Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease
Abstract
:1. Background
2. Methodology
2.1. Study Design
2.2. Search Strategy and Data Sources
2.3. Study Selection Criteria
- (i)
- Articles including case series, cross-sectional studies, prospective cohort studies related to Mpox outbreaks, and preventive and control strategies;
- (ii)
- Published grey literature, including policy literature, newsletters, and government documents;
- (iii)
- Articles published in English;
- (iv)
- Articles published between 2005 and 2023.
- (i)
- Studies describing parameters that were not of interest or provided irrelevant information;
- (ii)
- Articles that were not peer-reviewed;
- (iii)
- Letter to editors and commentaries;
- (iv)
- Articles for which the full text was not available.
3. Results
3.1. Literature Search
3.2. Research Gap Mapping
- Mpox virology: This includes the sequencing of circulating viral strains to track mutations, the development and validation of diagnostics, and the strategic deployment of preventive measures. Additionally, vaccine development strategies need to be explored.
- Epidemiology: This category encompasses the understanding of virus transmission dynamics, the integration of the One Health approach, the examination of social and behavioral factors associated with Mpox, improved serosurveys, and the implementation of community and wastewater surveillance systems.
- Clinical aspects of infection: Research is needed to enhance our understanding of the clinical manifestations, effective management approaches, and outcomes of antiviral therapies. Additionally, comprehensive disease management strategies need to be developed.
- Operational research requirements: This category highlights the importance of evaluating medical countermeasures, promoting health equity and reducing stigma, ensuring equitable access to resources, capturing qualitative and quantitative data directly from affected communities, investigating vaccination and other preventive strategies, and gaining insight into the attitudes and practices of key communities during public health emergencies.
3.3. Research Priorities
3.3.1. Virological Aspects of Mpox
Circulating Mpox Strains and Variants during Recent Outbreak
Mpox Virus Pathogenesis and Its Clinical Implications
Development of Various Diagnostic Techniques
- (a)
- Development of Mpox diagnosis based on PCR
- (b)
- Development of serology-based diagnosis methods
- ELISA-based approaches using surface protein A27, the most immunogenic protein for OPVs, have been developed. In a similar line of work, an Antibody Immuno Column for Analytical Processes filtration system was developed by Stern et al. [43].
- Dot immunoassay and lateral flow assays (e.g., Orthopox BioThreat® Alert assay, Tetracore, Inc., Rockville, MD, USA) are antibody-based tests that capture and detect Mpox antigens [44].
- (c)
- Genome-sequencing-based detection
Identification of Novel Biomarkers for Mpox Diagnostics
Development of an Appropriate Animal Model for Preclinical Studies in Mpox Virus Disease
3.3.2. Epidemiological Studies
Development of Understanding the Natural History of Mpox
- Incubation period: The incubation period for MPXV typically ranges from 5 to 21 days.
- Eruptive rash: Within 1 to 4 days of the prodromal phase, a painful eruptive rash develops, which is a hallmark symptom of MPXV. The rash typically starts on the face and then spreads to other parts of the body, often accompanied by the formation of blisters. The rash may last for 2 to 4 weeks.
- Treatment and vaccination: There are no specific treatments for MPXV, but supportive measures are available to relieve symptoms. Antiviral medications, such as tecovirimat, may be used to treat severe cases. Vaccination (smallpox) is an effective preventive measure, especially when administered within 4 days of exposure.
- Disease severity and recovery: MPXV is generally considered a mild illness, and most individuals recover within 1 to 2 weeks. However, the disease can be fatal, particularly in vulnerable populations such as children, pregnant women, and individuals with weakened immune systems.
Understanding of MPXV Reservoir
Confirmation of Current Outbreak
Confirmation of the Outbreak of Mpox Is Important
- To identify the source of infection which can help to control and prevent future outbreaks;
- To track the spread of the outbreak so that efficient implementation measures to protect public health can be taken;
- To assess the impact of the outbreak for informing public health interventions and policy decisions;
- This information can be used to take measures to protect public health such as providing vaccinations or treatments and to track down and monitor people who may be at risk of developing the disease.
Transmission and Zoonotic Spillover of Mpox
Sero-Surveillance for Infection
Wastewater Surveillance
One Health Perspective for Mpox
3.3.3. Clinical Aspects of Mpox Infection
Clinical Manifestations of the Disease
Pre-Exposure Therapeutics/Vaccination against Mpox
Validation and Efficacy of Other Poxvirus Vaccines
Management of Mpox Infection
Existing Post-Exposure Drugs
Exploring Monoclonal Antibodies as Post-Exposure Therapeutics
3.3.4. Operational Research Priorities for Disease Outbreak
Resources and Healthcare Facilities for Population at Risk
Identification of Stigma and Coping-Up Strategies
Research Priorities for Enabling Health System and Policies to Be More Adaptive
4. Challenges in Prioritizing Mpox-Related Health Research
- (a)
- Limited data: There are very limited data available on MPXV, specifically, immunology data, neutralizing data, and cross-protection data, making it problematic to understand the disease to frame the effective control policies for the populations at risk.
- (b)
- Complex nature of virus: Moreover, it is a difficult virus to be cultured in the laboratory and no suitable animal models are available for Mpox, which makes it challenging to study the virus in detail to develop new treatments and vaccines.
- (c)
- Rapid genetic variations: The vast, adaptable genome of poxviruses enables substantial genetic variations, leading to rapid alterations in viral behaviors, and, thus, enabling the poxviruses to quickly overcome various host defenses.
- (d)
- Accessibility of populations at risk: Most of the cases of Mpox occur in remote or rural areas, where it is hard to access the populations at risk and conduct surveillance for the disease.
- (e)
- Limited funding: Very limited funding is available for Mpox research, making it difficult to conduct large-scale studies, which are required in order to develop effective prevention and control strategies.
- The formulation of effective genomic surveillance systems, and strengthening molecular epidemiology initiatives to enhance the understanding of the circulating Mpox strain;
- Research to improve our understanding of Mpox pathogenesis;
- Exploring novel biomarkers and the development of serology-based kits for the diagnosis of Mpox infection;
- Granting EUA for POCTs for Mpox during any future outbreak;
- Funding to carry out clinical studies for developing suitable animal models for therapeutics and vaccines against Mpox;
- Studies related to improving existing medical countermeasures against Mpox infection in the immunosuppressed, pregnant, and pediatric population;
- The regular monitoring of the community, and adequate wastewater surveillance systems;
- The integration of the One Health approach in the surveillance process for the early detection of any probable outbreak;
- Gaining insight into the attitudes and practices of key communities during public health emergencies;
- Continuous, evidence-based, and non-discriminatory communication and information on Mpox transmission to the general public;
- Provision for grants and institutional support for developing community-based outbreak response strategies such as for clinical, public health, and bioethics research on Mpox
5. Limitations of this Review Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATI | A-type inclusion body protein |
CDC | Centers for Disease Control and Prevention |
ELISA | Enzyme-linked immunosorbent assay |
EUA | Emergency use authorization |
GISAID | Global Initiative on Sharing All Influenza Data |
LMIC | Low–middle-income countries |
mAbs | Monoclonal antibodies |
MVA | Modified vaccinia Ankara |
MSMs | Men who have sex with men |
OPV | Orthopoxvirus |
ORFs | Open reading frames |
POCT | Point-of-care tests |
TPP | Target product profile |
VACV | Vaccinia virus |
VIGIV | Vaccinia immunoglobulin intravenous formulations |
VTDs | Vaccines, therapeutics, and diagnostics |
VZV | Varicella-zoster virus |
WHO | World Health Organization |
References
- World Health Organization. WHO Recommends New Name for Monkeypox Disease. 2022. Available online: https://www.who.int/news/item/28-11-2022-who-recommends-new-name-for-monkeypox-disease (accessed on 28 November 2022).
- World Health Organization. 2022–23 Mpox (Monkeypox) Outbreak: Global Trends. 2023. Available online: https://worldhealthorg.shinyapps.io/mpx_global/ (accessed on 27 September 2023).
- Karagoz, A.; Tombuloglu, H.; Alsaeed, M.; Tombuloglu, G.; AlRubaish, A.A.; Mahmoud, A.; Smajlović, S.; Ćordić, S.; Rabaan, A.A.; Alsuhaimi, E. Monkeypox (Mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs and molecular diagnosis. J. Infect. Public Health 2023, 16, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Mitjà, O.; Alemany, A.; Marks, M.; Mora, J.I.L.; Rodríguez-Aldama, J.C.; Silva, M.S.T.; Herrera, E.A.C.; Crabtree-Ramirez, B.; Blanco, J.L.; Girometti, N.; et al. Mpox in people with advanced HIV infection: A global case series. Lancet 2023, 401, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Saldana, C.S.; Kelley, C.F.; Aldred, B.M.; Cantos, V.D. Mpox and HIV: A Narrative Review. Curr. HIV/AIDS Rep. 2023, 20, 261–269. [Google Scholar] [CrossRef]
- Petersen, E.; Abubakar, I.; Ihekweazu, C.; Heymann, D.; Ntoumi, F.; Blumberg, L.; Asogun, D.; Mukonka, V.; Lule, S.A.; Bates, M.; et al. Monkeypox-Enhancing public health pre-paredness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Internatl. J. Infect. Dis. 2019, 78, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Zucman, D.; Fourn, E.; Touche, P.; Majerholc, C.; Vallée, A. Monkeypox Vaccine Hesitancy in French Men Having Sex with Men with PrEP or Living with HIV in France. Vaccines 2022, 10, 1629. [Google Scholar] [CrossRef]
- Vallée, A. Need for Vaccination Policies to Face Asymptomatic Monkeypox Virus Infection. Vaccines 2022, 10, 2020. [Google Scholar] [CrossRef]
- Ladnyj, I.D.; Ziegler, P.; Kima, E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972, 46, 593–597. [Google Scholar]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Wang, L.; Shang, J.; Weng, S.; Aliyari, S.R.; Ji, C.; Cheng, G.; Wu, A. Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J. Med. Virol. 2023, 95, e28036. [Google Scholar] [CrossRef]
- Benvenuto, D.; Giovanetti, M.; Salemi, M.; Prosperi, M.; De Flora, C.; Junior Alcantara, L.C.; Angeletti, S.; Ciccozzi, M. The global spread of 2019-nCoV: A molecular evolutionary analysis. Pathog. Glob. Health 2020, 114, 64–67. [Google Scholar] [CrossRef]
- Woolley, S.D.; Lester, R.; Devine, K.; Warrell, C.E.; Groves, N.; Beadsworth, M.B.J. Clade IIb, A.3 monkeypox virus: An imported lineage during a large global outbreak. Lancet Infect. Dis. 2023, 23, 405. [Google Scholar] [CrossRef] [PubMed]
- Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention, Multistate outbreak of monkeypox—Illinois, Indiana and Wisconsin, 2003. MMWR Morbid. Mortal. Wkly. Rep. 2003, 52, 537–540.
- Update: Multistate Outbreak of Monkeypox—Illinois, Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. JAMA 2003, 290, 454–455. [CrossRef]
- Erez, N.; Achdout, H.; Milrot, E.; Schwartz, Y.; Wiener-Well, Y.; Paran, N.; Politi, B.; Tamir, H.; Israely, T.; Weiss, S.; et al. Diagnosis of Imported Monkeypox, Israel, 2018. Emerg. Infect. Dis. 2018, 25, 980–983. [Google Scholar] [CrossRef]
- Yong, S.E.F.; Ng, O.T.; Ho, Z.J.M.; Mak, T.M.; Marimuthu, K.; Vasoo, S.; Yeo, T.W.; Ng, Y.K.; Cui, L.; Ferdous, Z.; et al. Imported Monkeypox, Singapore. Emerg. Infect. Dis. 2020, 26, 1826–1830. [Google Scholar] [CrossRef]
- Hobson, G.; Adamson, J.; Adler, H.; Firth, R.; Gould, S.; Houlihan, C.; Johnson, C.; Porter, D.; Rampling, T.; Ratcliffe, L.; et al. Family cluster of three cases of monkeypox imported from Nigeria to the United Kingdom, May 2021. Eurosurveillance 2021, 26, 2100745. [Google Scholar] [CrossRef]
- Rao, A.K.; Schulte, J.; Chen, T.H.; Hughes, C.M.; Davidson, W.; Neff, J.M.; Markarian, M.; Delea, K.C.; Wada, S.; Liddell, A.; et al. Monkeypox Response Team. Monkeypox in a Traveler Returning from Nigeria-Dallas, Texas, July 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 509–516. [Google Scholar] [CrossRef]
- Costello, V.; Sowash, M.; Gaur, A.; Cardis, M.; Pasieka, H.; Wortmann, G.; Ramdeen, S. Imported Monkeypox from International Traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 2022, 28, 1002–1005. [Google Scholar] [CrossRef]
- Moore, M.J.; Rathish, B.; Zahra, F. Mpox (Monkeypox). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chakraborty, C.; Bhattacharya, M.; Sharma, A.R.; Dhama, K. Evolution, epidemiology, geographical distribution, and mutational landscape of newly emerging monkeypox virus. GeroScience 2022, 44, 2895–2911. [Google Scholar] [CrossRef]
- Shete, A.M.; Yadav, P.D.; Kumar, A.; Patil, S.; Patil, D.Y.; Joshi, Y.; Majumdar, T.; Relhan, V.; Sahay, R.R.; Vasu, M.; et al. Genome characterization of monkeypox cases detected in India: Identification of three sub clusters among A.2 lineage. J. Infect. 2022, 86, 66–117. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Ophinni, Y.; Megawati, D.; Frediansyah, A.; Mamada, S.S.; Salampe, M.; Bin Emran, T.; Winardi, W.; Fathima, R.; Sirinam, S.; et al. Monkeypox: A Comprehensive Review. Viruses 2022, 14, 2155. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.D.; Vasu, M.; Abubaker, F.; Sahay, R.R.; Reghukumar, A.; Krishnan, A.B.; Prabha, K.; Papu, A.K.; Gopalakrishnan, L.G.; Mundangalam, N.; et al. A fatal case of monkeypox virus infection from Kerala India 2022. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Relhan, V.; Sahay, R.R.; Shete, A.M.; Yadav, P.D.; Sahoo, B.; Patil, D.Y.; Kumar, S.; Syamaladevi, K.S.P.; Dar, L.; Mohandas, S.; et al. Clinical presentation, viral kinetics, and management of human monkeypox cases from New Delhi, India 2022. J. Med. Virol. 2023, 95, e28249. [Google Scholar] [CrossRef]
- Meyer, H.; Ropp, S.L.; Esposito, J.J. Gene for A-type inclusion body protein is useful for a polymerase chain reaction assay to differentiate orthopoxviruses. J. Virol. Methods 1997, 64, 217–221. [Google Scholar] [CrossRef]
- Meyer, H.; Damon, I.K.; Esposito, J.J. Orthopoxvirus diagnostics. In Vaccinia Virus and Poxvirology; Humana Press: Totowa, NJ, USA, 2004; pp. 119–133. [Google Scholar]
- Li, Y.; Olson, V.A.; Laue, T.; Laker, M.T.; Damon, I.K. Detection of monkeypox virus with real-time PCR assays. J. Clin. Virol. 2006, 36, 194–203. [Google Scholar] [CrossRef]
- Afonina, I.; Reed, M.; Lusby, E.; Shishkina, I.; Belousov, Y. Minor Groove Binder-Conjugated DNA Probes for Quantitative DNA Detection by Hybridization-Triggered Fluorescence. BioTechniques 2002, 32, 940–949. [Google Scholar] [CrossRef]
- Olson, V.A.; Laue, T.; Laker, M.T.; Babkin, I.V.; Drosten, C.; Shchelkunov, S.N.; Niedrig, M.; Damon, I.K.; Meyer, H. Real-Time PCR System for Detection of Orthopoxviruses and Simultaneous Identification of Smallpox Virus. J. Clin. Microbiol. 2004, 42, 1940–1946. [Google Scholar] [CrossRef]
- Gelaye, E.; Mach, L.; Kolodziejek, J.; Grabherr, R.; Loitsch, A.; Achenbach, J.E.; Nowotny, N.; Diallo, A.; Lamien, C.E. A novel HRM assay for the simultaneous detection and differentiation of eight poxviruses of medical and veterinary importance. Sci. Rep. 2017, 7, srep42892. [Google Scholar] [CrossRef]
- Nitsche, A.; Ellerbrok, H.; Pauli, G. Detection of Orthopoxvirus DNA by Real-Time PCR and Identification of Variola Virus DNA by Melting Analysis. J. Clin. Microbiol. 2004, 42, 1207–1213. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Wilkins, K.; Hughes, C.; Damon, I.K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods 2010, 169, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Maksyutov, R.A.; Gavrilova, E.V.; Shchelkunov, S.N. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J. Virol. Methods 2016, 236, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.M.; Liu, L.; Davidson, W.B.; Radford, K.W.; Wilkins, K.; Monroe, B.; Metcalfe, M.G.; Likafi, T.; Lushima, R.S.; Kabamba, J.; et al. A Tale of Two Viruses: Coinfections of Monkeypox and Varicella Zoster Virus in the Democratic Republic of Congo. Am. J. Trop. Med. Hyg. 2021, 104, 604–611. [Google Scholar] [CrossRef]
- Luciani, L.; Inchauste, L.; Ferraris, O.; Charrel, R.; Nougairède, A.; Piorkowski, G.; Peyrefitte, C.; Bertagnoli, S.; de Lamballerie, X.; Priet, S. A novel and sensitive real-time PCR system for universal detection of poxviruses. Sci. Rep. 2021, 11, 1798. [Google Scholar] [CrossRef] [PubMed]
- Wilber, E.; Rebolledo, P.A.; Kasinathan, V.; Merritt, S.; Titanji, B.K.; Aldred, B.; Kandiah, S.; Ray, S.M.; Sheth, A.N.; Colasanti, J.A.; et al. Utility of a Viral Vesicular Panel Multiplex Polymerase Chain Reaction Assay for the Diagnosis of Monkeypox, Herpes Simplex, and Varicella Zoster Viruses. Open Forum Infect. Dis. 2023, 10, ofad140. [Google Scholar] [CrossRef]
- US-Food and Drug Administration. Xpert Mpox. 2023. Available online: https://www.fda.gov/media/165317/download (accessed on 10 February 2023).
- US-Food and Drug Administration. Cue Mpox (Monkeypox) Molecular Test. 2023. Available online: https://www.fda.gov/media/166359/download (accessed on 17 March 2023).
- Adalja, A.; Inglesby, T. A Novel International Monkeypox Outbreak. Ann. Intern. Med. 2022, 175, 1175–1176. [Google Scholar] [CrossRef]
- Stern, D.; Pauly, D.; Zydek, M.; Miller, L.; Piesker, J.; Laue, M.; Lisdat, F.; Dorner, M.B.; Dorner, B.G.; Nitsche, A. Development of a Genus-Specific Antigen Capture ELISA for Orthopoxviruses—Target Selection and Optimized Screening. PLoS ONE 2016, 11, e0150110. [Google Scholar] [CrossRef]
- Gul, I.; Liu, C.; Yuan, X.; Du, Z.; Zhai, S.; Lei, Z.; Chen, Q.; Raheem, M.A.; He, Q.; Hu, Q.; et al. Current and Perspective Sensing Methods for Monkeypox Virus. Bioengineering 2022, 9, 571. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Li, C.; Xu, R.; Chen, J.; Zhang, J.; Yang, M.; Jiang, Y.; Li, Y.; Zeng, Z.; et al. Development of monoclonal antibody-based antigens detection assays for orthopoxvirus and monkeypox virus. J. Infect. 2022, 85, 702–769. [Google Scholar] [CrossRef]
- National Library of Medicine. NCBI Monkeypox Genome Sequences. 2023. Available online: https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_s=Nucleotide&VirusLineage_ss=Monkeypoxvirus,taxid:10244&CreateDate_dt=2022-04-01T00:00:00.00ZTO2022-12-31T23:59:59.00Z (accessed on 1 May 2023).
- Altindis, M.; Puca, E.; Shapo, L. Diagnosis of monkeypox virus—An overview. Travel Med. Infect. Dis. 2022, 50, 102459. [Google Scholar] [CrossRef]
- Saijo, M.; Ami, Y.; Suzaki, Y.; Nagata, N.; Iwata, N.; Hasegawa, H.; Ogata, M.; Fukushi, S.; Mizutani, T.; Iizuka, I.; et al. Diagnosis and Assessment of Monkeypox Virus (MPXV) Infection by Quantitative PCR Assay: Differentiation of Congo Basin and West African MPXV Strains. Jpn. J. Infect. Dis. 2008, 61, 140–142. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Target Product Profiles for Tests Used for Mpox Diagnosis. 2022. Available online: https://cdn.who.int/media/docs/default-source/documents/health-topics/monkeypox/mpxv-ivds-tpps_v0-2023-01-16.pdf?sfvrsn=7ad34d5b_1 (accessed on 1 June 2023).
- Yefet, R.; Yefet, R.; Friedel, N.; Friedel, N.; Tamir, H.; Tamir, H.; Polonsky, K.; Polonsky, K.; Mor, M.; Mor, M.; et al. Monkeypox infection elicits strong antibody and B cell response against A35R and H3L antigens. IScience 2023, 26, 105957. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, S.I.; Zumbrun, E.E.; Nalca, A. Animal Models of Human Viral Diseases, 2nd ed.; Michael Conn, P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 853–901. ISBN 9780128094686. [Google Scholar] [CrossRef]
- Falendysz, E.A.; Lopera, J.G.; Lorenzsonn, F.; Salzer, J.S.; Hutson, C.L.; Doty, J.; Gallardo-Romero, N.; Carroll, D.S.; Osorio, J.E.; Rocke, T.E. Further Assessment of Monkeypox Virus Infection in Gambian Pouched Rats (Cricetomys gambianus) Using In Vivo Bioluminescent Imaging. PLoS Neglected Trop. Dis. 2015, 9, e0004130. [Google Scholar] [CrossRef] [PubMed]
- Hutson, C.L.; Olson, V.A.; Carroll, D.S.; Abel, J.A.; Hughes, C.M.; Braden, Z.H.; Weiss, S.; Self, J.; Osorio, J.E.; Hudson, P.N.; et al. A prairie dog animal model of systemic orthopoxvirus disease using West African and Congo Basin strains of monkeypox virus. J. Gen. Virol. 2009, 90, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.E.; Iams, K.P.; Meteyer, C.U.; Rocke, T.E. Comparison of Monkeypox Viruses Pathogenesis in Mice by In Vivo Imaging. PLoS ONE 2009, 4, e6592. [Google Scholar] [CrossRef]
- Sbrana, E.; Newman, P.C.; Popov, V.L.; Xiao, S.-Y.; Tesh, R.B.; Mateo, R.I. Clinical laboratory, virologic, and pathologic changes in hamsters experimentally infected with Pirital Virus (Arenaviridae): A rodent model of Lassa fever. Am. J. Trop. Med. Hyg. 2006, 74, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Schultz, D.A.; Sagartz, J.E.; Huso, D.L.; Buller, R.M.L. Experimental infection of an African dormouse (Graphiurus kelleni) with monkeypox virus. Virology 2009, 383, 86–92. [Google Scholar] [CrossRef]
- Sergeev, A.A.; Kabanov, A.S.; Bulychev, L.E.; Pyankov, O.V.; Bodnev, S.A.; Galahova, D.O.; Zamedyanskaya, A.S.; Titova, K.A.; Glotov, A.G.; Taranov, O.S.; et al. The Possibility of Using the ICR Mouse as an Animal Model to Assess Antimonkeypox Drug Efficacy. Transbound. Emerg. Dis. 2016, 63, e419–e430. [Google Scholar] [CrossRef]
- Stabenow, J.; Buller, R.M.; Schriewer, J.; West, C.; Sagartz, J.E.; Parker, S. A mouse model of lethal infection for evaluating prophylactics and therapeutics against Monkeypox virus. J. Virol. 2010, 84, 3909–3920. [Google Scholar] [CrossRef]
- Tesh, R.B.; Watts, D.M.; Sbrana, E.; Siirin, M.; Popov, V.L.; Xiao, S.Y. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus. Emerg. Infect. Dis. 2004, 10, 1563–1567. [Google Scholar] [CrossRef]
- Xiao, S.-Y.; Sbrana, E.; Watts, D.M.; Siirin, M.; da Rosa, A.P.T.; Tesh, R.B. Experimental Infection of Prairie Dogs with Monkeypox Virus. Emerg. Infect. Dis. 2005, 11, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Panag, D.S.; Jain, N.; Katagi, D.; Flores, G.D.J.C.; Macedo, G.D.S.D.; Villa, G.R.D.; Yèche, M.; Mérida, S.Y.V.; Kapparath, S.; Sert, Z.; et al. Variations in national surveillance reporting for Mpox virus: A comparative analysis in 32 countries. Front. Public Health 2023, 11, 1178654. [Google Scholar] [CrossRef] [PubMed]
- Baruch, J.; Rojek, A.; Kartsonaki, C.; Vijayaraghavan, B.K.; Gonçalves, B.P.; Pritchard, M.G.; Merson, L.; Dunning, J.; Hall, M.; Sigfrid, L.; et al. Symptom-based case definitions for COVID-19: Time and geographical variations for detection at hospital admission among 260,000 patients. Influenza Other Respir Viruses 2022, 16, 1040–1050. [Google Scholar] [CrossRef]
- McCarthy, M.W. Therapeutic strategies to address monkeypox-Expert Rev. Anti Infect. Ther. 2022, 20, 1249–1252. [Google Scholar] [CrossRef] [PubMed]
- Doty, J.B.; Malekani, J.M.; Kalemba, L.N.; Stanley, W.T.; Monroe, B.P.; Nakazawa, Y.U.; Mauldin, M.R.; Bakambana, T.L.; Liyandja, T.L.D.; Braden, Z.H.; et al. Assessing Monkeypox Virus Prevalence in Small Mammals at the Human–Animal Interface in the Democratic Republic of the Congo. Viruses 2017, 9, 283. [Google Scholar] [CrossRef]
- Farasani, A. Monkeypox virus: Future role in Human population. J. Infect. Public Health 2022, 15, 1270–1275. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Family Welfare, Government of India. Guidelines for Management of Monkeypox Disease. 2022. Available online: https://main.mohfw.gov.in/sites/default/files/Guidelines%20for%20Management%20of%20Monkeypox%20Disease.pdf (accessed on 1 May 2022).
- Angelo, K.M.; Smith, T.; Camprubí-Ferrer, D.; Balerdi-Sarasola, L.; Menéndez, M.D.; Servera-Negre, G.; Barkati, S.; Duvignaud, A.; Huber, K.L.; Chakravarti, A.; et al. Epidemiological and clinical characteristics of patients with monkeypox in the GeoSentinel Network: A cross-sectional study. Lancet Infect. Dis. 2023, 23, 196–206. [Google Scholar] [CrossRef]
- Grant, R.; Nguyen, L.-B.L.; Breban, R. Modelling human-to-human transmission of monkeypox. Bull. World Health Organ. 2020, 98, 638–640. [Google Scholar] [CrossRef] [PubMed]
- Thornhill, J.P.; Antinori, A.; Orkin, C.M. Monkeypox Virus Infection in Humans across 16 Countries—April-June 2022. N. Engl. J. Med. 2022, 387, 679–691. [Google Scholar] [CrossRef]
- Kumar, M.S.; Bhatnagar, T.; Manickam, P.; Kumar, V.S.; Rade, K.; Shah, N.; Kant, S.; Babu, G.R.; Zodpey, S.; Kumar, C.G.; et al. National sero-surveillance to monitor the trend of SARS-CoV-2 infection transmission in India: Protocol for community-based surveillance. Indian. J. Med. Res. 2020, 151, 419–423. [Google Scholar]
- World Health Organization. Regional Office for Europe & World Organisation for Animal Health. Joint Monthly Surveillance Report on SARS-CoV-2 and Mpox in Animals in the European Region. Regional Office for Europe. 2023. Available online: https://apps.who.int/iris/handle/10665/366325 (accessed on 1 August 2023).
- Wolfe, M.K.; Duong, D.; Hughes, B.; Chan-Herur, V.; White, B.J.; Boehm, A.B. Detection of monkeypox viral DNA in a routine wastewater monitoring program. MedRxiv 2022. [Google Scholar] [CrossRef]
- Mouly, D.; Galey, C.; De Valk, H.; Golliot, F. Virological Monitoring of SARS-CoV-2 in Wastewater in France: Protocol for Its Implementation from a Public Health Perspective-Epidemiological Component; Santé publique France: Saint-Maurice, France, 2021; Volume 29. [Google Scholar]
- La Rosa, G.; Mancini, P.; Veneri, C.; Ferraro, G.B.; Lucentini, L.; Iaconelli, M.; Suffredini, E. Detection of Monkeypox Virus DNA in the Wastewater of an Airport in Rome, Italy. Emerg. Infect. Dis. 2023, 29, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Peiró-Mestres, A.; Fuertes, I.; Camprubí-Ferrer, D.; Marcos, M.; Vilella, A.; Navarro, M.; Rodriguez-Elena, L.; Riera, J.; Català, A.; Martínez, M.J.; et al. Frequent detection of monkeypox virus DNA in saliva, semen, and other clinical samples from 12 patients, Barcelona, Spain, May to June 2022. Eurosurveillance 2022, 27, 2200503. [Google Scholar] [CrossRef]
- Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; D’abramo, A.; Cicalini, S.; Lapa, D.; Pittalis, S.; et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy, May 2022. Eurosurveillance 2022, 27, 2200421. [Google Scholar] [CrossRef]
- World Health Organization. Carnegie India. 2022. Available online: https://carnegieindia.org/2022/08/08/how-who-s-one-health-program-can-help-india-tackle-monkeypox-pub-87638 (accessed on 1 August 2022).
- BMJ. Best Practice. Etiology. 2023. Available online: https://bestpractice.bmj.com/topics/en-us/1611/diagnosis-approach (accessed on 1 August 2023).
- Prow, N.A.; Liu, L.; Nakayama, E.; Cooper, T.H.; Yan, K.; Eldi, P.; Hazlewood, J.E.; Tang, B.; Le, T.T.; Setoh, Y.X.; et al. A vaccinia-based single vector construct multi-pathogen vaccine protects against both Zika and chikungunya viruses. Nat. Commun. 2018, 9, 1230. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. 2022 Mpox Outbreak Global Map. 2022. Available online: https://www.cdc.gov/poxvirus/mpox/response/2022/world-map.html (accessed on 1 July 2023).
- Wisconsin Department of Health Services. Mpox: Vaccine Information. 2022. Available online: https://dhs.wisconsin.gov/mpox/vaccine.htm (accessed on 1 May 2022).
- Sang, Y.; Zhang, Z.; Liu, F.; Lu, H.; Yu, C.; Sun, H.; Long, J.; Cao, Y.; Mai, J.; Miao, Y.; et al. Monkeypox virus quadrivalent mRNA vaccine induces immune response and protects against vaccinia virus. Signal Transduct. Target. Ther. 2023, 8, 172. [Google Scholar] [CrossRef]
- Noyce, R.S.; Westfall, L.W.; Fogarty, S.; Gilbert, K.; Mpanju, O.; Stillwell, H.; Esparza, J.; Daugherty, B.; Koide, F.; Evans, D.H.; et al. Single Dose of Recombinant Chimeric Horsepox Virus (TNX-801) Vaccination Protects Macaques from Lethal Monkeypox Challenge. Viruses 2023, 15, 356. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Y.; Jiang, L.; Luo, L.; Wang, Y.; Wang, H.; Han, X.; Zhao, J.; Gu, G.; Fang, M.; et al. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Emerg. Microbes Infect. 2023, 12, 2204151. [Google Scholar] [CrossRef]
- Mucker, E.M.; Golden, J.W.; Hammerbeck, C.D.; Kishimori, J.M.; Royals, M.; Joselyn, M.D.; Ballantyne, J.; Nalca, A.; Hooper, J.W. A Nucleic Acid-Based Orthopoxvirus Vaccine Targeting the Vaccinia Virus L1, A27, B5, and A33 Proteins Protects Rabbits against Lethal Rabbitpox Virus Aerosol Challenge. J. Virol. 2022, 96, e0150421. [Google Scholar] [CrossRef]
- Ezat, A.A.; Abduljalil, J.M.; Elghareib, A.M.; Samir, A.; Elfiky, A.A. The discovery of novel antivirals for the treatment of mpox: Is drug repurposing the answer? Expert Opin. Drug Discov. 2023, 18, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Siegrist, E.A.; Sassine, J. Antivirals with Activity Against Mpox: A Clinically Oriented Review. Clin. Infect. Dis. 2022, 76, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Bruno, G.; Buccoliero, G.B. Antivirals against Monkeypox (Mpox) in Humans: An Updated Narrative Review. Life 2023, 13, 1969. [Google Scholar] [CrossRef]
- Magee, W.C.; Hostetler, K.Y.; Evans, D.H. Mechanism of Inhibition of Vaccinia Virus DNA Polymerase by Cidofovir Diphosphate. Antimicrob. Agents Chemother. 2005, 49, 3153–3162. [Google Scholar] [CrossRef] [PubMed]
- Mazurkov, O.Y.; Shishkina, L.N.; Bormotov, N.I.; Skarnovich, M.O.; Serova, O.A.; Mazurkova, N.A.; Chernonosov, A.A.; Tikhonov, A.Y.; Selivanov, B.A. Estimation of Absolute Bio-availability of the Chemical Substance of the Anti-Smallpox Preparation NIOCH-14 in Mice. Bull. Exp. Biol. Med. 2020, 170, 207–210. [Google Scholar] [CrossRef]
- Xiong, X.; Smith, J.L.; Chen, M.S. Effect of incorporation of cidofovir into DNA by human cytomegalovirus DNA polymerase on DNA elongation. Antimicrob. Agents Chemother. 1997, 41, 594–599. [Google Scholar] [CrossRef]
- Grosenbach, D.W.; Honeychurch, K.; Rose, E.A.; Chinsangaram, J.; Frimm, A.; Maiti, B.; Lovejoy, C.; Meara, I.; Long, P.; Hruby, D.E. Oral Tecovirimat for the Treatment of Smallpox. N. Engl. J. Med. 2018, 379, 44–53. [Google Scholar] [CrossRef]
- Hopkins, R.J.; Kramer, W.G.; Blackwelder, W.C.; Ashtekar, M.; Hague, L.; Roche, S.D.W.-L.; Berezuk, G.; Smith, D.; Leese, P.T. Safety and Pharmacokinetic Evaluation of Intravenous Vaccinia Immune Globulin in Healthy Volunteers. Clin. Infect. Dis. 2004, 39, 759–766. [Google Scholar] [CrossRef]
- Mucker, E.M.; Wollen-Roberts, S.E.; Kimmel, A.; Shamblin, J.; Sampey, D.; Hooper, J.W. Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Neglected Trop. Dis. 2018, 12, e0006581. [Google Scholar] [CrossRef]
- BioFactura, Inc., Frederick, Maryland, United States of America. 2022. Available online: https://www.biofactura.com/ (accessed on 1 July 2022).
- World Health Organization. Target Product Profile (TPP) Therapeutics for Monkeypox Cases. 2022. Available online: https://cdn.who.int/media/docs/default-source/blueprint/who_monkeypox_therapeutic_draft-tpp_august-2022.pdf?sfvrsn=5a0a96be_3 (accessed on 1 August 2022).
- World Health Organization. WHO Publishes Public Health Advice on Preventing and Addressing Stigma and Discrimination Related to Mpox. 2022. Available online: https://www.who.int/news/item/11-12-2022-who-publishes-public-health-advice-on-preventing-and-addressing-stigma-and-discrimination-related-to-mpox (accessed on 1 December 2022).
- Centers for Disease Control and Prevention. Mpox Equity and Anti-Stigma Toolkit. 2023. Available online: https://www.cdc.gov/poxvirus/mpox/resources/toolkits/equity.html (accessed on 1 September 2023).
- Lai, C.-C.; Hsu, C.-K.; Yen, M.-Y.; Lee, P.-I.; Ko, W.-C.; Hsueh, P.-R. Monkeypox: An emerging global threat during the COVID-19 pandemic. J. Microbiol. Immunol. Infect. 2022, 55, 787–794. [Google Scholar] [CrossRef]
- Farahat, R.A.; Abdelaal, A.; Shah, J.; Ghozy, S.; Sah, R.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J.; McHugh, T.D.; Leblebicioglu, H. Monkeypox outbreaks during COVID-19 pandemic: Are we looking at an independent phenomenon or an overlapping pandemic? Ann. Clin. Microbiol. Antimicrob. 2022, 21, 26. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, S.; Agarwal, P.; Nigam, K.; Vijay, N.; Yadav, P.; Gupta, N. Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease. Pathogens 2023, 12, 1352. https://doi.org/10.3390/pathogens12111352
Aggarwal S, Agarwal P, Nigam K, Vijay N, Yadav P, Gupta N. Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease. Pathogens. 2023; 12(11):1352. https://doi.org/10.3390/pathogens12111352
Chicago/Turabian StyleAggarwal, Sumit, Pragati Agarwal, Kuldeep Nigam, Neetu Vijay, Pragya Yadav, and Nivedita Gupta. 2023. "Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease" Pathogens 12, no. 11: 1352. https://doi.org/10.3390/pathogens12111352
APA StyleAggarwal, S., Agarwal, P., Nigam, K., Vijay, N., Yadav, P., & Gupta, N. (2023). Mapping the Landscape of Health Research Priorities for Effective Pandemic Preparedness in Human Mpox Virus Disease. Pathogens, 12(11), 1352. https://doi.org/10.3390/pathogens12111352