Susceptibility of Amblyomma sculptum, Vector of Rickettsia rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Committee
2.2. Study Locations
2.3. Tick Colonies
2.4. Acaricides and Lethal Concentrations
2.5. Larval Immersion Tests (LITs)
2.6. Nymphal Immersion Tests (NITs)
2.7. Statistical Analysis
3. Results
3.1. LITs
3.2. NITs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guglielmone, A.A.; Beati, L.; Barros-Battesti, D.M.; Labruna, M.B.; Nava, S.; Venzal, J.M.; Mangold, A.J.; Szabó, M.P.J.; Martins, J.R.; González-Acuña, D.; et al. Ticks (Ixodidae) on Humans in South America. Exp. Appl. Acarol. 2006, 40, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Nava, S.; Venzal, J.M.; González-Acuña, D.; Martins, T.F.; Guglielmone, A.A. Ticks of the Southern Cone of America: Diagnosis, Distribution, and Hosts with Taxonomy, Ecology and Sanitary Importance; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Pajuaba Neto, A.A.; Ramos, V.d.N.; Martins, M.M.; Osava, C.F.; Pascoal, J.d.O.; Suzin, A.; Yokosawa, J.; Szabó, M.P.J. Influence of Microhabitat Use and Behavior of Amblyomma sculptum and Amblyomma dubitatum Nymphs (Acari: Ixodidae) on Human Risk for Tick Exposure, with Notes on Rickettsia Infection. Ticks Tick-Borne Dis. 2018, 9, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Szabó, M.P.J.; Martins, T.F.; Barbieri, A.R.M.; Costa, F.B.; Soares, H.S.; Tolesano-Pascoli, G.V.; Torga, K.; Saraiva, D.G.; Ramos, V.d.N.; Osava, C.F.; et al. Ticks Biting Humans in the Brazilian Savannah: Attachment Sites and Exposure Risk in Relation to Species, Life Stage and Season. Ticks Tick-Borne Dis. 2020, 11, 101328. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.F.; Barbieri, A.R.M.; Costa, F.B.; Terassini, F.A.; Camargo, L.M.A.; Peterka, C.R.L.; De C. Pacheco, R.; Dias, R.A.; Nunes, P.H.; Marcili, A.; et al. Geographical Distribution of Amblyomma cajennense (sensu lato) Ticks (Parasitiformes: Ixodidae) in Brazil, with Description of the Nymph of A. cajennense (sensu stricto). Parasit. Vectors 2016, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- de Paula, L.G.F.; do Nascimento, R.M.; Franco, A.d.O.; Szabó, M.P.J.; Labruna, M.B.; Monteiro, C.; Krawczak, F.D.S. Seasonal dynamics of Amblyomma sculptum: A Review. Parasit. Vectors 2022, 15, 193. [Google Scholar]
- Szabó, M.P.J.; Pinter, A.; Labruna, M.B. Ecology, Biology and Distribution of Spotted-Fever Tick Vectors in Brazil. Front. Cell Infect. Microbiol. 2013, 4, 27. [Google Scholar]
- Krawczak, F.S.; Nieri-Bastos, F.A.; Nunes, F.P.; Soares, J.F.; Moraes-Filho, J.; Labruna, M.B. Rickettsial Infection in Amblyomma cajennense Ticks and Capybaras (Hydrochoerus hydrochaeris) in a Brazilian Spotted Fever-Endemic Area. Parasit. Vectors 2014, 7, 7. [Google Scholar] [CrossRef]
- Krawczak, F.S.; Calchi, A.C.; Neves, L.C.; Dias, S.A.; da Silva, B.B.F.; Paula, W.V.F.; de Paula, L.G.F.; Tavares, M.A.; Pádua, G.T.; de Lima, N.J.; et al. Phylogenetic Inferences Based on Distinct Molecular Markers Confirm a Novel Babesia Species (Babesia goianiaensis nov. sp.) in Capybaras (Hydrochoerus hydrochaeris) and Associated Ticks. Microorganisms 2023, 11, 2022. [Google Scholar] [CrossRef]
- Labruna, M.B.; Leite, R.C.; Gobesso, A.A.d.O.; Gennari, S.M.; Kasai, N. Strategic control of the tick Amblyomma cajennense on horses. Ciência Rural. 2004, 34, 195–200. [Google Scholar] [CrossRef]
- Bittencourt, V.R.E.P.; Massard, C.L.; Grisi, L. Atividade in vitro de alguns piretróides sintéticos no carrapato Amblyomma cajennense (Fabricius, 1787). Pesqui. Agropecuária Bras. 1989, 24, 1193–1199. [Google Scholar]
- Karasek, I.; Butler, C.; Baynes, R.; Werners, A. A review on the treatment and control of ectoparasite infestations in equids. J. Vet. Pharmacol. Ther. 2020, 43, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Higa, L.D.O.S.; Piña, F.T.B.; da Silva Rodrigues, V.; Garcia, M.V.; Salas, D.R.; Miller, R.J.; de Leon, A.P.; Barros, J.C.; Andreotti, R. Evidence of acaricide resistance in different life stages of Amblyomma mixtum and Rhipicephalus microplus (Acari: Ixodidae) collected from the same farm in the state of Veracruz, Mexico. Prev. Vet. Med. 2020, 174, 104837. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, Z.D.; Richardson, E.A.; Taylor, C.E.; Kaufman, P.E.; Weeks, E.N.I. Determination of the discriminating concentration towards permethrin for surveying resistance in Amblyomma americanum. J. Med. Entomol. 2022, 59, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Taylor, C.E.; Lord, C.C.; Kaufman, P.E. Evidence of permethrin resistance and fipronil tolerance in Rhipicephalus sanguineus s.l. (Acari: Ixodidae) populations from Florida and California. J. Med. Entomol. 2023, 60, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Freitas, E.P.S.; Zapata, M.T.A.G.; de Fernandes, F.F. Monitoring of resistance or susceptibility of adults and larvae of Amblyomma cajennense (Acari: Ixodidae) to synthetic acaricides in Goiás, Brazil. Exp. Appl. Acarol. 2011, 53, 189–202. [Google Scholar] [CrossRef]
- Nicaretta, J.E.; dos Santos, J.B.; Couto, L.F.M.; Heller, L.M.; Cruvinel, L.B.; de Melo Júnior, R.D.; de Assis Cavalcante, A.S.; Zapa, D.M.B.; Ferreira, L.L.; de Oliveira Monteiro, C.M.; et al. Evaluation of Rotational Grazing as a Control Strategy for Rhipicephalus microplus in a Tropical Region. Res. Vet. Sci. 2020, 131. [Google Scholar] [CrossRef]
- Nicaretta, J.E.; Zapa, D.M.B.; Couto, L.F.M.; Heller, L.M.; de Assisv Cavalcante, A.S.; Cruvinel, L.B.; de Melo Júnior, R.D.; Ferreira, L.L.; do Nascimento, R.M.; Soares, V.E.; et al. Rhipicephalus microplus Seasonal Dynamic in a Cerrado Biome, Brazil: An Update Data Considering the Global Warming. Vet. Parasitol. 2021, 296, 92–97. [Google Scholar] [CrossRef]
- Nicaretta, J.E.; Ferreira, L.L.; de Cavalcante, A.S.D.A.; Zapa, D.M.B.; Heller, L.M.; Trindade, A.S.N.; de Morais, I.M.L.; Salvador, V.F.; Leal, L.L.L.L.; da Silva, F.L.V.; et al. Influence of the acaricide emulsion ph on the effectiveness of spray products to control the cattle tick: Laboratory and field investigations. Parasitol. Res. 2023, 122, 2267–2278. [Google Scholar] [CrossRef]
- de Paula, L.G.F.; Zeringóta, V.; Sampaio, A.L.N.; Bezerra, G.P.; Barreto, A.L.G.; dos Santos, A.A.; Miranda, V.C.; Paula, W.V.d.F.; Neves, L.C.; Secchis, M.V.; et al. Seasonal dynamics of Amblyomma sculptum in two areas of the Cerrado biome Midwestern Brazil, where human cases of rickettsiosis have been reported. Exp. Appl. Acarol. 2021, 84, 215–225. [Google Scholar] [CrossRef]
- Nava, S.; Beati, L.; Labruna, M.B.; Cáceres, A.G.; Mangold, A.J.; Guglielmone, A.A. Reassessment of the Taxonomic Status of Amblyomma cajennense (Fabricius, 1787) with the Description of Three New Species, Amblyomma tonelliae n. Sp., Amblyomma interandinum n. Sp. and Amblyomma patinoi n. Sp., and Reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks Tick-Borne Dis. 2014, 5, 252–276. [Google Scholar] [CrossRef]
- Dantas-Torres, F.; Fernandes Martins, T.; Muñoz-Leal, S.; Onofrio, V.C.; Barros-Battesti, D.M. Ticks (Ixodida: Argasidae, Ixodidae) of Brazil: Updated Species Checklist and Taxonomic Keys. Ticks Tick-Borne Dis. 2019, 10, 101252. [Google Scholar] [CrossRef] [PubMed]
- Horta, M.C.; Moraes-Filho, J.; Casagrande, R.A.; Saito, T.B.; Rosa, S.C.; Ogrzewalska, M.; Matushima, E.R.; Labruna, M.B. Experimental Infection of Opossums Didelphis aurita by Rickettsia rickettsii and Evaluation of the Transmission of the Infection to Ticks Amblyomma cajennense. Vector-Borne Zoonotic Dis. 2009, 9, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Pinter, A.; Labruna, M.B.; Faccini, J.L.H. The sex ratio of Amblyomma cajennense (Acari: Ixodidae) with notes on the male feeding period in the laboratory. Vet. Parasitol. 2002, 105, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Nicaretta, J.E.; de Melo Junior, R.D.; Naves, R.B.; de Morais, I.M.L.; Salvador, V.F.; Leal, L.L.L.L.; Teixeira, A.L.C.; Ferreira, L.L.; Klafke, G.M.; Monteiro, C.M.d.O.; et al. Selective versus strategic control against Rhipicephalus microplus in cattle: A comparative analysis of efficacy, animal health, productivity, cost, and resistance management. Vet. Parasitol. 2023, 321, 109999. [Google Scholar] [CrossRef]
- Moraes, N.; Nicaretta, J.E.; de Castro Rodrigues, D.; Gonzaga, B.C.F.; Barrozo, M.M.; Vale, F.L.; Pereira e Sousa, L.J.; Coutinho, A.L.; Gomes, G.W.; Teixeira, W.F.P.; et al. Comparison of the efficacy of different methods to apply acaricides for control of Rhipicephalus (Boophilus) microplus. Ticks Tick-Borne Dis. 2023, 14, 102190. [Google Scholar] [CrossRef]
- Sabatini, G.A.; Kemp, D.H.; Hughes, S.; Nari, A.; Hansen, J. Tests to determine LC50 and discriminating doses for macrocyclic lactones against the cattle tick, Boophilus microplus. Vet. Parasitol. 2001, 95, 53–62. [Google Scholar] [CrossRef]
- Borges, D.A.; Cid, Y.P.; de Avelar, B.R.; Ferreira, T.P.; Campos, D.R.; Dos Santos, G.C.M.; Alves, M.C.C.; Scott, F.B. In vitro acaricidal activity of different ectoparasiticide classes against Amblyomma sculptum larvae. Rev. Bras. Parasitol. Vet. 2020, 29, e003020. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; Mallón, A.R.; Bermúdez, S.; de la Fuente, J.; Domingos, A.; García, M.P.E.; Labruna, M.B.; Merino, O.; Mosqueda, J.; Nava, S.; et al. One Health Approach to Identify Research Needs on Rhipicephalus microplus Ticks in the Americas. Pathogens 2022, 11, 1180. [Google Scholar] [CrossRef]
- Beugnet, F.; Franc, M. Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites. Trends Parasitol. 2012, 28, 267–279. [Google Scholar]
- Labruna, M.B.; Krawczak, F.S.; Gerardi, M.; Binder, L.C.; Barbieri, A.R.M.; Paz, G.F.; Rodrigues, D.S.; Araújo, R.N.; Bernardes, M.L.; Leite, R.C. Isolation of Rickettsia rickettsii from the tick Amblyomma sculptum from a brazilian spotted fever-endemic area in the Pampulha Lake region, Southeastern Brazil. Vet. Parasitol. Reg. Stud. Rep. 2017, 8, 82–85. [Google Scholar] [CrossRef]
Trade Name | Manufacturer | Chemical Class | Active Ingredient | Concentrations Used for Larvae/Number of Concentrations | Concentrations Used for Nymphs/Number of Concentrations |
---|---|---|---|---|---|
Butox® | MSD Animal Health | Synthetic pyrethroid | Deltamethrin | 0.002 to 50 ppm/16 | 0.006 to 3.125 ppm/10 |
Barrage® | Zoetis Animal Health | Synthetic pyrethroid | Cypermethrin | 0.018 to 150 ppm/14 | 0.073 to 9.370 ppm/8 |
Supokill® | UCBVet Animal Health | Organophosphate | Chlorfenvinphos | 0.122 to 500 ppm/13 | 0.244 to 31.250 ppm/8 |
Triatox® | MSD Animal Health | Formamidine | Amitraz | 0.008 to 250 ppm/16 | 0.008 to 250 ppm/16 |
Colosso® | Ourofino Animal Health | Synthetic pyrethroid + organophosphate + monoterpenoid | Cypermethrin + chlorpyrifos + citronellal | 0.006 to 100%/15 | 0.012 to 6.25%/10 |
Colosso FC30® | Ourofino Animal Health | Synthetic pyrethroid + organophosphates | Cypermethrin + chlorpyrifos + fenthion | 0.003 to 100%/16 | 0.012 to 6.25%/10 |
Acaricide | Strain | LC50 (95% CI) | LC90 (95% CI) | LC99 (95% CI) | Slope | X2 | RR50 | RR90 | RR99 |
---|---|---|---|---|---|---|---|---|---|
Deltamethrin. | GYN | 0.006 (0.005–0.007) | 0.019 (0.018–0.020) | 0.054 (0.050–0.059) | 1.809 | 0.984 | 0.857 | 0.905 | 1.080 |
PNE | 0.007 (0.006–0.008) | 0.021 (0.020–0.022) | 0.050 (0.047–0.055) | 3.986 | 0.994 | ||||
Cypermethrin | GYN | 0.187 * (0.179–0.196) | 1.147 * (1.042–1.270) | 5.017 * (4.319–5.901) | 1.630 | 0.989 | 1.612 | 2.360 | 3.214 |
PNE | 0.116 (0.112–0.120) | 0.486 (0.455–0.522) | 1.561 (1.397–1.761) | 2.063 | 0.980 | ||||
Chlorfenvinphos | GYN | 1.540 * (1.490–1.601) | 5.544 * (5.196–5.938) | 21.973 * (19.792–24.558) | 1.747 | 0.991 | 1.453 | 1.457 | 2.038 |
PNE | 1.060 (1.024–1.097) | 3.805 (3.607–4.026) | 10.780 (9.900–11.807) | 2.310 | 0.990 | ||||
Amitraz | GYN | 0.200 * (0.191–0.210) | 0.714 * (0.653–0.788) | 2.017 (1.744–2.375) | 2.316 | 0.963 | 2.703 | 1.509 | 0.941 |
PNE | 0.074 (0.071–0.077) | 0.473 (0.445–0.503) | 2.143 (1.955–2.359) | 1.586 | 0.994 |
Acaricide | Strain | LC50 (95% CI) | LC90 (95% CI) | LC99 (95% CI) | Slope | X2 | RR50 | RR90 | RR99 |
---|---|---|---|---|---|---|---|---|---|
Chlorpyrifos + cypermethrin + citronellal | GYN | 0.014 * (0.013–0.014) | 0.063 (0.059–0.067) | 0.219 (0.198–0.243) | 1.934 | 0.978 | 0.667 | 0.900 | 1.177 |
PNE | 0.021 (0.021–0.022) | 0.070 (0.067–0.074) | 0.186 (0.172–0.201) | 2.471 | 0.994 | ||||
Chlorpyrifos + cypermethrin + fenthion | GYN | 0.016 * (0.016–0.017) | 0.051 * (0.048–0.054) | 0.129 * (0.120–0.141) | 2.577 | 0.984 | 2.000 | 1.645 | 1.316 |
PNE | 0.008 (0.007–0.008) | 0.031 (0.030–0.033) | 0.098 (0.090–0.109) | 2.11 | 0.983 |
Acaricide | Strain | LC50 (95% CI) | LC90 (95% CI) | LC99 (95% CI) | Slope | X2 | RR50 | RR90 | RR99 |
---|---|---|---|---|---|---|---|---|---|
Deltamethrin | GYN | 0.051 * (0.045–0.058) | 0.347 * (0.287–0.432) | 1.655 * (1.225–2.364) | 1.540 | 0.969 | 3.000 | 6.309 | 11.821 |
PNE | 0.017 (0.016–0.019) | 0.055 (0.047–0.065) | 0.140 (0.112–0.185) | 2.568 | 0.971 | ||||
Cypermethrin | GYN | 0.616 (0.547–0.691) | 2.815 (2.378–3.436) | 9.717 (7.419–13.494) | 1.942 | 0.972 | 1.187 | 1.138 | 1.101 |
PNE | 0.519 (0.462–0.583) | 2.474 (2.069–3.051) | 8.827 (6.676–12.362) | 1.891 | 0.967 | ||||
Chlorfenvinphos | GYN | 2.039 * (1.842–2.253) | 6.672 * (5.786–7.889) | 17.534 * (14.069–22.911) | 2.490 | 0.974 | 2.195 | 2.587 | 2.957 |
PNE | 0.929 (0.846–1.018) | 2.579 (2.260–3.018) | 5.929 (4.839- 7.611) | 2.890 | 0.977 | ||||
Amitraz | GYN | 4.943 * (4.293–5.658) | 54.718 * (46.847–64.655) | 388.497 * (306.422–505.384) | 1.227 | 0.978 | 56.170 | 20.006 | 8.642 |
PNE | 0.088 (0.070–0.110) | 2.735 (2.087–3.732) | 44.954 (28.005–78.945) | 0.859 | 0.952 |
Acaricide | Strain | LC50 (95% CI) | LC90 (95% CI) | LC99 (95% CI) | Slope | X2 | RR50 | RR90 | RR99 |
---|---|---|---|---|---|---|---|---|---|
Chlorpyrifos + Cypermethrin + Citronellal | GYN | 0.056 * (0.049–0.063) | 0.232 * (0.207–0.263) | 0.746 * (0.627–0.911) | 2.064 | 0.949 | 1.474 | 2.128 | 2.880 |
PNE | 0.038 (0.034–0.042) | 0.109 (0.096–0.128) | 0.259 (0.212–0.330) | 2.796 | 0.988 | ||||
Chlorpyrifos + Cypermethrin + Fenthion | GYN | 0.048 (0.043–0.054) | 0.165 * (0.142–0.196) | 0.448 (0.356–0.591) | 2.407 | 0.987 | 1.171 | 1.299 | 1.409 |
PNE | 0.041 (0.037–0.046) | 0.127 (0.111–0.150) | 0.318 (0.257–0.412) | 2.623 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, E.R.N.; Carvalho, S.F.; Dias, S.A.; Santos, R.A.; Tavares, M.A.; Neves, L.C.; Paula, W.V.d.F.; Pádua, G.T.; de Lima, N.J.; Paludo, R.L.d.R.; et al. Susceptibility of Amblyomma sculptum, Vector of Rickettsia rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides. Pathogens 2023, 12, 1304. https://doi.org/10.3390/pathogens12111304
Cardoso ERN, Carvalho SF, Dias SA, Santos RA, Tavares MA, Neves LC, Paula WVdF, Pádua GT, de Lima NJ, Paludo RLdR, et al. Susceptibility of Amblyomma sculptum, Vector of Rickettsia rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides. Pathogens. 2023; 12(11):1304. https://doi.org/10.3390/pathogens12111304
Chicago/Turabian StyleCardoso, Ennya Rafaella Neves, Stephani Félix Carvalho, Sarah Alves Dias, Rayane Almeida Santos, Mariana Avelar Tavares, Lucianne Cardoso Neves, Warley Vieira de Freitas Paula, Gracielle Teles Pádua, Nicolas Jalowitzki de Lima, Raquel Loren dos Reis Paludo, and et al. 2023. "Susceptibility of Amblyomma sculptum, Vector of Rickettsia rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides" Pathogens 12, no. 11: 1304. https://doi.org/10.3390/pathogens12111304
APA StyleCardoso, E. R. N., Carvalho, S. F., Dias, S. A., Santos, R. A., Tavares, M. A., Neves, L. C., Paula, W. V. d. F., Pádua, G. T., de Lima, N. J., Paludo, R. L. d. R., Silva, I. S., Bittencourt, R. B. M., dos Santos, G. C., Nascimento, F. G. d. J., de Paula, L. G. F., Dantas-Torres, F., Monteiro, C. M. D. O., & Krawczak, F. d. S. (2023). Susceptibility of Amblyomma sculptum, Vector of Rickettsia rickettsii, Ticks from a National Park and an Experimental Farm to Different Synthetic Acaricides. Pathogens, 12(11), 1304. https://doi.org/10.3390/pathogens12111304