Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy
Abstract
:1. Introduction
2. Fungal Leaf Diseases
2.1. Powdery Mildew
2.2. Cercospora Leaf Spot
2.3. Other Fungal Leaf Diseases
2.4. Wood Decay Fungi
2.4.1. Brown Cubical Rot
2.4.2. White Rot and Other Wood Rot Fungi
2.5. Canker and Branch Dieback
2.6. Decay of Wood Roots
2.7. Verticillium Wilt
2.8. Damping-Off
3. Bacterial Diseases
3.1. Wood Galls of Uncertain Aetiology or Bacterial Cankers Caused by Rhizobium radiobacter?
3.2. Bacterial Leaf Infections
4. Current Concerns: Potential Fungal Diseases Vectored by Xylosandrus compactus
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tous, J.; Romero, A.; Batlle, I. The Carob tree: Botany, horticulture, and genetic resources. In Horticultural Reviews Volume 41, 1st ed.; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 385–446. [Google Scholar] [CrossRef]
- Ramón-Laca, L.; Mabberley, D.J. The ecological status of the carob-tree (Ceratonia siliqua, Leguminosae) in the Mediterranean. Bot. J. Linn. Soc. 2004, 144, 431–436. [Google Scholar] [CrossRef]
- Zohary, D. Domestication of the carob (Ceratonia siliqua L.). Isr. J. Plant Sci. 2002, 50, S141–S145. [Google Scholar] [CrossRef]
- Tzatzani, T.T.; Ouzounidou, G. Carob as an agrifood chain product of cultural, agricultural and economic importance in the Mediterranean region. J. Innov. Econ. Manag. 2023, 42, 127–147. [Google Scholar] [CrossRef]
- Rankou, H.; M’Sou, S.; Chadburn, H.; Rivers, M.; Ouhammou, A.; Martin, G. Ceratonia siliqua. The IUCN Red List of Threatened Species. 2017. Available online: https://www.iucnredlist.org/species/202951/112823254 (accessed on 7 March 2023).
- Talhouk, S.N.; Van Breugel, P.; Zurayk, R.; Al-Khatib, A.; Estephan, J.; Ghalayini, A.; Debian, N.; Lychaa, D. Status and prospects for the conservation of remnant semi-natural carob Ceratonia siliqua L. populations in Lebanon. For. Ecol. Manag. 2005, 206, 49–59. [Google Scholar] [CrossRef]
- Gioxari, A.; Amerikanou, C.; Nestoridi, I.; Gourgari, E.; Pratsinis, H.; Kalogeropoulos, N.; Andrikopoulos, N.K.; Kaliora, A.C. Carob: A sustainable opportunity for metabolic health. Foods 2022, 11, 2154. [Google Scholar] [CrossRef]
- Issaoui, M.; Flamini, G.; Delgado, A. Sustainability opportunities for Mediterranean food products through new formulations based on carob flour (Ceratonia siliqua L.). Sustainability 2021, 13, 8026. [Google Scholar] [CrossRef]
- Correia, P.J.; Guerreiro, J.F.; Pestana, M.; Martins-Loução, M.A. Management of carob tree orchards in Mediterranean ecosystems: Strategies for a carbon economy implementation. Agrofor. Syst. 2017, 91, 295–306. [Google Scholar] [CrossRef]
- Singh, S. Carob Market Research Report: Information by Application (Food & Beverages, Animal Feed and Personal Care), by Form (Powder and Gum), by Category (Conventional and Organic), and by Region (North America, Europe, Asia-Pacific, and Rest of the World)—Market Forecast Till 2032. MRFR/F-B & N/6308-CR. 2022, p. 110. Available online: https://www.marketresearchfuture.com/reports/carob-market-7778 (accessed on 11 July 2023).
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2017. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 August 2023).
- ISTAT (Istituto Nazionale di Statistica). Altre Colture Permanenti Per Consumo Umano. 2022. Available online: http://dati.istat.it/Index.aspx?QueryId=33705# (accessed on 1 August 2023).
- Gugliuzzo, A.; Mazzeo, G.; Mansour, R.; Tropea Garzia, G. Carob pests in the Mediterranean region: Bio-ecology, natural enemies and management options. Phytoparasitica 2019, 47, 605–628. [Google Scholar] [CrossRef]
- Longo, S.; Tirrò, A. Problematiche fitosanitarie del carrubo in Sicilia. Tec. Agric. 2005, 3, 9–20. [Google Scholar]
- Trapero, A.; Varo, R.; Sánchez, M.E.; Roca, L.F.; Moral, A.L.; Brisach, C.A. Enfermedades del algarrobo (Ceratonia siliqua L.). Rev. Frutic. 2022, 87, 6–31. [Google Scholar]
- Montemartini, L. Note di fitopatologia. Riv. Di Patol. Veg. 1928, 18, 1–7. [Google Scholar]
- Graniti, A. La nebbia del carrubo. Inform. Fitopatol. 1959, 9, 317. [Google Scholar]
- Braun, U.; Cook, R.T.A. Taxonomic Manual of the Erysiphales (Powdery Mildews). CBS Biodivers. Ser. 2012, 11, 707. [Google Scholar]
- Perrotta, G.; Cacciola, S.O.; Pane, A.; Faedda, R. Outbreak of a leaf disease caused by Pseudocercospora ceratoniae on carob in Sicily. Plant Dis. 1998, 82, 1401. [Google Scholar] [CrossRef] [PubMed]
- Bernicchia, A. Fungi Europaei 10: Polyporaceae s.l.; Candusso Edizioni: Alassio, Italy, 2005; p. 808. [Google Scholar]
- Sillo, F.; Gianchino, C.; Giordano, L.; Mari, M.; Gonthier, P. Local epidemiology of the wood decay agent Laetiporus sulphureus in carob stands in Sicily. For. Pathol. 2018, 48, e12414. [Google Scholar] [CrossRef]
- Venturella, G.; Gargano, M.L.; Raimondo, F.M. Wood-decay fungi on trees of the city of Palermo (Sicily, Italy). Borziana 2020, 1, 109–119. [Google Scholar] [CrossRef]
- Berkeley, M.J. Some Notes upon the Cryptogamic Portion of the Plants Collected in Portugal 1842-50; William Pamplin: London, UK, 1853. [Google Scholar]
- Carrieri, R.; Carotenuto, G.; Lahoz, E. Characterization and pathogenicity of Pestalotiopsis uvicola causing black leaf spot on carob (Ceratonia siliqua L.) in Italy. Eur. J. Plant Pathol. 2013, 137, 655–661. [Google Scholar] [CrossRef]
- De Cleene, M.; De Ley, J. The host range of crown gall. Bot. Rev. 1976, 42, 389–466. [Google Scholar] [CrossRef]
- Young, J.M.; Kuykendall, L.D.; Martínez-Romero, E.; Kerr, A.; Sawada, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar] [CrossRef]
- Ercolani, G.L.; Caldarola, M. Pseudomonas ciccaronei sp. n., agente di una maculatura fogliare del Carrubo in Puglia. Phytopath. Mediterr. 1972, 11, 71–73. [Google Scholar]
- Young, J.M.; Dye, D.W.; Bradbury, J.F.; Panagopoulos, C.G.; Robbs, C.F. A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 1978, 21, 153–177. [Google Scholar] [CrossRef]
- Scalia, G. I funghi della Sicilia orientale e principalmente della regione Etnea III. Atti Della Accad. Gioenia Di Sci. Nat. Catania 1902, 15, 1–17. [Google Scholar]
- Granata, G.; Faedda, R.; Sidoti, A. First report of canker disease caused by Diplodia olivarum on carob tree in Italy. Plant Dis. 2011, 95, 776. [Google Scholar] [CrossRef] [PubMed]
- Gugliuzzo, A.; Criscione, G.; Biondi, A.; Aiello, D.; Vitale, A.; Polizzi, G.; Tropea Grazia, G. Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS ONE 2020, 15, e0239011. [Google Scholar] [CrossRef] [PubMed]
- Agrios, G.N. The powdery mildews. In Plant Pathology, 4th ed.; Academic Press: San Diego, CA, USA, 1997; pp. 295–298. [Google Scholar]
- Goor, A.; Ticho, R.J.; Garmi, Y.G. The Carob; Agric. Publications Section, Ministry of Agriculture: Tel Aviv, Israel, 1958; p. 72.
- Martorell, J. El algarrobo, víctima del llamado desarrollo agrario. In Congreso Int. de Tecnología de Alimentos Naturales y Biológicos; Ministerio de Agricultura, Pesca y Alimentación (MAPA): Madrid, Spain, 1987; pp. 62–84. [Google Scholar]
- Deighton, F.C. Studies on Cercospora and allied genera. VI. Pseudocercospora Speg., Pantospora Cif., and Cercoseptoria Petr. Mycol. Papers 1976, 140, 1–168. [Google Scholar]
- Chen, Q.; Bakhshi, M.; Balci, Y.; Broders, K.D.; Cheewangkoon, R.; Chen, S.F.; Fan, X.L.; Gramaje, D.; Halleen, F.; Jung, M.H.; et al. Genera of phytopathogenic fungi: GOPHY 4. Stud. Mycol. 2022, 101, 417–564. [Google Scholar] [CrossRef]
- Patouillard, N. Additions au Catalogue des Champignons de la Tunisie-Cercospora ceratoniae n.sp.-Alger. Bull. Soc. Mycol. Fr. 1903, 19, 260. [Google Scholar]
- Basim, H.; Basim, E.; Baki, D.; Abdulai, M.; Öztürk, N.; Balkic, R. Identification, and characterization of Alternaria alternata (Fr.) Keissler causing Ceratonia blight disease of carob (Ceratonia siliqua L.) in Turkey. Eur. J. Plant Pathol. 2018, 151, 73–86. [Google Scholar] [CrossRef]
- Louanchi, M.; Zazoua, M.; Hammad, M.; Alem, M.; Kerkoud, M.; Keddad, A.; Bouznad, Z. First report of necrotic leaf spot on Ceratonia siliqua caused by Pestalotiopsis biciliata. J. Plant Pathol. 2021, 103, 1081. [Google Scholar] [CrossRef]
- Trapero, A.; Romero, M.A.; Varo, R.; Sánchez, M.E. First report of Pestalotiopsis maculans causing necrotic leaf spots in nursery plants of Arbutus unedo and Ceratonia siliqua in Spain. Plant Dis. 2003, 87, 1263. [Google Scholar] [CrossRef]
- Crous, P.W.; Groenewald, J.Z. They seldom occur alone. Fungal Biol. 2016, 120, 1392–1415. [Google Scholar] [CrossRef] [PubMed]
- Passerini, G. Fungi Parmensi enumerati. Atti Soc. Crittogamologica Ital. 1879, 2, 20–47. [Google Scholar]
- Bari, E.; Karimi, K.; Aghajani, H.; Schmidt, O.; Zaheri, S.; Tajick-Ghanbary, M.A.; Juybari, H.Z. Characterizations of tree-decay fungi by molecular and morphological investigations in an Iranian Alamdardeh forest. Maderas. Ciênc. Tecnol. 2021, 23, 1–12. [Google Scholar] [CrossRef]
- Langer, G.J.; Bubkamp, J.; Terhonen, E.; Blumenstein, K. Chapter 10—Fungi inhabiting woody tree tissues. In Forest Microbiology; Asiegbu, F.O., Kovalchuk, A., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 1, pp. 175–205. [Google Scholar] [CrossRef]
- Song, J.; Cui, B.K. Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol. Biol. 2017, 17, 102. [Google Scholar] [CrossRef] [PubMed]
- Schwarze, F.W.; Engels, J.; Mattheck, C. Fungal Strategies of Wood Decay in Trees; Springer: Berlin/Heidelberg, Germany, 2000; p. 185. [Google Scholar] [CrossRef]
- Dai, Y.C.; Cui, B.K.; Yuan, H.S.; Li, B.D. Pathogenic wood–decaying fungi in China. For. Pathol. 2007, 37, 105–120. [Google Scholar] [CrossRef]
- Ota, Y.; Hattori, T.; Banik, M.T.; Hagedorn, G.; Sotome, K.; Tokuda, S.; Abe, Y. The genus Laetiporus (Basidiomycota, Polyporales) in East Asia. Mycol. Res. 2009, 113, 1283–1300. [Google Scholar] [CrossRef]
- Petrović, J.; Glamočlija, J.; Stojković, D.S.; Ćirić, A.; Nikolić, M.; Bukvički, D.; Guerzoni, M.E.; Soković, M.D. Laetiporus sulphureus, edible mushroom from Serbia: Investigation on volatile compounds, in vitro antimicrobial activity and in situ control of Aspergillus flavus in tomato paste. Food Chem. Toxicol. 2013, 59, 297–302. [Google Scholar] [CrossRef]
- Petrović, J.; Stojković, D.; Reis, F.S.; Barros, L.; Glamočlija, J.; Ćirić, A.; Ferreira, I.C.; Soković, M. Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food Funct. 2014, 5, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Horst, R.K. Field Manual of Diseases on Trees and Shrubs; Springer: Dordrecht, The Netherlands, 2013; p. 196. [Google Scholar] [CrossRef]
- Devkota, P.; Hammerschmidt, R. The infection process of Armillaria mellea and Armillaria solidipes. Physiol. Mol. Plant Pathol. 2020, 112, 101543. [Google Scholar] [CrossRef]
- Pérez-Jiménez, R.M. A review of the biology and pathogenicity of Rosellinia necatrix—The cause of white root rot disease of fruit trees and other plants. J. Phytopathol. 2006, 154, 257–266. [Google Scholar] [CrossRef]
- Loreto, F.; Burdsall, H.H.; Tirrò, A. Armillaria infection and water stress influence gas exchange properties of Mediterranean trees. HortScience 1993, 28, 222–224. [Google Scholar] [CrossRef]
- Castello, I.; D’Emilio, A.; Baglieri, A.; Polizzi, G.; Vitale, A. Management of Chrysanthemum Verticillium wilt through VIF soil mulching combined with fumigation at label and reduced rates. Agriculture 2022, 12, 141. [Google Scholar] [CrossRef]
- Keykhasaber, M.; Thomma, B.P.H.J.; Hiemstra, J.A. Verticillium wilt caused by Verticillium dahliae in woody plants with emphasis on olive and shade trees. Eur. J. Plant Pathol. 2018, 150, 21–37. [Google Scholar] [CrossRef]
- McCain, A.H.; Raabe, R.D.; Wilhelm, S. Plants Resistant to or Susceptible to Verticillium Wilt; University of California Leaflet: Berkeley, CA, USA, 1981. [Google Scholar]
- López-Escudero, F.J.; Mercado-Blanco, J. Verticillium wilt of olive: A case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 2011, 344, 1–50. [Google Scholar] [CrossRef]
- Montes-Osuna, N.; Mercado-Blanco, J. Verticillium wilt of olive and its control: What did we learn during the last decade? Plants 2020, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, J.R.; Dürr, C.; Schwank, A.A.; Robin, M.H.; Sarthou, J.P.; Cellier, V.; Messéan, A.; Aubertot, J.-N. Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 2017, 37, 10. [Google Scholar] [CrossRef]
- Savastano, L. Tumori nei coni gemmari nel carrubo. Boll. Della Soc. Dei Nat. 1888, II, 247–254. [Google Scholar]
- Al-Karablieh, N.; Khlaif, H. Occurrence and distribution of crown gall disease in Jordan. Phytopathol. Mediterr. 2002, 41, 226–234. [Google Scholar] [CrossRef]
- Gugliuzzo, A.; Aiello, D.; Biondi, A.; Giurdanella, G.; Siscaro, G.; Zappalà, L.; Vitale, A.; Tropea Garzia, G.; Polizzi, G. Microbial mutualism suppression by Trichoderma and Bacillus species for controlling the invasive ambrosia beetle Xylosandrus compactus. Biol. Control 2022, 170, 104929. [Google Scholar] [CrossRef]
- Urvois, T.; Auger-Rozenberg, M.A.; Roques, A.; Rossi, J.P.; Kerdelhue, C. Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Sci. Rep. 2021, 11, 1139. [Google Scholar] [CrossRef]
- Bateman, C.; Šigut, M.; Skelton, J.; Smith, K.E.; Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 2016, 45, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Hulcr, J.; Stelinski, L.L. The Ambrosia symbiosis: From evolutionary ecology to practical management. Annu. Rev. Entomol. 2017, 62, 285–303. [Google Scholar] [CrossRef] [PubMed]
- Bosso, L.; Senatore, M.; Varlese, R.; Ruocco, M.; Garonna, A.P.; Bonanomi, G.; Mazzoleni, S.; Cristinzio, G. Severe outbreak of Fusarium solani on Quercus ilex vectored by Xylosandrus compactus. J. Plant Pathol. 2012, 94, 99. [Google Scholar] [CrossRef]
- Eskalen, A.; Stouthamer, R.; Lynch, S.C.; Twizeyimana, M.; Gonzalez, A.; Thibault, T. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Dis. 2013, 97, 938–951. [Google Scholar] [CrossRef]
- Vannini, A.; Contarini, M.; Faccoli, M.; Valle, M.D.; Rodriguez, C.M.; Mazzetto, T.; Guarneri, D.; Vettraino, A.M.; Speranza, S. First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bull. 2017, 47, 100–103. [Google Scholar] [CrossRef]
- Morales-Rodríguez, C.; Sferrazza, I.; Aleandri, M.P.; Dalla Valle, M.; Speranza, S.; Contarini, M.; Vannini, A. The fungal community associated with the ambrosia beetle Xylosandrus compactus invading the mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. Fungal. Biol. 2021, 125, 12–24. [Google Scholar] [CrossRef]
- Gugliuzzo, A.; Biedermann, P.H.W.; Carrillo, D.; Castrillo, L.A.; Egonyu, J.P.; Gallego, D.; Haddi, K.; Hulcr, J.; Jactel, H.; Kajimura, H.; et al. Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles. J. Pest Sci. 2021, 94, 615–637. [Google Scholar] [CrossRef]
- McPherson, B.A.; Wood, D.L.; Erbilgin, N.; Bonello, P. Ambrosia beetles and their associated fungi appear to accelerate mortality in Phytophthora ramorum infected coast live oaks. In Proceedings of the Sudden Oak Death Fourth Science Symposium, Santa Cruz, CA, USA, 15–18 June 2009; USDA: Washington, DC, USA, 2010; p. 347. [Google Scholar]
- Carreras-Villaseñor, N.; Rodríguez-Haas, J.B.; Martínez-Rodríguez, L.A.; Pérez-Lira, A.J.; Ibarra-Laclette, E.; Villafán, E.; Castillo-Díaz, A.P.; Ibarra-Juárez, L.A.; Carrillo-Hernández, E.D.; Sánchez-Rangel, D. Characterization of two Fusarium solani species complex isolates from the Ambrosia beetle Xylosandrus morigerus. J. Fungi 2022, 8, 231. [Google Scholar] [CrossRef]
Issue | Disease Common Name/Causal Agent(s) | Diffusion | References |
---|---|---|---|
Foliar diseases by fungi | Powdery mildew (Pseudoidium ceratoniae) | 1 | [14,16,17,18] |
Cercospora leaf spot (Pseudocercospora ceratoniae) | 1 | [14,19] | |
Wood decay or rot fungi | Brown cubical rot (Laetiporus sulphureus) | 2 | [14,20,21] |
White rot (Fomes, Ganoderma, and Schizophyllum spp.) | 3 | [14,22]; This review | |
Other fungal leaf diseases | Black leaf spot (Pestalotiopsis spp.; Dothiora ceratoniae; Septoria ceratoniae) | 4 | [14,23,24] |
Bacterial diseases | Galls or tumors [Rhizobium radiobacter] | 4 | [25,26]; This review |
Bacterial necrotic leaf spot (Pseudomonas syringae pv. ciccaronei) | 4 | [14,27,28] | |
Canker and branch dieback | Shoot, branch, and twig dieback; cankers (Botryodiplodia aterrima, Botryosphaeria dothidea, and Diplodia olivarum) | 4 | [29,30] |
Ambrosia fungi | Fusarium solani transmitted by Xylosandrus compactus * | 1–5 * | [13,31] |
Wood root rot | Armillaria mellea (Basidiomycota) and Rosellinia necatrix | 5 | - |
Verticillium wilt | Vascular wilt (Verticillium dahliae) | 5 | - |
Damping-off | Phytophthora, Pythium, Fusarium, Rhizoctonia, and Neonectria spp. | 5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castello, I.; Polizzi, G.; Vitale, A. Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy. Pathogens 2023, 12, 1357. https://doi.org/10.3390/pathogens12111357
Castello I, Polizzi G, Vitale A. Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy. Pathogens. 2023; 12(11):1357. https://doi.org/10.3390/pathogens12111357
Chicago/Turabian StyleCastello, Ivana, Giancarlo Polizzi, and Alessandro Vitale. 2023. "Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy" Pathogens 12, no. 11: 1357. https://doi.org/10.3390/pathogens12111357
APA StyleCastello, I., Polizzi, G., & Vitale, A. (2023). Major Pathogens Affecting Carob in the Mediterranean Basin: Current Knowledge and Outlook in Italy. Pathogens, 12(11), 1357. https://doi.org/10.3390/pathogens12111357