Brazil and Ghana. J. Vet. Med. Sci. 2013, 75, 1463–1470. [Google Scholar] [CrossRef]
- Kirchner, M.; Brunner, A.; Edelhofer, R.; Joachim, A. Vector-borne parasites of dogs on the Islands of Cabo Verde. Wien Klin. Wochenschr. 2008, 120, 49–53. [Google Scholar] [CrossRef]
- Hirata, H.; Omobowale, T.; Adebayo, O.; Asanuma, N.; Haraguchi, A.; Murakami, Y.; Kusakisako, K.; Ikeda, K.; Asakawa, M.; Suzuki, K.; et al. Identification and phylogenetic analysis of Babesia parasites in domestic dogs in Nigeria. J. Vet. Med. Sci. 2022, 84, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Sannusi, A.; Dogo, A.G.; Tanko, J.T.; Egwu, K.O.; Tafarki, A.E.; Ogo, I.N.; Kemza, S.; Onovoh, E.; Shamaki, D.; et al. Babesia canis and Babesia rossi co-infection in an untraveled Nigerian dog. Vet. Parasitol. 2010, 173, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Omobowale, O.; Tozuka, M.; Ohta, K.; Matsuu, A.; Nottidge, H.O.; Hirata, H.; Ikadai, H.; Oyamada, T. Molecular survey of Babesia canis in dogs in Nigeria. J. Vet. Med. Sci. 2007, 69, 1191–1193. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.N.; Pelzel-McCluskey, A.M.; Mealey, R.H.; Knowles, D.P. Equine piroplasmosis. Vet. Clin. N. Am. Equine Pract. 2014, 30, 677–693. [Google Scholar] [CrossRef]
- Dipeolu, O.O.; Majaro, O.M.; Akinboade, O.A.; Nwufor, K.J. Studies on the blood parasites of pigs in Ibadan, Nigeria. Vet. Parasitol. 1982, 10, 87–90. [Google Scholar] [CrossRef]
- Permin, A.; Yelifari, L.; Bloch, P.; Steenhard, N.; Hansen, N.P.; Nansen, P. Parasites in cross-bred pigs in the Upper East region of Ghana. Vet. Parasitol. 1999, 87, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Kim, Y.H.; Oh, H.H.; Choi, U.S. First case of canine infection with Hepatozoon canis (Apicomplexa: Haemogregarinidae) in the Republic of Korea. Korean J. Parasitol. 2017, 55, 561–564. [Google Scholar] [CrossRef]
- O’Dwyer, L.H. Brazilian canine hepatozoonosis. Rev. Bras. Parasitol. Vet. 2011, 20, 181–193. [Google Scholar] [CrossRef]
- Sasaki, M.; Omobowale, O.; Ohta, K.; Tozuka, M.; Matsuu, A.; Hirata, H.; Nottidge, H.O.; Ikadai, H.; Oyamada, T. A PCR-based epidemiological survey of Hepatozoon canis in dogs in Nigeria. J. Vet. Med. Sci. 2008, 70, 743–745. [Google Scholar] [CrossRef]
- Charrel, R.N.; Attoui, H.; Butenko, A.M.; Clegg, J.C.; Deubel, V.; Frolova, T.V.; Gould, E.A.; Gritsun, T.S.; Heinz, F.X.; Labuda, M.; et al. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 2004, 10, 1040–1055. [Google Scholar] [CrossRef] [PubMed]
- Fillatre, P.; Revest, M.; Tattevin, P. Crimean-Congo hemorrhagic fever: An update. Med. Mal. Infect. 2019, 49, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Saluzzo, J.F.; Aubry, P.; McCormick, J.; Digoutte, J.P. Haemorrhagic fever caused by Crimean Congo haemorrhagic fever virus in Mauritania. Trans. R Soc. Trop. Med. Hyg. 1985, 79, 268. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, J.P.; LeGuenno, B.; Guillaud, M.; Wilson, M.L. A fatal case of Crimean-Congo haemorrhagic fever in Mauritania: Virological and serological evidence suggesting epidemic transmission. Trans. R Soc. Trop. Med. Hyg. 1990, 84, 573–576. [Google Scholar] [CrossRef]
- Nabeth, P.; Cheikh, D.O.; Lo, B.; Faye, O.; Vall, I.O.; Niang, M.; Wague, B.; Diop, D.; Diallo, M.; Diallo, B.; et al. Crimean-Congo hemorrhagic fever, Mauritania. Emerg. Infect. Dis. 2004, 10, 2143–2149. [Google Scholar] [CrossRef]
- Boushab, B.M.; Kelly, M.; Kebe, H.; Bollahi, M.A.; Basco, L.K. Crimean-Congo Hemorrhagic Fever, Mauritania. Emerg. Infect. Dis. 2020, 26, 817–818. [Google Scholar] [CrossRef]
- Bukbuk, D.N.; Dowall, S.D.; Lewandowski, K.; Bosworth, A.; Baba, S.S.; Varghese, A.; Watson, R.J.; Bell, A.; Atkinson, B.; Hewson, R. Serological and virological evidence of Crimean-Congo haemorrhagic fever virus circulation in the human population of Borno State, Northeastern Nigeria. PLoS Negl. Trop. Dis. 2016, 10, e0005126. [Google Scholar] [CrossRef]
- David-West, T.S.; Cooke, A.R.; David-West, A.S. Seroepidemiology of Congo virus (related to the virus of Crimean haemorrhagic fever) in Nigeria. Bull. World Health Organ. 1974, 51, 543–546. [Google Scholar]
- Nabeth, P.; Thior, M.; Faye, O.; Simon, F. Human Crimean-Congo hemorrhagic fever, Senegal. Emerg. Infect. Dis. 2004, 10, 1881–1882. [Google Scholar] [CrossRef]
- Safronetz, D.; Sacko, M.; Sogoba, N.; Rosenke, K.; Martellaro, C.; Traore, S.; Cissé, I.; Maiga, O.; Boisen, M.; Nelson, D.; et al. Vectorborne infections, Mali. Emerg. Infect. Dis. 2016, 22, 340–342. [Google Scholar] [CrossRef]
- Tarantola, A.; Nabeth, P.; Tattevin, P.; Michelet, C.; Zeller, H. Lookback exercise with imported Crimean-Congo hemorrhagic fever, Senegal and France. Emerg. Infect. Dis. 2006, 12, 1424–1426. [Google Scholar] [CrossRef]
- Baumann, J.; Knupfer, M.; Ouedraogo, J.; Traore, B.Y.; Heitzer, A.; Kane, B.; Maiga, B.; Sylla, M.; Kouriba, B.; Wölfel, R. Lassa and Crimean-Congo hemorrhagic fever viruses, Mali. Emerg. Infect. Dis. 2019, 25, 999–1002. [Google Scholar] [CrossRef]
- Umoh, J.U.; Ezeokoli, C.D.; Ogwu, D. Prevalence of antibodies to Crimean-haemorrhagic fever-Congo virus in cattle in northern Nigeria. Int. J. Zoonoses 1983, 10, 151–154. [Google Scholar] [PubMed]
- Sas, M.A.; Mertens, M.; Isselmou, E.; Reimer, N.; El Mamy, B.O.; Doumbia, B.; Groschup, M.H. Crimean-Congo hemorrhagic fever virus-specific antibody detection in cattle in Mauritania. Vector Borne Zoonotic Dis. 2017, 17, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Maiga, O.; Sas, M.A.; Rosenke, K.; Kamissoko, B.; Mertens, M.; Sogoba, N.; Traore, A.; Sangare, M.; Niang, M.; Schwan, T.G.; et al. Serosurvey of Crimean-Congo hemorrhagic fever virus in cattle, Mali, West Africa. Am. J. Trop. Med. Hyg. 2017, 96, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Zivcec, M.; Maiga, O.; Kelly, A.; Feldmann, F.; Sogoba, N.; Schwan, T.G.; Feldmann, H.; Safronetz, D. Unique strain of Crimean-Congo hemorrhagic fever virus, Mali. Emerg. Infect. Dis. 2014, 20, 911–913. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, W.; Qiu, Z.; Li, Y.; Fan, J.; Wu, K.; Zhao, M.; Ding, H.; Fan, S.; Chen, J. African swine fever firus: A review. Life 2022, 12, 1255. [Google Scholar] [CrossRef]
- Blome, S.; Franzke, K.; Beer, M. African swine fever—A review of current knowledge. Virus Res. 2020, 287, 198099. [Google Scholar] [CrossRef]
- Penrith, M.L.; Vosloo, W.; Jori, F.; Bastos, A.D. African swine fever virus eradication in Africa. Virus Res. 2013, 173, 228–246. [Google Scholar] [CrossRef]
- Penrith, M.L.; Bastos, A.D.; Etter, E.M.C.; Beltran-Alcrudo, D. Epidemiology of African swine fever in Africa today: Sylvatic cycle versus socio-economic imperatives. Transbound Emerg. Dis. 2019, 66, 672–686. [Google Scholar] [CrossRef]
- Cubillos, C.; Gomez-Sebastian, S.; Moreno, N.; Nunez, M.C.; Mulumba-Mfumu, L.K.; Quembo, C.J.; Heath, L.; Etter, E.M.; Jori, F.; Escribano, J.M.; et al. African swine fever virus serodiagnosis: A general review with a focus on the analyses of African serum samples. Virus Res. 2013, 173, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Etter, E.M.; Seck, I.; Grosbois, V.; Jori, F.; Blanco, E.; Vial, L.; Akakpo, A.J.; Bada-Alhambedji, R.; Kone, P.; Roger, F.L. Seroprevalence of African swine fever in Senegal, 2006. Emerg. Infect. Dis. 2011, 17, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kouakou, K.V.; Michaud, V.; Biego, H.G.; Gnabro, H.P.G.; Kouakou, A.V.; Mossoun, A.M.; Awuni, J.A.; Minoungou, G.L.; Aplogan, G.L.; Awoumé, F.K.; et al. African and classical swine fever situation in Ivory-Coast and neighboring countries, 2008–2013. Acta Trop. 2017, 166, 241–248. [Google Scholar] [CrossRef]
- Adedeji, A.J.; Atai, R.B.; Gyang, H.E.; Gambo, P.; Habib, M.A.; Weka, R.; Muwanika, V.B.; Masembe, C.; Luka, P.D. Live pig markets are hotspots for spread of African swine fever virus in Nigeria. Transbound Emerg. Dis. 2022, 69, e1526–e1540. [Google Scholar] [CrossRef] [PubMed]
- Asambe, A.; Sackey, A.K.B.; Tekdek, L.B. Prevalence of African swine fever virus and classical swine fever virus antibodies in pigs in Benue State, Nigeria. Trop. Anim. Health Prod. 2018, 50, 689–692. [Google Scholar] [CrossRef]
- Ohouko, O.F.H.; Koudouvo, K.; Dougnon, T.J.; Agbonon, A.; Karim, I.Y.A.; Farougou, S.; Gbeassor, M. African swine fever in Benin and prevalence of the disease in Southern Benin: A retrospective study (2014–2018). J. Adv. Vet. Anim. Res. 2020, 7, 464–470. [Google Scholar] [CrossRef]
- Minoungou, G.L.; Diop, M.; Dakouo, M.; Ouattara, A.K.; Settypalli, T.B.K.; Lo, M.M.; Sidibe, S.; Kanyala, E.; Kone, Y.S.; Diallo, M.S.; et al. Molecular characterization of African swine fever viruses in Burkina Faso, Mali, and Senegal 1989–2016: Genetic diversity of ASFV in West Africa. Transbound Emerg. Dis. 2021, 68, 2842–2852. [Google Scholar] [CrossRef]
- Sidi, M.; Zerbo, H.L.; Ouoba, B.L.; Settypalli, T.B.K.; Bazimo, G.; Ouandaogo, H.S.; Sie, B.N.; Guy, I.S.; Adama, D.D.; Savadogo, J.; et al. Molecular characterization of African swine fever viruses from Burkina Faso, 2018. BMC Vet. Res. 2022, 18, 69. [Google Scholar] [CrossRef]
- Couacy-Hymann, E.; Kouakou, K.V.; Achenbach, J.E.; Kouadio, L.; Koffi, Y.M.; Godji, H.P.; Adjé, K.E.; Oulaï, J.; Pell-Minhiaud, H.J.; Lamien, C.E. Re-emergence of genotype I of African swine fever virus in Ivory Coast. Transbound Emerg. Dis. 2019, 66, 882–896. [Google Scholar] [CrossRef]
- Spinard, E.; Rai, A.; Osei-Bonsu, J.; O’Donnell, V.; Ababio, P.T.; Tawiah-Yingar, D.; Arthur, D.; Zhou, Y.; Chepkwony, T.; Abel, L.; et al. The 2022 outbreaks of African swine fever dirus Demonstrate the first report of genotype II in Ghana. Viruses 2023, 15, 1722. [Google Scholar] [CrossRef]
- Adedeji, A.J.; Luka, P.D.; Atai, R.B.; Olubade, T.A.; Hambolu, D.A.; Ogunleye, M.A.; Muwanika, V.B.; Masembe, C. First-time presence of African swine fever virus genotype II in Nigeria. Microbiol. Resour. Announc. 2021, 10, e0035021. [Google Scholar] [CrossRef]
- Ambagala, A.; Goonewardene, K.; Lamboo, L.; Goolia, M.; Erdelyan, C.; Fisher, M.; Handel, K.; Lung, O.; Blome, S.; King, J.; et al. Characterization of a novel African swine fever virus p72 genotype II from Nigeria. Viruses 2023, 15, 915. [Google Scholar] [CrossRef]
- Awosanya, E.J.; Olugasa, B.O.; Gimba, F.I.; Sabri, M.Y.; Ogundipe, G.A. Detection of African swine fever virus in pigs in Southwest Nigeria. Vet. World 2021, 14, 1840–1845. [Google Scholar] [CrossRef]
- Luka, P.D.; Erume, J.; Yakubu, B.; Owolodun, O.A.; Shamaki, D.; Mwiine, F.N. Molecular detection of torque teno sus virus and coinfection with African swine fever virus in blood samples of pigs from some slaughterhouses in Nigeria. Adv. Virol. 2016, 2016, 6341015. [Google Scholar] [CrossRef]
- Luka, P.D.; Adedeji, A.J.; Jambol, A.R.; Ifende, I.V.; Luka, H.G.; Choji, N.D.; Weka, R.; Settypalli, T.B.K.; Achenbach, J.E.; Cattoli, G.; et al. Coinfections of African swine fever virus, porcine circovirus 2 and 3, and porcine parvovirus 1 in swine in Nigeria. Arch. Virol. 2022, 167, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Tizhe, E.V.; Luka, P.D.; Adedeji, A.J.; Tanko, P.; Gurumyen, G.Y.; Buba, D.M.; Tizhe, U.D.; Bitrus, A.A.; Oragwa, A.O.; Shaibu, S.J.; et al. Laboratory diagnosis of a new outbreak of acute African swine fever in smallholder pig farms in Jos, Nigeria. Vet. Med. Sci. 2021, 7, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Luther, N.J.; Majiyagbe, K.A.; Shamaki, D.; Lombin, L.H.; Antiabong, J.F.; Bitrus, Y.; Owolodun, O. Detection of African swine fever virus genomic DNA in a Nigerian red river hog (Potamochoerus porcus). Vet. Rec. 2007, 160, 58–59. [Google Scholar] [CrossRef]
- Jongen, V.H.; van Roosmalen, J.; Tiems, J.; Van, H.J.; Wetsteyn, J.C. Tick-borne relapsing fever and pregnancy outcome in rural Tanzania. Acta Obstet. Gynecol. Scand. 1997, 76, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Boyer, P.H.; Lenormand, C.; Jaulhac, B.; Talagrand-Reboul, E. Human co-infections between Borrelia burgdorferi s.l. and other Ixodes-borne microorganisms: A systematic review. Pathogens 2022, 11, 282. [Google Scholar] [CrossRef] [PubMed]
Tick Species | Organism Detected | Countries | References | |
---|---|---|---|---|
Côte d’Ivoire, Niger, Mali, Liberia, Guinea, Senegal, Benin, Burkina Faso, Nigeria | [22,23,24,25,26,27,28,29,30,31,32,33] | |||
R. africae * | ||||
R. aeschlimannii | Benin | [34] | ||
Rickettsia spp. | Benin, Togo, Ghana | [34,35,36] | ||
Candidatus africana | Borrelia | Côte d’Ivoire | [24] | |
Candidatus ivorensis | Borrelia | Côte d’Ivoire | [24] | |
Borrelia spp. | Mali | [23] | ||
A. marginale | Benin | [37] | ||
A. centrale | Côte d’Ivoire | [24] | ||
Candidatus ivorensis | Anaplasma | Côte d’Ivoire | [24] | |
Am. variegatum | E. ruminantium * | Mali, Burkina Benin, Nigeria Côte Faso, d’Ivoire, Gambia, | [23,24,38,39,40,41,42] | |
Ehrlichia ewingii | Nigeria | [30] | ||
Candidatus Ehrlichia rustica | Côte d’Ivoire | [24] | ||
Candidatus Ehrlichia urmitei | Côte d’Ivoire | [24] | ||
Bartonella spp. | Benin, Togo | [34,36] | ||
C. burnetii | Mali, Côte d’Ivoire, Nigeria, Senegal, Ghana | [23,24,30,43] | ||
T. annulata | Burkina Faso, Benin | [42,44] | ||
T. mutans * | Burkina Faso, Benin | [39,42,44] | ||
T. velifera * | Guinea, Burkina Faso, Benin | [42,44,45] | ||
B. bigemina | Nigeria | [28] | ||
B. divergens | Nigeria | [28] | ||
B. caballi | Guinea | [46] | ||
CCHF virus | Ghana, Senegal | [47,48] | ||
Am. compressum | R. africae | Guinea | [26] | |
Am. latum | Rickettsia spp. | Benin | [36] | |
Bartonella spp. | Benin | [36] | ||
Hae. paraleachi | R. africae | Guinea | [26] | |
Hy. dromedarii | R. aeschlimannii | Nigeria | [49] | |
T. annulate * | Mauritania | [50] | ||
T. equi * | Nigeria | [51] | ||
Hy. excavatum | CCHF virus | Ghana | [47] | |
R. africae | Nigeria | [28] | ||
R. aeschlimannii | Senegal, Nigeria | [31,49,52] | ||
Hy. impeltatum | A. centrale | Nigeria | [30] | |
E. chaffeensis | Nigeria | [30] | ||
E. ewingii | Nigeria | [30] | ||
C. burnetii | Nigeria | [30] | ||
T. mutans * | Nigeria | [30] | ||
Hy. impressum | R. africae | Côte d’Ivoire | [24] | |
Hy. rufipes | R. africae | Mali, Côte d’Ivoire, Guinea, Senegal | [23,24,26,31] | |
R. aesclimannii | Mali, Senegal, Burkina Faso, Nigeria, Benin | [21,23,31,33,34,49,52] | ||
Rickettsia spp. | Benin, Ghana | [34] | ||
Bartonella spp. | Benin | [36] | ||
E. ruminantium | Mali | [23] | ||
C. burnetii | Mali | [23] | ||
T. annulata * | Burkina Faso, Benin, Mauritania | [42,44,50] | ||
T. mutans * | Burkina Faso, Benin | [42,44] | ||
T. velifera | Burkina Faso, Benin | [42,44,45] | ||
CCHF virus * | Mauritania, Senegal | [48,53,54] | ||
Hy. truncatum | R. africae | Mali, Côte d’Ivoire | [23,24] | |
R. aeschlimannii | Mali, Côte d’Ivoire, Senegal, Burkina Faso, Nigeria | [21,23,24] | ||
R. mongolitimonae | Mali, Senegal | [21,23] | ||
Rickettsia spp. | Togo, Ghana | [34] | ||
A. platys | Nigeria | [55] | ||
E. ruminantium | Mali | [23] | ||
Ehrlichia spp. | Niger | [29] | ||
Candidatus Ehrlichia rustica | Mali, Côte d’Ivoire | [23,24] | ||
Candidatus Ehrlichia urmitei | Côte d’Ivoire | [24] | ||
C. burnetii | Mali, Senegal | [23,43] | ||
T. equi * | Nigeria | [51] | ||
CCHF virus * | Mauritania | [48,53,54] | ||
Ix. aulacodi | Rickettsia spp. | Benin | [36] | |
Bartonella spp. | Benin | [36] | ||
O. sonrai | B. crocidurae * | Mali, Senegal, Mauritania, Gambia | [56,57,58,59,60] | |
B. senegalensis | Senegal | [61] | ||
B. massiliensis | Senegal | [61] | ||
C. burnetii | Senegal | [43] | ||
R. africae | Senegal, Nigeria, Guinea | [21,26,30] | ||
Ehrlichia sp. | Senegal | [58,62] | ||
ASF virus | Senegal | [63] | ||
Rh. (B.) annulatus | R. africae | Guinea, Nigeria | [26,28] | |
Rickettsia spp. | Togo | [34] | ||
A. centrale | Nigeria | [30] | ||
E. ewingii | Nigeria | [30] | ||
C. burnetii | Nigeria, Senegal | [30,43] | ||
T. mutans | Nigeria | [30] | ||
T. velifera | Guinea | [45] | ||
Rh. (B.) decoloratus | A. marginale * | Nigeria, Burkina Faso | [28,44] | |
C. burnetii | Senegal | [43] | ||
T. annulata | Burkina Faso, Benin | [42,44] | ||
T. mutans | Burkina Faso, Benin | [42,44] | ||
B. bigemina * | Nigeria | [64] | ||
T. velifera | Guinea, Burkina Faso | [44,45] | ||
Rh. (B.) geigyi | R. africae | Liberia | [26] | |
A. marginale | Guinea | [65] | ||
T. velifera | Guinea, Burkina Faso | [44,45] | ||
B. theileri | Mali | [66] | ||
Rh. (B.) microplus | R. africae | Mali, Côte d’Ivoire | [23,24] | |
A. marginale | Mali, Côte d’Ivoire, Benin, Guinea | [23,24,37] | ||
T. annulata | Burkina Faso, Benin | [42,44] | ||
T. mutans | Burkina Faso, Benin | [42,44] | ||
A. platys | Guinea | [65] | ||
Candidatus Anaplasma ivorensis | Mali | [23] | ||
E. ruminantium | Mali, Côte d’Ivoire, Burkina Faso | [23,24,67] | ||
Candidatus Ehrlichia urmitei | Mali, Côte d’Ivoire | [23,24] | ||
Candidatus Ehrlichia rustica | Côte d’Ivoire | [24] | ||
C. burnetii | Mali | [23] | ||
T. mutans | Benin | [37] | ||
Rickettsia spp. | Benin, Togo | [34] | ||
Bartonella spp. | Benin, Togo | [34] | ||
Rh. e. evertsi | R. africae | Mali, Senegal, Nigeria | [21,26,30] | |
R. aeschlimannii | Senegal | [21,23,31,33,52] | ||
R. conorii conorii | Senegal | [21] | ||
E. ruminantium | Mali | [23] | ||
E. canis | Senegal | [68] | ||
E. chaffeensis | Nigeria | [30] | ||
C. burnetii | Mali, Nigeria, Senegal | [23,30,69] | ||
T. annulata | Burkina Faso, Benin | [42,44] | ||
T. mutans | Burkina Faso, Benin | [37,44] | ||
B. bigemina * | Guinea | [65] | ||
T. equi * | Nigeria | [51] | ||
CCHF virus | Senegal | [54] | ||
Rh. guilhoni | R. massiliae | Senegal | [21] | |
C. burnetii | Senegal | [43] | ||
CCHF virus | Senegal | [54] | ||
Rh. muhsamae | Ehrlichia sp. | Mali | [29] | |
R. africae | Nigeria | [28] | ||
R. aeschlimannii | Mali | [23] | ||
R. massiliae | Nigeria | [27] | ||
Bartonella spp. | Togo | [34] | ||
Rh. sanguineus s.l. | R. conorii conorii * | Nigeria | [70] | |
Rickettsia spp. | Benin, Ghana | [36] | ||
A. platys | Côte d’Ivoire | [71] | ||
E. canis * | Côte d’Ivoire | [72] | ||
Candidatus Neoehrlichia mikurensis | Nigeria | [55] | ||
B. henselae | Ghana | [73] | ||
C. burnetii | Mali | [23] | ||
Rh. senegalensis | R. massiliae | Côte d’Ivoire, Liberia | [24,26] | |
Rh. sulcatus | Bartonella spp. | Togo | [34] | |
Rh. turanicus | R. massiliae | Nigeria | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diarra, A.Z.; Kelly, P.; Davoust, B.; Parola, P. Tick-Borne Diseases of Humans and Animals in West Africa. Pathogens 2023, 12, 1276. https://doi.org/10.3390/pathogens12111276
Diarra AZ, Kelly P, Davoust B, Parola P. Tick-Borne Diseases of Humans and Animals in West Africa. Pathogens. 2023; 12(11):1276. https://doi.org/10.3390/pathogens12111276
Chicago/Turabian StyleDiarra, Adama Zan, Patrick Kelly, Bernard Davoust, and Philippe Parola. 2023. "Tick-Borne Diseases of Humans and Animals in West Africa" Pathogens 12, no. 11: 1276. https://doi.org/10.3390/pathogens12111276
APA StyleDiarra, A. Z., Kelly, P., Davoust, B., & Parola, P. (2023). Tick-Borne Diseases of Humans and Animals in West Africa. Pathogens, 12(11), 1276. https://doi.org/10.3390/pathogens12111276