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Abstract: The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that
infected millions of people and caused significant deaths. COVID-19 continues to be a major threat,
and there is a need to deepen our understanding of the virus and its mechanisms of infection. To
study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected
vs. uninfected Calu-3 cells. Total RNA was extracted from infected (0.5 MOI) and control Calu-3 cells
and converted to cDNA. Sequencing was performed, and the obtained reads were quality-analyzed
and pre-processed. Differential expression was assessed with the EdgeR package, and functional
enrichment was performed in EnrichR for Gene Ontology, KEGG pathways, and WikiPathways.
A total of 1040 differentially expressed genes were found in infected vs. uninfected Calu-3 cells,
of which 695 were up-regulated and 345 were down-regulated. Functional enrichment analyses
revealed the predominant up-regulation of genes related to innate immune response, response to
virus, inflammation, cell proliferation, and apoptosis. These transcriptional changes following SARS-
CoV-2 infection may reflect a cellular response to the infection and help to elucidate COVID-19
pathogenesis, in addition to revealing potential biomarkers and drug targets.

Keywords: COVID-19; Calu-3 cells; host-pathogen interaction; RNA-seq; transcriptome

1. Introduction

The COVID-19 pandemic has become a global health crisis with profound implications
for public health and the economy. Since its initial outbreak in late 2019, the virus has
rapidly spread across continents, infecting millions of individuals and causing signifi-
cant deaths. The World Health Organization (WHO) declared COVID-19 a pandemic on
11 March 2020, reflecting the unprecedented scale and severity of this disease that, even
after the discontinuation of the Public Health Emergency of International Concern, is still
a major threat [1]. This health crisis has underscored the urgent need to deepen our un-
derstanding of the virus and its mechanisms of infection to develop effective prevention
strategies, diagnostics, and therapeutics [1,2].

In this context, the Calu-3 cell line has emerged as a valuable in vitro model for
studying the SARS-CoV-2 virus and its implications in COVID-19. Calu-3 cells are de-
rived from human lung adenocarcinoma and exhibit characteristics that closely resemble
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airway epithelial cells, which make them a biologically relevant model for respiratory
infections [3]. These cells express the angiotensin-converting enzyme 2 (ACE2) receptor
and dipeptidyl peptidase-4 (DPP-4), which serve as primary entry points for SARS-CoV-2
into host cells [4], and the proteases TMPRSS2 and furin, required for the cleavage and
activation of the Spike (S) protein [5]. Such features allow for efficient viral infection and
replication, making Calu-3 cells a suitable model for the analysis of SARS-CoV-2 replica-
tion dynamics, host immune responses, and drug efficacy [6]. Furthermore, Calu-3 cells
form polarized monolayers with functional cilia and mucus production, replicating critical
features of the respiratory epithelium and enabling the investigation of viral transmission
and pathogenesis in the context of the airway microenvironment [7].

Calu-3 cells have provided insights into the viral cycle, virus-induced host immune
responses, and the identification of potential therapeutic targets [2,8]. Consequently, these
cells have been employed to evaluate antiviral compounds, assess the neutralizing capacity
of antibodies, and study the effect of viral mutations on infectivity [9,10], further evidenced
by their compatibility with high-throughput screening assays, facilitating the identification
of novel antiviral agents and the evaluation of drug repurposing strategies [11].

The study of transcriptomes provides a comprehensive snapshot of gene expression
and reflects the dynamic activity of genes within a cell and the molecular mechanisms
underlying SARS-CoV-2 viral infections. Analyzing the transcriptome, researchers can
identify genes differentially expressed upon viral infection, unravel signaling pathways
modulated during infection, and gain insights into the host’s immune response to the
virus. By comprehensively characterizing the transcriptomic changes induced by viral
infections, we can enhance our understanding of the intricate interplay between the virus
and host cells, leading to valuable insights into the pathogenesis of COVID-19 [12]. So far,
transcriptome analysis of SARS-CoV-2-infected cells has generally shown cellular responses
related to IFN signaling, innate immunity, inflammation, and defense against virus [13–17].
Although these responses constitute hallmarks of viral infections, the activation degree
of functional categories and signaling pathways can vary [18]. Moreover, differences
in the infection protocols and in the time between infection and cell lyses can lead to
distinct results.

This work sought to analyze changes in the transcriptome of Calu-3 cells in response
to 24 h SARS-CoV-2 infection, understand the mechanisms of immune response to viral
infection, and reveal potential drug targets or biomarkers that could be used in the diagnosis
or prognosis of COVID-19.

2. Materials and Methods
2.1. Virus and Cells

The SARS-CoV-2 strain (Wuhan/B.1.212) was obtained from the nasopharyngeal swab
of a COVID-19 patient diagnosed by RT-qPCR at the Hematology and Hemotherapy Center
of Ceará (HEMOCE) in Fortaleza, Brazil. The virus was isolated from Vero E6 cells as
described by Harcourt et al. [19] and sequenced by the Genomic Surveillance Network
of the Oswaldo Cruz Foundation (Fiocruz-Ce) using a COVIDSeqTM kit (Illumina, San
Diego, CA, USA). Calu-3 cells were obtained from the Rio de Janeiro Cell Bank (BCRJ—Rio
de Janeiro, Brazil) and cultured in Dulbecco Modified Eagle Medium (DMEM; VitroCell,
Campinas, SP, Brazil) supplemented with 1% penicillin–streptomycin and 20% Fetal Bovine
Serum (FSB; VitroCell, Campinas, SP, Brazil) at 37 ◦C in a 5% CO2 incubator, according to
the supplier’s instructions. The cells were confirmed free of mycoplasma contamination and
authenticated based on their morphology and growth characteristics. Calu-3 is not listed as
a commonly misidentified cell line according to the International Cell Line Authentication
Committee (ICLAC) [20].

2.2. Infection and RNA Extraction

Approximately 1 × 106 Calu-3 cells/well were seeded into 6-well plates and infected
with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.5. Briefly, the infection was
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performed in unsupplemented DMEM, and the infected cells were maintained at 37 ◦C in
a 5% CO2 incubator with gently stirring every 15 min. 1 h postadsorption, the inoculums
were discarded, the wells were rinsed with DMEM (37 ◦C), and the cells were maintained
in supplemented DMEM, as previously described. Culture medium was used as a negative
control, and each group was performed in quintuplicate. 24 h postinfection, the cells
were lysed using TRIZol (Invitrogen, Waltham, MA, USA), and total RNA extraction was
performed using a PureLinkTM RNA mini kit (Invitrogen, Waltham, MA, USA). The RNA
was further treated with DNAse I (TransGen Biotech, Beijing, China) at 37 ◦C for 30 min
(1 U of DNase I per µg of RNA) and cleaned up using an RNeasy Mini kit (Qiagen, Hilden,
Germany). Treated RNA was recovered in 30 µL of nuclease-free water and subsequently
utilized for cDNA synthesis. The synthesis of cDNA samples was carried out according to
the recommendations provided by the manufacturer of the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA). The reactions were conducted
using a AerisTM thermocycler (ESCO® Lifesciences, Singapore) with the following cycling
parameters: an initial step of 10 min at 25 ◦C, followed by 120 min at 37 ◦C, 5 min at 85 ◦C,
and 5 min at 4 ◦C. The concentrations of nucleic acids in both RNA and cDNA samples were
determined using an appropriate microplate reader (Biotek Synergy™ HTX Multi-Mode
Reader, Winooski, VT, USA), and the samples were stored at −20 ◦C.

2.3. Library Construction and Next-Generation Sequencing

Quality control of the samples was performed using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA). The cDNA was randomly fragmented, and
libraries were prepared using the Illumina TruSeq Nano DNA Library Prep Kit according to
the manufacturer’s instructions. All libraries were sequenced in paired-end mode (151-bp
reads) on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA). The raw sequencing
data were deposited in NCBI under BioProject submission (PRJNA993611).

2.4. RNA-Seq Data Analysis
2.4.1. Processing and Filtering

The reads were pre-processed using the Fastp tool to trim adapters and remove low-
quality sequences with a Phred quality score < 20 [21]. FastQC was used to evaluate the
quality of the sequences before and after pre-processing [22]. The processed reads were
aligned to the human genome GRCh38.p13, version 106 (61,552 genes), using the STAR
aligner [23]. The aligned paired-end reads were quantified using Feature Counts, with
the following parameters: –B (R1 and R2 reads), -C (fragments with the paired reads
mapped to different chromosomes are not accounted), -g ‘gene id’(mapping to genes), -s
0 (non-strand-specific counting), and - - extra Attributes ‘gene_name’, ‘gene_biotype’(gene
annotation). These settings were used to obtain the raw data according to Liao et al. [24].

2.4.2. Determination of Differentially Expressed Genes (DEGs)

The R-package EdgeR was used for several analyses, including filtering low-expression
genes, evaluating sample reproducibility, and identifying DEGs, as recommended by
Robinson et al. [25]. Low-expression genes featuring a count per million (CPM) value < 1
in at least 3 samples were excluded from the analyses. Outlier samples were identified
and removed based on Principal Component Analysis (PCA), Multidimensional Scaling
(MDS), and Euclidean clustering. DEGs were selected based on specific criteria: Log2Fold
Change(FC) ≥ 0.5 or ≤−0.5; and p-value ≤ 0.05.

2.5. Functional Enrichment Analysis

The Gene Ontology (GO) enrichment analysis of the DEGs was conducted to in-
vestigate their association with biological processes, molecular functions, and cellular
components. Additionally, pathway enrichment analysis was performed using EnrichR to
identify enriched biological pathways among the DEGs [26] using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) and WikiPathways. The functional enrichment analysis
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was performed separately for the up- and down-regulated DEGs, and an adjusted p-value
of ≤0.05 was set as statistically significant.

2.6. Statistical Analysis

All the statistical analyses were performed in R (4.2.2). The differential expression anal-
ysis was conducted using Student’s t-test. To account for multiple testing, the Benjamini–
Hochberg procedure was employed for false discovery rate (FDR) correction.

3. Results
3.1. Transcriptional Profile of SARS-CoV-2-Infected Cells

To characterize the transcriptional response in SARS-CoV-2-infected cells, the total
RNA was collected from infected and uninfected Calu-3 cells. The transcriptomes of these
samples were determined by using high-throughput RNA sequencing, which provides a
comprehensive view of gene expression at a genome-wide level. After pre-processing and
quality filtering, the reads were mapped to the human reference genome and quantified.
The identification of the DEGs was performed after filtering for genes with low expression
and evaluating sample reproducibility. Robust and reproducible data were obtained after
removing outlier samples. Two samples of each group were excluded as outliers. A total
of 171,095,226 reads were obtained: 89,826,138 from the infected group and 81,269,088
from the control group. For each sample, >90% of the reads displayed a Phred quality
score ≥ 30 (Q30). A Phred score of 30 indicates the possibility of 1 erroneous base for
every 1000 bp sequenced. We found 14,399 genes that were expressed in Calu-3 cells, of
which 1040 (7.22%) were differentially expressed (Supplementary File S1). Furthermore,
differences were observed between the infected and control samples in the Principal
Component Analysis (PCA). Two groups were found to be located at opposite ends of the
coordinate axis, particularly in terms of the principal component 1 (PC1), and possibly
also in the principal component 2 (PC2) (Supplementary File S2). Indeed, the observed
separation of the infected and control groups in the PCA plot is highly indicative of
the impact of SARS-CoV-2 infection on the transcriptional profiles of Calu-3 cells. This
feature reflects the distinct gene expression patterns associated with the viral infection and
highlights the transcriptional changes induced by SARS-CoV-2. The clear differentiation
between the infected and control samples in the PCA plot provides strong evidence for the
influence of SARS-CoV-2 infection on the cellular transcriptome.

3.2. Differentially Expressed Genes (DEGs)

DEGs were identified from the control (uninfected) vs. SARS-CoV-2-infected groups
(n = 3), following the parameters Log2fc ≥ 0.5 or ≤−0.5 and p ≤ 0.05. These DEGs
were then employed for functional annotation. Overall, 1040 DEGs were significantly
regulated in 24 h post-infection Calu-3 cells, with 695 being up-regulated and 345 being
down-regulated (Supplementary File S1). In Figure 1, all DEGs are displayed in a volcano
plot. A heatmap of the top 20 DEGs was obtained (Figure 2), and the genes with the
most expressive differential expression values are detailed in a top 20 table (Table 1). The
highly up-regulated DEGs include the EPH receptor A4 (EPHA4; log2fc 2.631), ETS variant
transcription factor 2 (ETV2; 2.364), and H3 clustered histone 13 (H3C13; 2.252) genes. In
turn, the main down-regulated DEGs include the germinal center associated signaling and
motility (GSAM; log2fc −3.567), F-box and WD repeat domain containing 10B (CDRT1;
−2.814), and Succinyl-CoA:glutarate-CoA transferase (SUGCT; −2.436) genes. In addition,
non-coding RNA genes were also differentially expressed in infected vs. uninfected Calu-3
cells. Out of the 695 up-regulated DEGs, 71 are related to non-coding RNAs, while 70 non-
coding RNAs, out of 345 DEGs, were found among down-regulated genes. In both cases,
lncRNA was the major class of non-coding RNAs found in our samples.
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Figure 2. Heatmap of the top 20 DEGs in Calu-3 cells. Expression patterns of genes are compared
between control (C1, C2, and C5) and infected (I1, I2, and I5) samples. For each gene, the relative
values of gene expression are depicted in a blue-red scale, in which red tones are representative of
higher expression, and blue tones, of lower expression. FPKM: Fragments per Kilobase Million.



Pathogens 2023, 12, 1373 6 of 20

Table 1. Top 20 differentially expressed genes in Calu-3 cells 24 h after SARS-CoV-2 infection (0.5 MOI).

Gene Symbol ENSEMBL Gene Name Log2fc Regulation

GCSAM ENSG00000174500 Germinal center associated signaling and motility −3.567 Down
CDRT1 ENSG00000241322 F-box and WD repeat domain containing 10B −2.814 Down
EPHA4 ENSG00000116106 EPH receptor A4 2.631 Up
SUGCT ENSG00000175600 Succinyl-CoA:glutarate-CoA transferase −2.436 Down
ETV2 ENSG00000105672 ETS variant transcription factor 2 2.364 Up

H3C13 ENSG00000183598 H3 clustered histone 13 2.252 Up
HSPA6 ENSG00000173110 Heat shock protein family A (Hsp70) member 6 2.131 Up
SYCP3 ENSG00000139351 Synaptonemal complex protein 3 −2.058 Down
SNPH ENSG00000101298 Syntaphilin 2.054 Up

SECTM1 ENSG00000141574 Secreted and transmembrane 1 1.942 Up
TAS1R3 ENSG00000169962 Taste 1 receptor member 3 1.886 Up

FOS ENSG00000170345 Fos proto-oncogene, AP-1 transcription factor subunit 1.872 Up
GATD3 ENSG00000160221 Glutamine amidotransferase class 1 domain containing 3 1.855 Up

ANKRD24 ENSG00000089847 Ankyrin repeat domain 24 1.814 Up
EGR2 ENSG00000122877 Early growth response 2 1.793 Up

TEAD2 ENSG00000074219 TEA domain transcription factor 2 1.786 Up
GP6 ENSG00000088053 Glycoprotein VI platelet −1.780 Down

MMP17 ENSG00000198598 Matrix metallopeptidase 17 1.780 Up
H2AC13 ENSG00000196747 H2A clustered histone 13 1.771 Up
SLC34A1 ENSG00000131183 Solute carrier family 34 member 1 1.756 Up

3.3. Functional Enrichment Analysis
3.3.1. Gene Ontology

The GO enrichment of DEGs was divided into three categories: biological process (BP),
cellular component (CC), and molecular function (MF). The top 10 terms for BP are shown
in Figure 3A. For the up-regulated DEGs, the most enriched BP terms were cellular response
to type I interferon, type I interferon signaling pathway, and defense response to virus.
Additionally, there were also significantly enriched BP terms (p-adjust. ≤ 0.05) related to
mitochondrion organization, cellular protein metabolic process, protein targeting to ER,
chromatin assembly, and apoptotic process. The most enriched CC term was ribosome
(p-adjust. 0.04). However, no significant MF term was achieved, with nucleosomal DNA
binding (p-adjust. 0.33) being the most enriched. In turn, for the down-regulated genes, no
significantly enriched term was identified for any of the three categories (BF, CC, and MF).
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3.3.2. Pathways Enrichment

The pathways’ enrichment of DEGs was performed, and the top 10 enriched path-
ways for KEGG and WikiPathways are displayed in Figure 3B. The most significant up-
regulated KEGG pathways included terms like neutrophil extracellular trap formation
(p-adjust. ≤ 0.01), systemic lupus erythematosus (p-adjust. ≤ 0.01), coronavirus disease
(p-adjust. ≤ 0.01), ribosome (p-adjust. ≤ 0.01), TNF signaling pathway (p-adjust. ≤ 0.01),
IL-17 signaling pathway (p-adjust. ≤ 0.01), and RIG-I-like receptor signaling pathway
(p-adjust. 0.01) (Figure 3B). In a similar analysis using enriched WikiPathways terms, we
identified the following significant pathways: Type II interferon signaling (p-adjust. ≤ 0.01),
cytoplasmic ribosomal proteins (p-adjust.≤ 0.01), STING pathway in Kawasaki-like disease
and COVID-19 (p-adjust. ≤ 0.01), SARS-CoV-2 mitochondrial interaction (p-adjust. ≤ 0.01),
novel intracellular components of RIG-I-like receptor (RLR) pathway (p-adjust. ≤ 0.01), IL-
18 signaling pathway (p-adjust. 0.01), and host–pathogen interaction of human coronaviruses-
interferon induction (p-adjust. 0.02) (Figure 3B). In the pathway analysis of down-regulated
DEGs, no significantly enriched KEGG term was identified. However, in the analy-
sis of WikiPathway, one significantly enriched term was found, which is ciliopathies
(p-adjust. ≤ 0.01).

4. Discussion

In this study, we performed the RNA-sequencing of Calu-3 cells 24 h after infection
with SARS-CoV-2 (0.5 MOI). A total of 1040 DEGs—695 up- and 345 down-regulated—were
found by applying a log2fc ≥ 0.5 and a p-value ≤ 0.05, with a non-stringent FDR. This
approach enabled us to achieve enriched pathways related to SARS-CoV-2 infection that
were reproducible between several databases and coherent with Gene Ontology, giving a
broader view of the cellular response to infection. However, the more significant enriched
pathways were also achieved when a stringent FDR ≤ 0.05 cut-off was applied. This
straightforward approach of fold-change ranking combined with a non-stringent p-value
threshold yielded reproducible lists of genes for both RNA-seq and microarray gene
expression analyses [27,28].

The top 20 DEGs included up-regulated genes like EPHA4, HSPA6, SECTM1, FOS, and
MMP17 (Table 1). The EPHA4 gene encodes a member of the ephrin receptor family [29].
This family is expressed in several tissues and organs, such as the lung, kidney, and
heart, and is differentially expressed in human cancers [30]. It was found to promote
cancer progression, angiogenesis, and neurodegeneration [31]. EPH receptors have been
described as a possible receptor for SARS-CoV-2 entry in the central nervous system [32],
and the receptor binding motif (RBM) of SARS-CoV-2 was recently described to mimic
ephrin-a5 and -b2, which bind to EPHA4, with similar affinity values for the RBM-EPHA4
and ephrin-a5-EPHA4 bindings in a protein docking study [33]. This poses a challenge
regarding whether the SARS-CoV-2 RBM can bind to EPH receptors in several tissues and
trigger downstream signaling pathways related to cancer or to COVID-19 complications
like inflammation, atherosclerotic plaque formation, or neurological sequelae [31,32].

In turn, the HSPA6 gene encodes an isoform of the heat shock protein 70 (HSP70) [34].
Heat shock proteins are stress-responsive proteins that deal with proteotoxic stresses, like
heat, cold, microbial infections, and UV radiation [34–37]. They are also referred to as
molecular chaperones and are involved in the folding, transport, assembly, and degradation
of proteins [38,39]. The virus-induced overexpression of the host’s chaperones presents
a dual role. It can both display an antiviral activity by stimulating an antiviral immune
response or promoting infected cells’ death, and favor the virus life cycle by promoting the
nuclear translocation of the viral genome and its replication and transcription events, as
well as the synthesis of structural proteins and viral assembly and release [40]. Moreover,
the up-regulation of chaperones can also counteract the ER stress through the unfolded
protein response (UPR), allowing for a cytoprotective effect while enhancing the folding of
viral proteins or the degradation of misfolded accumulated proteins [40]. The HSPA6 gene
is considered a hub gene in SARS-CoV-2 infection and can differentiate remdesevir-treated
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COVID-19 patients [41]. It was also the most over-expressed host’s gene in transfected 293T
cells expressing the SARS-CoV-2 ORF3A protein [42].

The SECTM1 gene encodes a Golgi-associated secreted and transmembrane protein
mainly expressed in leucocytes and breast cancer cell lines. It displays broad structural fea-
tures that resemble cytokines and growth factors [43] and is considered a potential activator
of NF-κB [44]. The expression of SECTM1 was increased in airway epithelial cells from mice
lungs infected with pneumococcal pneumonia. This overexpression took place at the early
stages of infection and was type-I IFN- and STAT1-dependent. In this study, the SECTM1
protein was found to target neutrophils at the infected lungs and increase their expression
of the neutrophil-attracting cytokine CXCL2, hence functioning as an epithelial product
that favors a positive feedback loop of neutrophilic inflammation into lung tissue [45]. In
addition, the SECTM1 protein was detected in respiratory epithelium cultures infected
with the human Respiratory Syncytial Virus (hRSV), but not in the uninfected cultures [46].
The FOS gene encodes a transcription factor that is part of the AP-1 complex, implicated in
carcinogenesis [47] and inflammatory antiviral signaling [46]. Its targeting by repurposing
drugs was found to reduce the SARS-CoV-2 cytopathic effect (CPE) [48]. The MMP17 gene
encodes a membrane-type member of the matrix metalloproteinase family (MMPs) with
pro-TNF-α convertase activity [49].

Moreover, the functional enrichment of DEGs showed the predominance of genes
involved in innate immune response, defense response to virus, and translation. The GO
analysis revealed, for the BP category, enriched terms like cellular response to type I inter-
feron, type I interferon signaling pathway, defense response to viruses, protein metabolic
process, and chromatin assembly (Figure 3A). KEGG analysis showed the enrichment of
pathways involved in neutrophil extracellular trap (NETs) formation, systemic lupus ery-
thematosus (SLE), viral carcinogenesis, and COVID-19 disease. Immune-related pathways,
like TNF, IL-17, RIG-I-like receptor, and C-type lectin receptor signaling pathways were also
significantly enriched in KEGG analysis (Figure 3B). Coherently, WikiPathways analysis
showed enriched terms like type II interferon signaling, cytoplasmic ribosomal proteins,
STING pathway in Kawasaki-like disease and COVID-19, immune response to tuberculosis,
novel intracellular components of RIG-I-like receptor pathway, IL-18, and host–pathogen
interaction of human coronaviruses-interferon induction. Thus, in a framework of 24 h
postinfection, our results are suggestive of a metabolic model mainly characterized by the
activation of inflammatory and antiviral signaling, as summarized in Figure 4. Moreover,
both apoptotic and cytoprotective/proliferative signaling may also be activated. As dis-
cussed below, such transcriptional signature may be prompted by several mechanisms and
can be involved in COVID-19 pathogenesis.

4.1. Neutrophil Extracellular Trap Formation (NETs) and Autoimmunity

NETs formation (hsa04613) and SLE (hsa05322) KEGG pathways were significantly
enriched in infected vs. uninfected Calu-3 cells. Both pathways contain mainly canonical
core histone genes, like several H2A, H2B, H3, and H4 members. Histone octamers bind
to DNA and form the nucleosome, the basic structure of chromatin. Core histones are
replication-dependent clustered genes, and their expression only occurs during the S phase
of the cell cycle [50,51]. Histones are the major component of neutrophil extracellular traps
(NETs), which consist of network-like antimicrobial structures bearing nuclear proteins,
DNA, and cytotoxic enzymes that capture and kill microorganisms [52,53]. This mecha-
nism is part of the innate immune response and can be triggered by pro-inflammatory
cytokines, LPS, intracellular ROS, microorganisms, and chemical agents in a process called
NETosis [52]. The extracellular exposure of nuclear antigens following NETosis can elicit
autoantibodies towards DNA and nuclear proteins, which are present in autoimmune
diseases like SLE [54,55]. The concentration of NETs is increased in plasma, tracheal as-
pirate, and lung autopsies of COVID-19 patients [56], and is likely to play a key role in
lung inflammatory damage and pulmonary microthrombiformation [57,58]. Nonetheless,
this process is typical to immune cells and is unlikely to have taken place in our samples.
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Instead, the up-regulation of the core histones mRNA expression in SARS-CoV-2-infected
Calu-3 cells is perhaps related to the cell cycle and proliferation, with cells entering the S
phase [50,51].
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However, the gene GSDMD was also significantly up-regulated in the KEGG pathway
hsa04613. This gene encodes gasdermin D (GSDMD), a pore-forming protein that, upon
activation by caspases and inflammasomes, triggers pyroptosis, a form of programmed cell
death that features membrane pores and massive leakage of cytosolic content, including
IL-1β and IL-18 [59]. By inducing a strong inflammatory response that constitutes a host’s
immune defense mechanism, pyroptosis can lead to inflammatory diseases and autoimmu-
nity [59]. Emerging evidence suggests that pyroptosis is linked to the inflammatory process
in respiratory diseases and may lead to tissue injury and airway damage [60]. Sun et al. [61]
showed that SARS-CoV-2 NSP6 induces pyroptosis in lung epithelial cells by impairing
lysosome acidification, upstream of caspase-1 activation. In this study, NSP6-induced
pyroptosis was prevented by both the knockdown of GSDMD and the pharmacological
inhibition of caspase-1, which reduced GSDMD cleavage and activation. Furthermore, in an
LPS-induced Acute Lung Injury (ALI) mice model, the inhibition of GSDMD by disulfiram
prevented pyroptosis and alleviated ALI [62]. Interestingly, this gene was also significantly
enriched in the WikiPathways STING pathway in Kawasaki-like disease and COVID-19
(WP4961). Indeed, the over-expression of several pro-apoptotic proteins, including GS-
DMD, have been described in patients with Kawasaki-like disease [63], an autoimmune
condition that has been associated with COVID-19 [64].

4.2. Viral Carcinogenesis and Immune-Evasion

The KEGG pathway viral carcinogenesis (hsa05203) is significantly enriched in infected
Calu-3 cells, which was also reported in a previous study [65]. Viruses are obligatory
intracellular parasites that reprogram host cells’ signaling pathways that control cell death,
proliferation, differentiation, genomic integrity, and recognition by the immune system;
whose dysregulation may lead to the proliferation of aberrant cells [66]. Indeed, it is
estimated that 10–15% of human cancers have a viral etiology [67,68], and SARS-CoV-
2 is also able to modulate oncogenic signaling pathways [69]. The viral carcinogenesis
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pathway contains host proteins known to interact with proteins from well-established
oncoviruses, such as hepatitis B/C virus, HPV, and HTLVI. Among the over-expressed
genes belonging to this pathway, the EGR2 gene encodes a transcription factor that up-
regulates the expression of Fas Ligand (FasL) [70]. The Fas receptor is constitutively
expressed in human airway epithelium and triggers apoptosis when engaged by FasL [71],
while the latter is constitutively expressed in few tissues and constitutes a mechanism of
immune privilege by triggering apoptosis in Fas-expressing inflammatory cells [72]. FasL is
overexpressed in lung carcinoma cells, in which it contributes to both immune evasion—by
inducing the apoptosis of tumor-reactive T cells—and invasion—by killing surrounding Fas-
positive cells [73]. Moreover, FasL can be over-expressed in circumstances of chemical and
infectious insults and is likely to play a critical role in pulmonary inflammation and injury.
The apoptosis of epithelial cells and alveolar macrophages mediated by Fas-Fas-L signaling,
in addition to tissue injury, results in the release of IL-1β and chemokines, leading to
neutrophil infiltration [71]. Such a mechanism was found to be involved in the pathogenesis
of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) [74].

Other genes significantly up-regulated in the hsa05203 pathway were IRF3 and IRF7,
which encode interferon regulatory factors that play key roles in the innate immune re-
sponse to virus infection and the transcriptional activation of type-I IFN genes [75]. IRF3
displays antiviral activity [75] and is inhibited by proteins of several viruses with oncogenic
potential, like cytomegalovirus [76] and HCV [77]. Conversely, the IRF7 gene was found
to repress transcriptional activation by IFN and IRF1 and to support the latency of the
Epstein–Barr virus (EBV) [78]. The phosphorylation and activation of the IRF3 protein are
constrained by some SARS-CoV-2 proteins—NSP3, NSP6, NSP13, and ORF6—through
the inhibition of the upstream RIG-I- and MDA5-IRF3/7 signaling [79]. Hence, the over-
expression of the IRF3 mRNA in our samples could be a cellular response to counteract
such immune evasion by SARS-CoV-2. It is noteworthy that many negative regulators of
type-I IFN signaling were shown to be involved in cancer [80] and that immune-evasion
also constitutes a hallmark of cancer [13].

Moreover, the most up-regulated lncRNA genes found in the infected samples—
MYRF-AS1, ATP2A1-AS1, CTC-338M12.4, MESTIT1, PRANCR, and SLC25A5-AS1—are
associated with several types of cancers in a conflicting manner. For instance, MYRF-
AS1 was associated with genomic instability and is considered a risk factor in Non-small
cell lung cancer [81], while PRANCR is up-regulated in primary ovarian cancer [82] and
SCL25A5-AS1 was associated with the bladder cancer growth [83]. Conversely, ATP2A1-
AS1 is considered a protective factor in cervical cancer [84], and CTC-338M12.4 is down-
regulated in bladder cancer [85]. In turn, MESTIT1 is likely a protective factor in breast
cancer [86] and a risk factor in prostate cancer [87].

Little is known about the long-term consequences of COVID-19 and its relationship
with cancer development, although still largely elusive, cannot be excluded [88].

4.3. Coronavirus Disease

Another significantly enriched KEGG pathway was coronavirus disease (hsa05171).
This pathway included up-regulated genes involved mainly in immune response and trans-
lation, with the co-occurrence of ANGII-ATR1R-Nox, RIG-I-IRF7/3, MDA5-IRF7/3, type-I
IFN, TLR2/4-MAPK, TLR2/4-NF-κB, TNF-NF-κB, ribosome, and translation initiation
signaling. Among the genes over-expressed in this pathway is the ACE gene. This gene
encodes the angiotensin-converting enzyme (ACE), which converts angiotensin I (ANG I)
to angiotensin II (ANG II) [89]. SARS-CoV-2 infects human cells mainly by the high-affinity
binding of the S protein RBD to the ANG II-converting enzyme (ACE II), leading to its
down-regulation. This process elicits the accumulation of ANG II and the overactivation
of the ACE/ANG II/ANGII type 1 receptor (AT1R) axis [90]. This pathway is strongly
pro-inflammatory and pro-oxidant, triggering the activation of NADPH oxidase, NF-κB,
MAPK, and STAT1 signaling, which contributes to the expression of pro-inflammatory
cytokines—like IL-1β, IL-6, IL-10, and TNF-α—and to cytokine storm [91]. Moreover,
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the ACE/ANG II/AT1R signaling induces the phosphorylation and enhancement of the
ADAM-17 protease, which cleaves the ectodomain of several transmembrane proteins—
including TNF-α and membrane-bound IL-6 receptor—and leads to their activation and
release in a soluble form [92].

Several genes encoding ribosomal proteins, from both the 40S and 60S subunits, were
significantly up-regulated in the coronavirus disease KEGG pathway, as well as in the
WikiPathways cytoplasmic ribosomal proteins (WP477) and KEGG pathway ribosome
(hsa03010), also enriched in our study (Figure 3B). Such proteins are involved in translation
initiation in ribosomes, wherein a host cells’ process is shown to be hijacked by SARS-CoV-2.
The NSP1 of SARS-CoV-2 prompts a translational shutdown of the host’s mRNA through
the binding of its C-terminal domain to the mRNA entry channel at the ribosome 40S
subunit, while enabling viral mRNA translation by interacting with a conserved region in
the full-length SARS-CoV-2 5′UTR [93,94]. This process inhibits cellular antiviral defense
mechanisms that rely on the expression of host factors, like the IFN response and RIG-I
receptor signaling, and may facilitate efficient viral replication. Thus, the NS1-ribosome
interaction is considered a candidate for structure-based drug design [94].

Immune-related genes, such as IRF3, ISG15, IκBKE, OAS1, MX1, and IL-6, were also
significantly over-expressed in the hsa05171 pathway. Proteins encoded by these genes are
involved in the RIG-I/MDA5-IRF7/3 (IRF3, ISG15, and IKBKE) and TLR2/4 (FOS, JUN,
and NFKBIA) signaling pathways or expressed downstream of IFN-α/β (OAS1 and MX1),
TLR2/4-NF-κB (IL-6), and ANGII-AT1R-NOX (IL-6) signaling. RIG-I- and MDA5-IRF7/3
signaling consist of the sensing of viral RNA by the cytoplasmic viral RNA sensors RIG-I
and MDA5, which drives a cascade with the downstream phosphorylation and nuclear
translocation of IRF3, which triggers type-I IFN production [95]. IFN-I, in turn, signals
the activation of Janus Kinase 1 (JAK1) and Tyrosine Kinase 2 (TYK2), leading to the
phosphorylation of STAT1 and STAT2, which form a heterodimer that, in association with
IRF9, triggers the transcriptional activation of interferon-stimulated genes (ISGs) [96]. OAS1
and MX1 are ISGs with antiviral functions [97] and their transcription was up-regulated
in our infected samples. Several SARS-CoV-2 proteins have been shown to antagonize
IFN-I response at both RIG-I-/MDA5-IRF7/3 and IFN-α/β signaling levels [79]. For
instance, NSP6 [96], NSP13 [96], and NSP9a [98] inhibit several steps of the phosphorylation
cascade triggered by RIG-I and MDA5 signaling and, hence, hinder IFR3 phosphorylation.
Likewise, ORF6 [96], NSP12 [99], and NSPs 13–15 [96] inhibit the nuclear translocation
of IRF3; while NSPs 1 and 6 inhibit the phosphorylation of STAT1/STAT2 and suppress
the type-I IFN-mediated ISGs expression [96]. Furthermore, Thoms [94] demonstrated
the translational inhibition of the RIG-I and ISG15 expression mediated by the SARS-
CoV-2 NSP1 in ribosomes. Our results showed a transcriptional up-regulation of genes
belonging to pathways related to innate immune response that are antagonized by SARS-
CoV-2 proteins [79]. However, the up-regulation of some ISGs—Mx1, OAS1, and ISG15—
indicates that these pathways are not abrogated, despite the antagonism of the viral proteins.
Nonetheless, these genes, even over-expressed at a transcriptional level, are perhaps
inhibited by NSP1 at a translational level [94].

4.4. Other Immune-Related Pathways

Consistently, the RIG-I-like receptor signaling KEGG pathway (hsa04622) and the
WikiPathways novel intracellular components of RIG-I-like receptor (RLR) pathway (WP3865)
were also significantly enriched in infected vs. uninfected Calu-3 cells. Besides the aforemen-
tioned genes, these pathways also contain significantly up-regulated genes with regulatory
functions, like NLRX1, TKFC, and PIN1. NLRX1—also belonging to the enriched WikiPath-
ways SARS-CoV-2 mitochondrial interactions (WP5038)—encodes a protein located in the
mitochondrial outer membrane that interacts with the mitochondrial antiviral signaling
protein (MAVS) and disrupts the RIG-I-MAVS signaling, attenuating the downstream activa-
tion of IRF3. Hence, the NLRX1-MAVS interaction weakens the cytokine response to viral
infections and prevents an overzealous immune response [100]. The TKFC gene encodes
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adihydroxyacetone kinase, which interacts with MDA5 and suppresses its antiviral signal-
ing [101], while the PIN1 gene encodes a protein that associates with IFR3 and facilitates its
ubiquitin-mediated proteasomal degradation [102].

Another significantly enriched immune-related KEGG pathway was the C-Type lectin
receptor signaling (hsa04625). C-type lectins are pattern recognition receptors that recognize
a range of carbohydrate structures—like mannose, fucose, sialic acid, and β-glucan—and
are mainly expressed in myeloid cells, especially in macrophages and dendritic cells [103].
Among their numerous functions are pathogen sensing, the initiation of the immune
response, and T helper (Th) cell differentiation [103,104]. In our work, the up-regulated
genes belonging to the C-type lectin receptor pathways are mainly related to the Dectin-1
(PYCARD, NFKBIA, EGR2, and NFKB2) [105] and DC-SIGN (PKL3, MRAS, BCL3, and
IKBEKE) [106,107] signaling. The former, upon stimulation by β-glycans, leads to the
release of IL-1β, IL-6, IL-12, and IL-23, which forms a cytokine environment that skews
the Th cell response towards a Th17 profile. The latter, upon stimulation by mannose, also
produces a Th17-skewed cellular response, while, when stimulated by fucose, promotes Th2
and T follicular helper (Tfh) differentiation [103]. The Th17 cellular response is important in
the defense response to fungus, promotes neutrophil migration to the sites of infection, and
is associated with hyperinflammatory disorders [108]. In turn, the simultaneous activation
of Th2 and Tfh responses by fucose leads to long-term humoral responses [109].

Among the genes up-regulated in the hsa04625 KEGG pathway are PYCARD, IL6,
IKBKE, and BCL-3. PYCARD encodes an inflammasome-adaptor protein containing pyrin
(PYD) and caspase recruitment (CARD) domains. It is involved in the assembly of the
NLRP3 inflammasome and caspase-1 activation. These processes trigger the maturation
of IL-1β and IL-18 [110] and promote pyroptosis by cleaving GSDMD [105]. PYCARD
is also involved in non-canonical IL-1β maturation [111] and apoptosis [112] through
caspase-8 activation. IL-1β is a strongly pro-inflammatory cytokine that exerts a range of
inflammatory and antimicrobial activities, including the induction of fever and Th 17 differ-
entiation [113]. The IL6 gene encodes IL-6, which prompts the differentiation of Th17 cells
while suppressing the activation of Treg cells [114]. A skewing of T cell activation towards
a Th17 phenotype was described in COVID-19 patients [115]. In turn, IKBKE encodes a
kinase of the NF-κB inhibitor and is involved in the DC-sigh-mediated Th 2 differentiation
following fucose biding. IKBKE suppresses the CYCD deubiquitinase activity that prevents
the nuclear translocation of BCL-3, allowing for the BCL-3-mediated down-regulation of
pro-inflammatory cytokines and the up-regulation of the IL-10 expression [107]. De Biasi
et al. [115] observed a contradictory immune response in COVID-19 patients characterized
by a marked plasma increase in IL-10 and other Th2 cytokines along with inflammatory
and Th17-related cytokines.

The mucosal epithelium is immunologically active and functions as a regulator of
innate and adaptive immune responses [116,117]. Indeed, human bronchial epithelial cells
were shown to recognize house dust mites (HDMs) through β-glycan receptors, probably
Dectin-1, and, as a response, secrete CCL20, a chemokine that attracts immature dendritic
cells [118]. Murine bronchial epithelial cells, under stimulation by HDM and HDM +
LPS, were also found to promote Th2 and Th17 differentiation of naïve T CD4+ cells [119].
Furthermore, DC-sigh is expressed by MUC1-producing type-II alveolar cells and binds to
SARS-CoV-2 RBD [120]. Pathogens sensing by C-type lectin-receptors and the triggered
downstream signaling pathways are glycan-type-dependent [103]. The SARS-CoV-2 S
protein is a heavily glycosylated trimer with 22 canonical N-linked glycosylation sites per
protomer and several o-glycosylation sites [121], whose glycan profiles are heterogeneous
and host cell-dependent, varying from oligomannose to fucosylated glycans [121,122].
Hence, our results may indicate that infected Calu-3 cells were able to identify glycan
moieties present in the SARS-CoV-2 glycoproteins through C-type lectin receptors and
activate downstream signaling pathways that lead to the expression of cytokines and
chemokine that promote the Th17 and Th2 differentiation of CD4+ lymphocytes.
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Th17 cells produce IL-17, an inflammatory cytokine that mediates the recruitment of
neutrophils and macrophages to infected tissues. Upon engagement with their receptors,
IL-17 triggers signaling pathways that lead to the release of other pro-inflammatory cy-
tokines and chemokines by several alveolar cell types, including macrophages, epithelial,
and endothelial cells, which may contribute to cytokine storm and SARS [123]. In our
work, the KEGG IL-17 signaling pathway (hsa04657) was also significantly enriched in
infected vs. uninfected Calu-3 cells, and its up-regulated genes are mainly involved in
MAPK [124] and NF-κB [125] signaling pathways and include both positive (NF-κB, JUN,
FOS, FOSB, and MAPK15) [126] and negative (TRAF4, TNFAIP3, and NFKBI) [127,128]
regulators, in addition to a product (IL6) of the transcriptional activation mediated by these
pathways [123]. IL-17 is typically secreted by activated T CD4+ cells with a Th17 profile
and is not over-expressed in our samples. However, a study showed the molecular mimicry
of IL-17 by the SARS-CoV-2 ORF8 protein, which binds to several IL-17 receptors and
activates downstream signaling pathways leading to the production of pro-inflammatory
cytokines and chemokines [129]. Thus, our results suggest the activation of the IL-17 signal-
ing pathway by the ORF8 protein. The enrichment of the KEGG IL-17 signaling pathway in
SARS-CoV-2-infected Calu-3 was also described in a transriptomic study by Sun et al. [130].

In addition, the TNF signaling KEGG pathway (hsa04668) was also significantly
enriched in our infected samples, which is in line with previous studies [130]. This pathway
included mainly up-regulated genes involved in TNF-p38 (CEBPB, TRAF2, RPSGKA4,
and CREB5), TNF-JNK (FOS, JUN, and TRAF2), TNF-NF-κB (TRAF2, and NFKBIA), and
TNF-IRF1 signaling pathways, which lead to the release of pro-inflammatory cytokines
and apoptosis [131,132]. Among the up-regulated genes expressed downstream of these
pathways are IL6 and some negative regulators of TNF signaling, like SOCS3, BCL3, and
TNFAIP3 [133].

Although the IL6 gene is not among the top 20 DEGs, it is noteworthy that it is
over-expressed downstream to several signaling pathways, like TNF, IL17, C-type lectin
receptors, and COVID-19 disease KEGG pathways. IL-6 levels are increased in COVID-19
patients as part of the cytokine storm [134] and have been considered as a biomarker
for disease severity [135,136]. A study conducted by Blanco-Melo et al. [14] showed
a transcriptional feature with a high expression of chemokines and IL-6 juxtaposed to
reduced innate immune response and low levels of type I and III interferons in tissues from
COVID-19 patients and 0.2 MOI-infected cells (Calu-3 and A549).

4.5. Metabolic Transcriptional Model and Limitations of the Study

The transcriptional characterization of infected vs. uninfected Calu-3 cells and the
functional enrichment of the DEGs reveal that SARS-CoV-2 infection promotes a set of cel-
lular responses characterized by the transcriptional activation of genes involved in antiviral
and innate immune responses, inflammatory processes, pyroptosis and autoimmunity, cell
proliferation, apoptosis, and mRNA translation (Figure 4). Several genes, especially those
involved in immune and antiviral responses and mRNA translation, encode proteins that
are antagonized by SARS-CoV-2 in a sort of immune-evasion and translational reprogram-
ming of cellular functions. Among the up-regulated genes involved in immune response
and inflammatory signaling, there are both positive and negative regulators. Moreover,
despite a cancer cell line, Calu-3 cells have yielded transcriptional signatures that are largely
reproducible in other cellular contexts, like in airway samples from COVID-19 patients [13].

Our results are in line with other transcriptome studies conducted in SARS-CoV-2-
infected Calu-3 cells, which showed responses associated with IFN I, II, or III signaling [13–17];
innate immunity, inflammation, and defense against virus [13,14]; TNF and IL-17 signal-
ing [130], and signaling mediated by RIG-I/MDA5 [13,16]. In contrast, chemokine genes are
generally up-regulated in infected Calu-3 cells [13–15,17,130], which were not found in our
study (Supplementary File S1). This transcriptional picture with the predominance of INF
and chemokine genes and the enrichment of pathways associated with interferon response
and innate immunity was also described for Calu-3 cells infected with other respiratory
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viruses, such as Rhinovirus (RV), Influenza A (IAV), and Influenza B (IBV) [137]. Moreover,
a study conducted by Sun et al. [17] described a similar response for Calu-3 cells infected
with either SARS-CoV-2 or SARS-CoV, which was not observed for the MERS-CoV-infected
ones. Therefore, as reported by previous studies [13–17,137], our results describe cellular
responses typical not only to SARS-CoV-2 but also to other viral infections. However, we
found, as a novelty, a higher degree of activation for signaling pathways related to pyroptosis
and autoimmunity, like NETs formation and STING pathway in Kawasaki-like disease and
COVID-19, with the involvement of the GSDMD gene.

Nonetheless, our results describe transcriptional changes that took place 24 h post-
infection. These changes are transient and may not reflect those that would occur at other
time points [65]. In addition, infection with SARS-CoV-2 was performed at 0.5 MOI, which
virtually means 0.5 functional virions delivered per cell, or 1 virion for every two cells [14].
Blanco-Melo et al. [14] described distinct transcriptional changes in SARS-CoV-2-infected
cells and tissues according to the applied MOI, in which infection at 2 MOI induced
stronger IFN-I and -III responses than 0.2 MOI-infection. Such differences in transcriptional
responses according to infection methodology can make it difficult to directly compare
different results. However, it is likely that culture infections performed at low MOI (<1)
more closely mimic natural infection [138]. Another limitation of our study is the use of
an in vitro approach with a lack of interplay with immune cells and other organ tissues,
though it can de-convolute cell-specific responses [13].

5. Conclusions

RNA-seq was performed in Calu-3 cells to identify DEGs in SARS-CoV-2-infected
vs. uninfected cells. The functional analysis of the DEGs observed 24 h postinfection
showed the predominance of genes involved in innate immune response, antiviral signaling,
inflammation, cell proliferation, apoptosis, and mRNA translation. These results reinforce
some previous findings and point to the RNA-seq of SARS-CoV-2-infected Calu-3 cells
as a reproducible and valuable method. In addition, responses related to pyroptosis
and autoimmunity were also identified. These infection-induced transcriptional changes,
although transient, may help to characterize the early stages of the cellular response to
SARS-CoV-2 infection and elucidate COVID-19 pathogenesis at airway epithelium level, in
addition to revealing potential biomarkers and possible drug targets. Early and late time
periods should be considered in future studies to better characterize the cellular dynamics
prompted by SARS-CoV-2 infection, which would be valuable to the understanding of
COVID-19 pathogenesis. Our data must be validated by independent experiments at both
mRNA and protein levels. Further comparisons with transcriptional data from in vivo
experiments and COVID-19 patients, are needed for a deeper understanding of the results
described here.

Supplementary Materials: The following supporting information can be downloaded at: https:
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