Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe
Abstract
:1. Introduction
2. Canidae
2.1. Red Fox (Vulpes vulpes)
2.1.1. Leishmania infantum: The Role of the Red Fox Is Still Unclear
2.1.2. Babesia spp. and Hepatozoon spp.: The Red Fox as a Competent Reservoir
2.1.3. Dirofilaria immitis and Dirofilaria repens: Red Foxes Are Infected but Not Quite Infectious
2.1.4. Thelazia callipaeda: Red Foxes as an Important Source of Infection
2.1.5. Toxoplasma gondii and Trichinella spp.: The Red Fox as a Sentinel of Occurrence
2.1.6. Echinococcus multilocularis: The Red Fox Is the “Usual Suspect”
2.1.7. Angiostrongylus vasorum and Airway Capillarioses: Red Foxes Contribute to Their Expansion
2.1.8. Other Parasites
2.2. Golden Jackal (Canis aureus)
2.2.1. Dirofilaria immitis and Dirofilaria repens: Golden jackals Are Suitable Spreaders
2.2.2. Other Parasites
2.3. Raccoon Dog (Nyctereutes procyonoides)
Trichinella spp., Echinococcus multilocularis and Other Parasites
3. Procionidae
3.1. Raccoon (Procyon lotor)
Baylisascaris procyonis, Strongyloides procyonis and Other Parasites
4. Felidae
4.1. European Wildcat (Felis silvestris)
4.1.1. Toxoplasma gondii: The European Wildcat Is a “Master of the Game”
4.1.2. The Haemoparasites Hepatozoon spp., and Cytauxzoon spp.
4.1.3. Troglostrongylus brevior: A Lungworm of European wildcats Is Gaining a Prominent Place in Domestic Cat Parasitology
4.1.4. Angiostrongylus chabaudi: A Wildcat-Specific Parasite
4.1.5. Cylicospirura spp.: Could It Be a Concern for Domestic Cats?
4.1.6. Other Parasites
5. Mustelidae
5.1. The Eurasian Badger (Meles meles)
5.1.1. Giardia spp. and Leishmania infantum: Still a Lot to Discover Here
5.1.2. Cryptosporidium spp. and Toxoplasma gondii: Eurasian badgers Are Frequent Hosts
5.1.3. Trichinella spp., Angiostrongylus vasorum, Dirofilaria immitis, Thelazia callipaeda: Nematodes of Veterinary and Medical Importance can Infect Eurasian badgers
5.2. Martens (Martes foina, Martes martes)
5.2.1. Beech marten (Martes foina)
Giardia spp., Leishmania infantum, Toxoplasma gondii: Badgers’ Proximity to Domestic Animals and Humans Is a Looming Risk
Thelazia callipaeda, Capillaria aerophila and Trichinella spp.: Beech Martens Are Additional Hosts of These Important Parasites
5.2.2. Pine Marten (Martes martes)
5.3. The Genus Mustela: Abundant and Parasite Carier
5.4. Eurasian otter (Lutra lutra): Their Water Affiliation May Be Decisive for Its Epidemiological Impact
5.5. The American Mink (Neogale vison): An Invasive Species Claims Its Role in Parasite Epidemiology in Europe
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polley, L. Navigating parasite webs and parasite flow: Emerging and re-emerging parasitic zoonoses of wildlife origin. Int. J. Parasitol. 2005, 35, 1279–1294. [Google Scholar]
- Morgan, E.R.; Modry, D.; Paredes-Esquivel, C.; Foronda, P.; Traversa, D. Angiostrongylosis in Animals and Humans in Europe. Pathogens 2021, 10, 1236. [Google Scholar]
- Traversa, D.; Morelli, S.; Di Cesare, A.; Diakou, A. Felid Cardiopulmonary Nematodes: Dilemmas Solved and New Questions Posed. Pathogens 2021, 10, 30. [Google Scholar]
- Daszak, P.; Cunningham, A.A.; Hyatt, A.D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 2001, 78, 103–116. [Google Scholar] [CrossRef]
- Roemer, G.W.; Gompper, M.E.; Van Valkenburgh, B. The ecological role of the mammalian mesocarnivore. BioScience 2009, 59, 165–173. [Google Scholar]
- Tedeschi, L.; Biancolini, D.; Capinha, C.; Rondinini, C.; Essl, F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mammal Rev. 2022, 52, 252–266. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for Disease Prevention and Control). The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e6406. [Google Scholar]
- Sillero-Zubiri, C.; Hoffmann, M.; Macdonald, D.W. Canids: Foxes, Wolves, Jackalsand Dogs, Status Survey and Conservation Action Plan; IUCN/SSC Canid Specialist Group: Gland, Switzerland; Cambridge, UK, 2004; p. 430. [Google Scholar]
- Helle, E.; Kauhala, K. Distribution history and present status of the raccoon dog in Finland. Holarct. Ecol. 1991, 14, 278–286. [Google Scholar]
- Kauhala, K.; Saeki, M. Nyctereutes procyonoides. IUCN RedList Threat. Species 2016, e.T14925A85658776. Available online: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14925A85658776.en (accessed on 27 December 2022).
- Criado-Fornelio, A.; Martín-Pérez, T.; Verdú-Expósito, C.; Reinoso-Ortiz, S.A.; Pérez-Serrano, J. Molecular epidemiology of parasitic protozoa and Ehrlichia canis in wildlife in Madrid (central Spain). Parasitol. Res. 2018, 117, 2291–2298. [Google Scholar]
- Duscher, G.G.; Fuehrer, H.P.; Kübber-Heiss, A. Fox on the run—Molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasit. Vectors 2014, 7, 521. [Google Scholar]
- Laurimaa, L.; Moks, E.; Soe, E.; Valdmann, H.; Saarma, U. Echinococcus multilocularis and other zoonotic parasites in red foxes in Estonia. Parasitology 2016, 143, 1450–1458. [Google Scholar] [CrossRef]
- Hoffmann, M.; Sillero-Zubiri, C. Vulpes vulpes amended version of 2016 assessment. IUCN Red List. Threat. Species 2021, e.T23062A193903628. Available online: https://dx.doi.org/10.2305/IUCN.UK.2021-1.RLTS.T23062A193903628.en (accessed on 27 December 2022).
- Janko, J.; Schröder, W.; Linke, S.; König, A. Space use and resting site selection of red foxes (Vulpes vulpes) living near villages and small towns in southern Germany. Acta Theriol. 2012, 57, 245–250. [Google Scholar] [CrossRef]
- Contesse, P.; Hegglin, D.; Gloor, S.; Bontadina, F.; Deplazes, P. Original investigation: The diet of urban foxes (Vulpes vulpes) and the availability of anthropogenic food in the city of Zurich, Switzerland. Mamm. Biol. 2004, 69, 81–95. [Google Scholar] [CrossRef]
- Plumer, L.; Davison, J.; Saarma, U. Rapid urbanization of red foxes in Estonia: Distribution, behaviour, attacks on domestic animals, and health-risks related to zoonotic diseases. PLoS ONE 2014, 9, e115124. [Google Scholar] [CrossRef] [Green Version]
- André, M.R. Diversity of Anaplasma and Ehrlichia/Neoehrlichia Agents in Terrestrial Wild Carnivores Worldwide: Implications for Human and Domestic Animal Health and Wildlife Conservation. Front. Vet. Sci. 2018, 23, 293. [Google Scholar] [CrossRef]
- Otranto, D.; Cantacessi, C.; Dantas-Torres, F.; Brianti, E.; Pfeffer, M.; Genchi, C.; Guberti, V.; Capelli, G.; Deplazes, P. The role of wild canids and felids in spreading parasites to dogs and cats in Europe. Part II: Helminths and arthropods. Vet. Parasitol. 2015, 213, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Otranto, D.; Deplazes, P. Zoonotic nematodes of wild carnivores. Int. J. Parasitol. Parasites Wildl. 2019, 9, 370–383. [Google Scholar]
- Veronesi, F.; Morganti, G.; Di Cesare, A.; Lepri, E.; Cassini, R.; Zanet, S.; Deni, D.; Chiari, M.; Ferroglio, E. Eucoleus boehmi infection in red fox (Vulpes vulpes) from Italy. Vet. Parasitol. 2014, 206, 232–239. [Google Scholar]
- Dell’Arte, G.L.; Laaksonen, T.; Norrdahl, K.; Korpimaki, E. Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecologica 2007, 31, 276–281. [Google Scholar]
- Kidawa, D.; Kowalczyk, R. The effects of sex, age, season and habitat on diet of the red fox Vulpes vulpes in northeastern Poland. Acta Theriol. 2011, 56, 209–218. [Google Scholar]
- Aguirre, A.A. Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasit. Vectors 2009, 8 (Suppl. S1), S7. [Google Scholar]
- Medkour, H.; Laidoudi, Y.; Lafri, I.; Davoust, B.; Mekroud, A.; Bitam, I.; Mediannikov, O. Canine vector-borne protozoa: Molecular and serological investigation for Leishmania spp., Trypanosoma spp., Babesia spp., and Hepatozoon spp. in dogs from Northern Algeria. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100353. [Google Scholar] [CrossRef]
- Campino, L.; Pratlong, F.; Abranches, P.; Rioux, J.-A.; Santos-Gomes, G.; Alves-Pires, C.; Cortes, S.; Ramada, J.; Cristovao, J.M.; Afonso, M.O.; et al. Leishmaniasis in Portugal: Enzyme polymorphism of Leishmania infantum based on the identification of 213 strains. Trop. Med. Int. Health 2006, 11, 1708–1714. [Google Scholar]
- Azami-Conesa, I.; Gómez-Muñoz, M.T.; Martínez-Díaz, R.A. A Systematic Review (1990–2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms 2021, 9, 1101. [Google Scholar] [CrossRef]
- Rioux, J.A.; Albaret, J.L.; Houin, R.; Dedet, J.; Lanotte, G. Ecologie des leishmanioses dans le sud de la France. 2. Les reservoirs selvatiques. Infestation spontanee de renard (Vulpes vulpes L.). Ann. Parasito. Hum. Comp. 1968, 43, 421–428. [Google Scholar]
- Davoust, B.; Mary, C.; Marié, J.L. Detection of Leishmania in red foxes (Vulpes vulpes) from southeastern France using realtime quantitative PCR. J. Wildl. Dis. 2014, 50, 130–132. [Google Scholar] [CrossRef]
- Babuadze, G.; Alvar, J.; Argaw, D.; de Koning, H.P.; Iosava, M.; Kekelidze, M.; Tsertsvadze, N.; Tsereteli, D.; Chakhunashvili, G.; Mamatsashvili, T.; et al. Epidemiology of visceral leishmaniasis in Georgia. PLoS Negl. Trop. Dis. 2014, 8, e2725. [Google Scholar] [CrossRef] [Green Version]
- Mancianti, F.; Mignone, W.; Galestri, F. Serologic survey for leishmaniasis in free-living red foxes (Vulpes vulpes) in Italy. J. Wildl. Dis. 1994, 30, 454–456. [Google Scholar]
- Dipineto, L.; Manna, L.; Baiano, A.; Gala, M.; Fioretti, A.; Gravino, A.E.; Menna, L.F. Presence of Leishmania infantum in red foxes (Vulpes vulpes) in southern Italy. J. Wildl. Dis. 2007, 43, 518–520. [Google Scholar]
- Verin, R.; Polia, A.; Ariti, G.; Nardoni, S.; Bertucelli, M.; Mancianti, F. Detection of Leishmania infantum DNA in tissue of free-ranging red foxes (Vulpes vulpes) in Central Italy. Eur. J. Wild. Res. 2010, 56, 689–692. [Google Scholar] [CrossRef]
- Sgroi, G.; Iatta, R.; Veneziano, V.; Bezerra-Santos, M.A.; Lesiczka, P.; Hrazdilová, K.; Annoscia, G.; D’Alessio, N.; Golovchenko, M.; Rudenko, N.; et al. Molecular survey on tick-borne pathogens and Leishmania infantum in red foxes (Vulpes vulpes) from southern Italy. Ticks Tick Borne Dis. 2021, 12, 101669. [Google Scholar]
- Karayiannis, S.; Ntais, P.; Messaritakis, I.; Tsirigotakis, N.; Dokianakis, E.; Antoniou, M. Detection of Leishmania infantum in red foxes (Vulpes vulpes) in Central Greece. Parasitology 2015, 142, 1574–1578. [Google Scholar]
- Criado-Fornelio, A.; Gutierrez-Garcia, L.; Rodriguez-Caabeiro, F.; Reus-Garcia, E.; Roldan-Soriano, M.A.; Diaz-Sanchez, M.A. A parasitological survey of wild red foxes (Vulpes vulpes) from the province of Guadalajara, Spain. Vet. Parasitol. 2000, 92, 245–251. [Google Scholar]
- Solano-Gallego, L.; Morell, P.; Arboix, M.; Alberola, J.; Ferrer, L. Prevalence of Leishmania infantum infection in dogs living in an area of canine leishmaniasis endemicity using PCR on several tissues and serology. J. Clin. Microbiol. 2001, 39, 560–563. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Jiménez, M.I.; Cruz, I.; Iriso, A.; Martín-Martín, I.; Sevillano, O. The hare (Lepus granatensis) as potential sylvatic reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012, 190, 268–271. [Google Scholar] [CrossRef]
- Jiménez, M.; González, E.; Martín-Martín, I.; Hernández, S.; Molina, R. Could wild rabbits (Oryctolagus cuniculus) be reservoirs for Leishmania infantum in the focus of Madrid, Spain? Vet. Parasitol. 2014, 202, 296–300. [Google Scholar]
- Courtenay, O.; Carson, C.; Calvo-Bado, L.; Garcez, L.M.; Quinnell, R.J. Heterogeneities in Leishmania infantum infection: Using skin parasite burdens to identify highly infectious dogs. PLoS Negl. Trop. Dis. 2014, 8, e2583. [Google Scholar] [CrossRef]
- Ilie, M.; Imre, M.; Imre, K.; Hot, I.; Morariu, S.; Sorescu, D. Occurrence of Hepatozoon spp. in red foxes (Vulpes vulpes) in Romania. Parasit. Vectors 2014, 7, O33. [Google Scholar] [CrossRef] [Green Version]
- Mierzejewska, E.J.; Pawełczyk, A.; Radkowski, M.; Welc-Falęciak, R.; Bajer, A. Pathogens vectored by the tick, Dermacentor reticulatus, in endemic regions and zones of expansion in Poland. Parasit. Vectors 2015, 8, 49. [Google Scholar]
- Medkour, H.; Laidoudi, Y.; Marié, J.L.; Fenollar, F.; Davoust, B.; Mediannikov, O. Molecular investigation of vector-borne pathogens in red foxes (Vulpes vulpes) from southern France. J. Wildl. Dis. 2020, 56, 837–850. [Google Scholar]
- Baneth, G.; Florin-Christensen, M.; Cardoso, L.; Schnittger, L. Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit. Vectors 2015, 8, 207. [Google Scholar]
- Baneth, G.; Cardoso, L.; Brilhante-Simões, P.; Schnittger, L. Establishment of Babesia vulpes n. sp. (Apicomplexa: Babesiidae), a piroplasmid species pathogenic for domestic dogs. Parasit. Vectors 2019, 12, 129. [Google Scholar] [CrossRef] [Green Version]
- Mierzejewska, E.J.; Dwużnik, D.; Koczwarska, J.; Stańczak, Ł.; Opalińska, P.; Krokowska-Paluszak, M.; Wierzbicka, A.; Górecki, G.; Bajer, A. The red fox (Vulpes vulpes), a possible reservoir of Babesia vulpes, B. canis and Hepatozoon canis and its association with the tick Dermacentor reticulatus occurrence. Ticks Tick Borne Dis. 2021, 12, 101551. [Google Scholar] [CrossRef]
- Camacho, A.T.; Pallas, E.; Gestal, J.J.; Guitián, F.J.; Olmeda, A.S.; Telford, S.R.; Spielman, A. Ixodes hexagonus is the main candidate as vector of Theileria annae in northwest Spain Vet. Parasitol. 2003, 112, 157–163. [Google Scholar]
- Cardoso, L.; Cortes, H.C.E.; Reis, A.; Rodrigues, P.; Simões, M.; Lopes, A.P.; Vila-Viçosa, M.J.; Talmi-Frank, D.; Eyal, O.; Solano-Gallego, L.; et al. Prevalence of Babesia microti-like infection in red foxes (Vulpes vulpes) from Portugal. Vet. Parasitol. 2013, 19, 90–95. [Google Scholar]
- Checa, R.; López-Beceiro, A.M.; Montoya, A.; Barrera, J.P.; Ortega, N.; Gálvez, R.; Marino, V.; González, J.; Olmeda, Á.S.; Fidalgo, L.E.; et al. Babesia microti-like piroplasm (syn. Babesia vulpes) infection in red foxes (Vulpes vulpes) in NW Spain (Galicia) and its relationship with Ixodes hexagonus. Vet. Parasitol. 2018, 252, 22–28. [Google Scholar] [CrossRef]
- Najm, N.A.; Meyer-Kayser, E.; Hoffmann, L.; Pfister, K.; Silaghi, C. Hepatozoon canis in German red foxes (Vulpes vulpes) and their ticks: Molecular characterization and the phylogenetic relationship to other Hepatozoon spp. Parasitol. Res. 2014, 113, 2679–2685. [Google Scholar] [CrossRef]
- Hodžić, A.; Alić, A.; Fuehrer, H.P.; Harl, J.; Wille-Piazzai, W.; Duscher, G.G. A molecular survey of vector-borne pathogens in red foxes (Vulpes vulpes) from Bosnia and Herzegovina. Parasit. Vectors 2015, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Ebani, V.V.; Rocchigiani, G.; Nardoni, S.; Bertelloni, F.; Vasta, V.; Papini, R.A.; Verin, R.; Poli, A.; Mancianti, F. Molecular detection of tick-borne pathogens in wild red foxes (Vulpes vulpes) from Central Italy. Acta Trop. 2017, 172, 197–200. [Google Scholar] [CrossRef]
- Battisti, E.; Zanet, S.; Khalili, S.; Trisciuoglio, A.; Hertel, B.; Ferroglio, E. Molecular Survey on Vector-Borne Pathogens in Alpine Wild Carnivorans. Front. Vet. Sci. 2020, 27, 1. [Google Scholar]
- Daskalaki, A.A.; Ionică, A.M.; Deak, G.; Gherman, C.M.; D’Amico, G.; Păstrav, I.R.; Matei, I.A.; Domșa, C.; Mihalca, A.D. Environmental factors influencing the distribution of “Theileria annae” in red foxes, Vulpes vulpes in Romania. Ticks Tick Borne Dis. 2018, 9, 660–664. [Google Scholar]
- Farkas, R.; Takács, N.; Hornyák, Á.; Nachum-Biala, Y.; Hornok, S.; Baneth, G. First report on Babesia cf. microti infection of red foxes (Vulpes vulpes) from Hungary. Parasit. Vectors 2015, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Deždek, D.; Vojta, L.; Ćurković, S.; Lipej, Z.; Mihaljević, Ž.; Cvetnić, Ž.; Beck, R. Molecular detection of Theileria annae and Hepatozoon canis in foxes (Vulpes vulpes) in Croatia. Vet. Parasitol. 2010, 172, 333–336. [Google Scholar] [CrossRef]
- Giannelli, A.; Ramos, R.A.; Dantas-Torres, F.; Mencke, N.; Baneth, G.; Otranto, D. Experimental evidence against transmission of Hepatozoon canis by Ixodes ricinus. Ticks Tick Borne Dis. 2013, 4, 391–394. [Google Scholar] [CrossRef]
- Baneth, G. Perspectives on canine and feline hepatozoonosis. Vet. Parasitol. 2011, 181, 3–11. [Google Scholar] [CrossRef]
- Cardoso, L.; Cortes, H.C.; Eyal, O.; Reis, A.; Lopes, A.P.; Vila-Viçosa, M.J.; Rodrigues, P.A.; Baneth, G. Molecular and histopathological detection of Hepatozoon canis in red foxes (Vulpes vulpes) from Portugal. Parasit. Vectors 2014, 7, 113. [Google Scholar] [CrossRef] [Green Version]
- Juwaid, S.; Sukara, R.; Penezić, A.; Mihaljica, D.; Veinović, G.; Kavallieratos, N.G.; Ćirović, D.; Tomanović, S. First evidence of tick-borne protozoan pathogens, Babesia sp. and Hepatozoon canis, in red foxes (Vulpes vulpes) in Serbia. Acta Vet. Hung. 2019, 67, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Mitková, B.; Hrazdilová, K.; Steinbauer, V.; D’Amico, G.; Mihalca, A.D.; Modrý, D. Autochthonous Hepatozoon infection in hunting dogs and foxes from the Czech Republic. Parasitol. Res. 2016, 115, 4167–4171. [Google Scholar]
- Hodžić, A.; Mrowietz, N.; Cézanne, R.; Bruckschwaiger, P.; Punz, S.; Habler, V.E.; Tomsik, V.; Lazar, J.; Duscher, G.G.; Glawischnig, W.; et al. Occurrence and diversity of arthropod-transmitted pathogens in red foxes (Vulpes vulpes) in western Austria, and possible vertical (transplacental) transmission of Hepatozoon canis. Parasitol. 2018, 145, 335–344. [Google Scholar] [CrossRef]
- Miterpáková, M.; Komjáti-Nagyová, M.; Hurníková, Z.; Víchová, B. Retrospective molecular study on canine hepatozoonosis in Slovakia—Does infection risk for dogs really exist? Ticks Tick Borne Dis. 2017, 8, 567–573. [Google Scholar] [CrossRef]
- Farkas, R.; Solymosi, N.; Takács, N.; Hornyák, Á.; Hornok, S.; Nachum-Biala, Y.; Baneth, G. First molecular evidence of Hepatozoon canis infection in red foxes and Golden jackals from Hungary. Parasit. Vectors 2014, 7, 303. [Google Scholar]
- Gomes-de-Sá, S.; Santos-Silva, S.; Moreira, A.S.; Barradas, P.F.; Amorim, I.; Cardoso, L.; Mesquita, J.R. Dirofilaria immitis antigenemia and microfilaremia in Iberian wolves and red foxes from Portugal. Parasit. Vectors 2022, 15, 119. [Google Scholar]
- Simón, F.; Siles-Lucas, M.; Morchón, R.; González-Miguel, J.; Mellado, I.; Carretón, E.; Montoya-Alonso, J.A. Human and animal dirofilariasis: The emergence of a zoonotic mosaic. Clin. Microbiol. Rev. 2012, 25, 507–544. [Google Scholar]
- Tolnai, Z.; Széll, Z.; Sproch, Á.; Szeredi, L.; Sréter, T. Dirofilaria immitis: An emerging parasite in dogs, red foxes and Golden jackals in Hungary. Vet. Parasitol. 2014, 203, 339–342. [Google Scholar]
- Ionică, A.M.; Matei, I.A.; D’Amico, G.; Ababii, J.; Daskalaki, A.A.; Sándor, A.D.; Enache, D.V.; Gherman, C.M.; Mihalca, A.D. Filarioid infections in wild carnivores: A multispecies survey in Romania. Parasit. Vectors 2017, 10, 332. [Google Scholar]
- Kravchenko, V.; Itin, G.; Kartashev, V.; Ermakov, A.; Kartashov, S.; Diosdado, A.; González-Miguel, J.; Simón, F. Dirofilaria immitis and D. repens in sylvatic reservoirs of Krasnodar Krai (Russian Federation). Vet. Parasitol. Reg. Stud. Rep. 2016, 6, 35–38. [Google Scholar] [CrossRef]
- Potkonjak, A.; Rojas, A.; Gutiérrez, R.; Nachum-Biala, Y.; Kleinerman, G.; Savić, S.; Polaček, V.; Pušić, I.; Harrus, S.; Baneth, G. Molecular survey of Dirofilaria species in stray dogs, red foxes and Golden jackals from Vojvodina, Serbia. Comp. Immunol. Microbiol. Infect. Dis. 2020, 68, 101409. [Google Scholar] [CrossRef]
- Otranto, D.; Cantacessi, C.; Testini, G.; Lia, R.P. Phortica variegata as an intermediate host of Thelazia callipaeda under natural conditions: Evidence for pathogen transmission by a male arthropod vector. Int. J. Parasitol. 2006, 36, 1167–1173. [Google Scholar]
- Otranto, D.; Mendoza-Roldan, J.A.; Dantas-Torres, F. Thelazia callipaeda. Trends Parasitol. 2020, 4922, 301–306. [Google Scholar] [CrossRef]
- Otranto, D.; Dantas-Torres, F. Transmission of the eyeworm Thelazia callipaeda: Between fantasy and reality. Parasit. Vectors 2015, 8, 273. [Google Scholar] [CrossRef] [Green Version]
- Ionică, A.M.; Deak, G.; Mate, I.A.; D’Amico, G.; Cotuţiu, V.D.; Gherman, C.M.; Mihalca, A.D. Thelazia callipaeda, an endemic parasite of red foxes (Vulpes vulpes) in Western Romania. J. Wildl. Dis. 2018, 54, 829–833. [Google Scholar]
- Diakou, A. Thelazia callipaeda: Vigilance is the best course of action. Vet. Rec. 2017, 181, 344–345. [Google Scholar] [CrossRef]
- Maia, C.; Catarino, A.; Almeida, B.; Ramos, C.; Campino, L. Cardoso Emergence of Thelazia callipaeda infection in dogs and cats from east-central Portugal. Transbound. Emerg. Dis. 2016, 63, 416–421. [Google Scholar]
- Otranto, D.; Ferroglio, E.; Lia, R.P.; Traversa, D.; Rossi, L. Current status and epidemiological observation of Thelazia callipaeda (Spirurida, Thelaziidae) in dogs, cats and foxes in Italy: A “coincidence” or a parasitic disease of the Old Continent? Vet. Parasitol. 2007, 116, 315–325. [Google Scholar]
- Malacrida, F.; Hegglin, D.; Bacciarini, L.; Otranto, D.; Nägeli, F.; Nägeli, C.; Bernasconi, C.; Scheu, U.; Balli, A.; Marenco, M.; et al. Emergence of canine ocular thelaziosis caused by Thelazia callipaeda in southern Switzerland. Vet. Parasitol. 2008, 157, 321–327. [Google Scholar]
- Otranto, D.; Dantas Torres, F.; Mallia, E.; Di Geronimo, P.M.; Brianti, E.; Testini, G.; Traversa, D.; Lia, R.P. Thelazia callipaeda (Spirurida, Thelaziidae) in wild animals: Report of new host species and ecological implications. Vet. Parasitol. 2009, 166, 262–267. [Google Scholar]
- Shen, J.; Gasser, R.B.; Chu, D.; Wang, Z.; Yuan, X.; Cantacessi, C.; Otranto, D. Human thelaziosis—A neglected parasitic disease of the eye. J. Parasitol. 2006, 92, 872–876. [Google Scholar]
- Otranto, D.; Dutto, M. Human thelaziasis Europe. Emerg. Infect. Dis. 2008, 14, 647–649. [Google Scholar] [CrossRef]
- Sargo, R.; Loureiro, F.; Catarino, A.L.; Valente, J.; Silva, F.; Cardoso, L.; Otranto, D.; Maia, C. First report of Thelazia callipaeda in red foxes (Vulpes vulpes) from Portugal. JZVM 2014, 45, 458–460. [Google Scholar]
- Otranto, D.; Dantas-Torres, F.; Brianti, E.; Traversa, D.; Petrić, D.; Genchi, C.; Capelli, G. Vector-borne helminths of dogs and humans in Europe. Parasit. Vectors. 2013, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, I.; Montes, I.; Saugar, J.M.; Latrofa, S.; Gárate, T.; Otranto, D. Thelaziosis in humans, a zoonotic infection, Spain, 2011. Emerg. Infect Dis. 2012, 18, 2073–2075. [Google Scholar]
- Tasić-Otašević, S.; Gabrielli, S.; Trenkić-Božinović, M.; Petrović, A.; Gajić, B.; Colella, V.; Momčilović, S.; Cancrini, G.; Otranto, D. Eyeworm infections in dogs and in a human patient in Serbia: A One Health approach is needed. Comp. Immunol. Microbiol. Infect. Dis. 2016, 45, 20–22. [Google Scholar] [CrossRef]
- Dolff, S.; Kehrmann, J.; Eisermann, P.; Dalbah, S.; Tappe, D.; Rating, P. Case report: Thelazia callipaeda eye infection: The first human case in Germany. Am. J. Trop. Med. Hyg. 2020, 102, 350–351. [Google Scholar] [CrossRef]
- Paradžik, M.T.; Samardžić, K.; Živičnjak, T.; Martinković, F.; Janjetović, Ž.; Miletić-Medved, M. Thelazia callipaeda—First human case of thelaziosis in Croatia. Wien. Klin. Wochenschr. 2016, 128, 221–223. [Google Scholar]
- Morgado, A.C.T.; do Vale, B.; Ribeiro, P.; Coutinho, T.; Santos-Silva, S.; de Sousa Moreira, A.; Rodrigues, F.T.; Coelho, A.C.; Lopes, A.P.; Mesquita, J.R. First report of human Thelazia callipaeda infection in Portugal. Acta Trop. 2022, 231, 106436. [Google Scholar]
- Juhász, H.; Thury, G.; Szécsényi, M.; Tóth-Molnár, E.; Burián, K.; Deim, Z.; Terhes, G. Human Thelaziosis Caused by Thelazia callipaeda Eyeworm, Hungary. Emerg. Infect. Dis. 2022, 28, 2559–2561. [Google Scholar] [CrossRef]
- Pozio, E.; Zarlenga, D.S. New pieces of the Trichinella puzzle. Int. J. Parasitol. 2013, 43, 983–997. [Google Scholar] [CrossRef]
- Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar]
- Wanha, K.; Edelhofer, R.; Gabler-Eduardo, C.; Prosl, H. Prevalence of antibodies against Neospora caninum and Toxoplasma gondii in dogs and foxes in Austria. Vet. Parasitol. 2005, 128, 189–193. [Google Scholar] [CrossRef]
- Herrmann, D.C.; Maksimov, P.; Maksimov, A.; Sutor, A.; Schwarz, S.; Jaschke, W.; Schliephake, A.; Denzin, N.; Conraths, F.J.; Schares, G. Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony-Anhalt: Seroprevalence and genotypes. Vet. Parasitol. 2012, 185, 78–85. [Google Scholar] [CrossRef]
- Buchton, D.; Maley, S.W.; Pastoret, P.P.; Brochier, B.; Innes, E.A. Examination of red foxes (Vulpes vulpes) from Belgium for antibody to Neospora caninum and Toxoplasma gondii. Vet. Rec. 1997, 141, 308–309. [Google Scholar]
- Bártová, E.; Slezáková, R.; Nágl, I.; Sedlák, K.N. Neospora caninum and Toxoplasma gondii antibodies in red foxes (Vulpes vulpes) in the Czech Republic. Ann. Agric. Environ. Med. 2016, 23, 84–86. [Google Scholar] [CrossRef]
- Aubert, D.; Ajzenberg, D.; Richomme, C.; Gilot-Fromont, E.; Terrier, M.E.; de Gevigney, C.; Game, Y.; Maillard, D.; Gibert, P.; Dardé, M.L.; et al. Molecular and biological characteristics of Toxoplasma gondii isolates from wildlife in France. Vet. Parasitol. 2010, 171, 346–349. [Google Scholar] [CrossRef]
- Uzelac, A.; Ćirović, D.; Penezić, A.; Ćirković, V.; Djurković-Djaković, O. Detection and genotyping of Toxoplasma gondii in wild canids in Serbia. Parasitol. Int. 2019, 73, 101973. [Google Scholar] [CrossRef]
- Dubey, J.P.; Storandt, S.T.; Kwok, O.C.; Thulliez, P.; Kazacos, K.R. Toxoplasma gondii antibodies in naturally exposed wild coyotes, red foxes, and gray foxes and serologic diagnosis of Toxoplasmosis in red foxes fed T. gondii oocysts and tissue cysts. J. Parasitol. 1999, 85, 240–343. [Google Scholar] [CrossRef]
- Bjerkås, I. Neuropathology and host-parasite relationship of acute experimental toxoplasmosis of the blue fox (Alopex lagopus). Vet. Pathol. 1990, 27, 381–390. [Google Scholar]
- Webster, J.P. Rats, cats, people and parasites: The impact of latent toxoplasmosis on behaviour. Microbes Infect. 2001, 3, 1037–1345. [Google Scholar]
- Milne, G.; Fujimoto, C.; Bean, T.; Peters, H.J.; Hemmington, M.; Taylor, C.; Fowkes, R.C.; Martineau, H.M.; Hamilton, C.M.; Walker, M.; et al. Infectious Causation of Abnormal Host Behavior: Toxoplasma gondii and Its Potential Association With Dopey Fox Syndrome. Front. Psychiatry 2020, 11, 513536. [Google Scholar] [CrossRef]
- Gottstein, B.; Pozio, E.; Nöckler, K. Epidemiology, diagnosis, treatment, and control of trichinellosis. Clin. Microbiol. Rev. 2009, 22, 127–145. [Google Scholar] [CrossRef] [Green Version]
- De Craeye, S.; Speybroeck, N.; Ajzenberg, D.; Dardé, M.L.; Collinet, F.; Tavernier, P.; Van Gucht, S.; Dorny, P.; Dierick, K. Toxoplasma gondii and Neospora caninum in wildlife: Common parasites in Belgian foxes and Cervidae? Vet. Parasitol. 2011, 178, 64–69. [Google Scholar]
- Kapel, C.M.; Webster, P.; Gamble, H.R. Muscle distribution of sylvatic and domestic Trichinella larvae in production animals and wildlife. Vet Parasitol. 2005, 132, 101–105. [Google Scholar]
- EFSA. The EU summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2013, 13, 3991. [Google Scholar]
- Bilska-Zając, E.; Różycki, M.; Grądziel-Krukowska, K.; Bełcik, A.; Mizak, I.; Karamon, J.; Sroka, J.; Zdybel, J.; Cencek, T. Diversity of Trichinella species in relation to the host species and geographical location. Vet. Parasitol. 2020, 279, 109052. [Google Scholar]
- Imre, K.; Pozio, E.; Tonanzi, D.; Sala, C.; Ilie, M.S.; Imre, M.; Morar, A. The red fox (Vulpes vulpes) plays a minor role in the epidemiology of the domestic cycle of Trichinella in Romania. Vet. Parasitol. 2015, 212, 448–450. [Google Scholar] [CrossRef]
- Eckert, J.; Deplazes, P. Alveolar echinococcosis in humans: The current situation in central Europe and the need for countermeasures. Parasitol Today 1999, 15, 315–319. [Google Scholar] [CrossRef]
- Oksanen, A.; Siles-Lucas, M.; Karamon, J.; Possenti, A.; Conraths, F.J.; Romig, T.; Wysocki, P.; Mannocci, A.; Mipatrini, D.; La Torre, G. The geographical distribution and prevalence of Echinococcus multilocularis in animals in the European Union and adjacent countries: A systematic review and meta-analysis. Parasit. Vectors 2016, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- EFSA AHAW Panel (EFSA Panel on Animal Health and Welfare). Scientific opinion on Echinococcus multilocularis infection in animals. EFSA J. 2015, 13, 129. [Google Scholar]
- Citterio, C.V.; Obber, F.; Trevisiol, K.; Dellamaria, D.; Celva, R.; Bregoli, M. Echinococcus multilocularis and other cestodes in red foxes (Vulpes vulpes) of northeast Italy, 2012–2018. Parasit Vectors 2021, 14, 29. [Google Scholar]
- Obber, F.; Celva, R.; Da Rold, G.; Trevisiol, K.; Ravagnan, S.; Danesi, P. A highly endemic area of Echinococcus multilocularis identified through a comparative re-assessment of prevalence in the red fox (Vulpes vulpes), Alto Adige (Italy). PLoS ONE 2022, 17, e0268045. [Google Scholar]
- Davidson, R.K.; Romig, T.; Jenkins, E.; Tryland, M.; Robertson, L. The impact of globalization on thedistribution of Echinococcus multilocularis. Trends Parasitol. 2012, 28, 239–247. [Google Scholar] [CrossRef]
- Moks, E.; Saarma, U.; Valdmann, H. Echinococcus multilocularis in Estonia. Emerg. Infect. Dis. 2005, 11, 1973–1974. [Google Scholar] [CrossRef]
- Bagrade, G.; Snabel, V.; Romig, T.; Ozolins, J.; Huettner, M.; Miterpakova, M.; Sevcova, D.; Dubinsky, P. Echinococcus multilocularis is a frequent parasite of red foxes (Vulpes vulpes) in Latvia. Helminthologia 2008, 45, 157–161. [Google Scholar]
- European Centre for Disease Prevention and Control (ECDC). Echinococcosis: Annual Epidemiological Report for 2016; ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int. J. Parasitol Parasites Wildl. 2015, 4, 71–79. [Google Scholar]
- Hofer, S.; Gloor, S.; Müller, U.; Mathis, A.; Hegglin, D.; Deplazes, P. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zürich, Switzerland. Parasitology 2000, 120, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Bruschi, F.; Pozio, E. Trichinella britovi. Trends Parasitol. 2020, 36, 227–228. [Google Scholar]
- Latrofa, M.S.; Lia, R.P.; Giannelli, A.; Colella, V.; Santoro, M.; D’Alessio, N.; Campbell, B.E.; Parisi, A.; Dantas-Torres, F.; Mutafchiev, Y.; et al. Crenosoma vulpis in wild and domestic carnivores from Italy: A morphological and molecular study. Parasitol. Res. 2015, 114, 3611–3617. [Google Scholar]
- Koch, J.; Willesen, J.L. Canine pulmonary angiostrongylosis: An update. Vet. J. 2009, 179, 348–359. [Google Scholar] [CrossRef]
- Traversa, D.; Di Cesare, A.; Conboy, G. Canine and feline cardiopulmonary parasitic nematodes in Europe: Emerging and underestimated. Parasit. Vectors 2010, 3, 62. [Google Scholar] [CrossRef]
- Conboy, G. Helminth parasites of the canine and feline respiratory tract. Vet. Clin. N. Am. Small. Anim. Pract. 2009, 39, 1109–1126. [Google Scholar]
- Saeed, C.; Maddox-Hyttel, J.; Monrad, C.M. Kapel Helminths of red foxes (Vulpes vulpes) in Denmark. Vet. Parasitol. 2006, 139, 168–179. [Google Scholar]
- Al-Sabi, M.N.S.; Halasa, T.; Kapel, C.M.O. Infections with cardiopulmonary and intestinal helminths and sarcoptic mange in red foxes from two different localities in Denmark. Acta Parasitol. 2014, 59, 98–107. [Google Scholar]
- Davidson, R.K.; Gjerde, B.; Vikøren, T.; Lillehaug, A.; Handeland, K. Prevalence of Trichinella larvae and extra-intestinal nematodes in Norwegian red foxes (Vulpes vulpes). Vet. Parasitol. 2006, 136, 307–316. [Google Scholar] [CrossRef]
- Lalosevic, V.; Lalosevic, D.; Capo, I.; Simin, V.; Galfi, A.; Traversa, D. High infection rate of zoonotic Eucoleus aerophilus infection in foxes from Serbia. Parasite 2013, 20, 3. [Google Scholar]
- Karamon, J.; Dąbrowska, J.; Kochanowski, M.; Samorek-Pieróg, M.; Sroka, J.; Różycki, M.; Cencek, T. Prevalence of intestinal helminths of red foxes (Vulpes vulpes) in central Europe (Poland): A significant zoonotic threat. Parasit. Vectors 2018, 11, 436. [Google Scholar] [CrossRef]
- Schug, K.; Krämer, F.; Schaper, R.; Hirzmann, J.; Failing, K.; Hermosilla, C.; Taubert, A. Prevalence survey on lungworm (Angiostrongylus vasorum, Crenosoma vulpis, Eucoleus aerophilus) infections of wild red foxes (Vulpes vulpes) in central Germany. Parasit. Vectors 2018, 11, 85. [Google Scholar]
- Sréter, T.; Széll, Z.; Marucci, G.; Pozio, E.; Varga, I. Extraintestinal nematode infections of red foxes (Vulpes vulpes) in Hungary. Vet. Parasitol. 2003, 115, 329–334. [Google Scholar]
- Franssen, F.; Deksne, G.; Esíte, Z.; Havelaar, A.; Swart, A.; van der Giessen, J. Trend analysis of Trichinella in a red fox population from a low endemic area using a validated artificial digestion and sequential sieving technique. Vet. Res. 2014, 45, 120. [Google Scholar]
- Magi, M.; Guardone, L.; Prati, M.C.; Mignone, W.; Macchioni, F. Extraintestinal nematodes of the red fox Vulpes vulpes in north-west Italy. J. Helminthol. 2015, 89, 506–511. [Google Scholar]
- Di Cesare, A.; Castagna, G.; Otranto, D.; Meloni, S.; Milillo, P.; Latrofa, M.S.; Paoletti, B.; Bartolini, R.; Traversa, D. Molecular detection of Capillaria aerophila, an agent of canine and feline pulmonary capillariosis. J. Clin. Microbiol. 2012, 5, 1958–1963. [Google Scholar]
- Lalosevic, D.; Lalosevic, V.; Klem, I.; Stanojev-Jovanovic, D.; Pozio, E. Pulmonary capillariasis miming bronchial carcinoma. Am. J. Trop. Med. Hyg. 2008, 78, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Bolt, G.; Monrad, J.; Frandsen, F.; Henriksen, P.; Dietz, H.H. The common frog (Rana temporaria) as a potential paratenic and intermediate host for Angiostrongylus vasorum. Parasitol. Res. 1993, 79, 428–430. [Google Scholar] [CrossRef]
- Bolt, G.; Monrad, J.; Henriksen, P.; Dietz, H.; Koch, J.; Bindseil, E.; Jensen, A. The fox (Vulpes vulpes) as a reservoir for canine angiostrongylosis in Denmark. Field survey and experimental infections. Acta Vet. Scand. 1992, 33, 357–362. [Google Scholar] [CrossRef]
- Mozzer, L.R.; Lima, W.S. Gallus gallus domesticus: Paratenic host of Angiostrongylus vasorum. Vet. Parasitol. 2015, 207, 81–84. [Google Scholar]
- Morgan, E.R.; Jefferies, R.; Krajewski, M.; Ward, P.; Shaw, S.E. Canine pulmonary angiostrongylosis: The influence of climate on parasite distribution. Parasitol. Int. 2009, 58, 406–410. [Google Scholar]
- Taylor, C.S.; Garcia Gato, R.; Learmount, J.; Aziz, N.A.; Montgomery, C.; Rose, H. Increased prevalence and geographic spread of the cardiopulmonary nematode Angiostrongylus vasorum in fox populations in Great Britain. Parasitology 2015, 142, 1190–1195. [Google Scholar] [CrossRef]
- Deak, G.; Gherman, C.M.; Ionică, A.M.; Vezendan, A.D.; D’Amico, G.; Matei, I.A.; Daskalaki, A.A.; Marian, I.; Damian, A.; Cozma, V.; et al. Angiostrongylus vasorum in Romania: An extensive survey in red foxes, Vulpes vulpes. Parasit. Vectors 2017, 12, 33. [Google Scholar]
- Morgan, E.R.; Tomlinson, A.; Hunter, S.; Nichols, T.; Roberts, E.; Fox, M.T.; Taylor, M.A. Angiostrongylus vasorum and Eucoleus aerophilus in foxes (Vulpes vulpes) in Great Britain. Vet. Parasitol. 2008, 154, 4857. [Google Scholar] [CrossRef]
- Traversa, D.; Di Cesare, A.; Meloni, S.; Frangipane di Regalbono, A.; Milillo, P.; Pampurini, F.; Venco, L. Canine angiostrongylosis in Italy: Occurrence of Angiostrongylus vasorum in dogs with compatible clinical pictures. Parasitol. Res. 2013, 112, 24732480. [Google Scholar]
- Simpson, V.R. Angiostrongylus vasorum infection in foxes (Vulpes vulpes) in Cornwall. Vet. Rec. 1996, 139, 443–445. [Google Scholar]
- Tieri, E.E.; Saletti, M.A.; D’Angelo, A.R.; Parisciani, G.; Pelini, S.; Cocco, A.; Di Teodoro, G.; Di Censo, E.; D’Alterio, N.; Latrofa, M.S.; et al. Angiostrongylus vasorum in foxes (Vulpes vulpes) and wolves (Canis lupus italicus) from Abruzzo region, Italy. Int. J. Parasitol. Parasites Wildl. 2021, 15, 184–194. [Google Scholar] [CrossRef]
- Gillis-Germitsch, N.; Tritten, L.; Hegglin, D.; Deplazes, P.; Schnyder, M. Conquering Switzerland: The emergence of Angiostrongylus vasorum in foxes over three decades and its rapid regional increase in prevalence contrast with the stable occurrence of lungworms. Parasitology 2020, 147, 1071–1079. [Google Scholar]
- Morelli, S.; Gori, F.; Colombo, M.; Traversa, D.; Sarrocco, G.; Simonato, G.; Nespeca, C.; Di Cesare, A.; Frangipane di Regalbono, A.; Veronesi, F.; et al. Simultaneous Exposure to Angiostrongylus vasorum and Vector-Borne Pathogens in Dogs from Italy. Pathogens 2021, 10, 1200. [Google Scholar]
- Santoro, M.; D’Alessio, N.; Di Prisco, F.; Neola, B.; Restucci, B.; Pagano, T.B.; Veneziano, V. Angiostrongylus vasorum infection in red foxes (Vulpes vulpes) in southern Italy. Acta Parasitol. 2015, 60, 356–359. [Google Scholar]
- Eleni, C.; Grifoni, G.; Di Egidio, A.; Meoli, R.; De Liberato, C. Pathological findings of Angiostrongylus vasorum infection in red foxes (Vulpes vulpes) from Central Italy, with the first report of a disseminated infection in this host species. Parasitol. Res. 2014, 113, 1247–1250. [Google Scholar]
- Hamnes, I.S.; Gjerde, B.K.; Forberg, T.; Robertson, L.J. Occurrence of Giardia and Cryptosporidium in Norwegian red foxes (Vulpes vulpes). Vet. Parasitol. 2007, 143, 347–353. [Google Scholar] [CrossRef]
- Papini, R. Giardia and Cryptosporidium in Red Foxes (Vulpes vulpes): Screening for Coproantigens in a Population of Central Italy and Mini-Review of the Literature. Mac. Vet. Rev. 2019, 42, 101–106. [Google Scholar]
- Bružinskaitė-Schmidhalter, R.; Šarkūnas, M.; Malakauskas, A.; Mathis, A.; Torgerson, P.; Deplazes, P. Helminths of red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in Lithuania. Parasitology 2012, 139, 120–127. [Google Scholar]
- Vergles, A.; Rataj, J.; Posedi, D.; Zele, G. Vengušt Intestinal parasites of the red fox (Vulpes vulpes) in Slovenia. Acta Vet. Hung. 2013, 61, 454–462. [Google Scholar]
- Hrčkova, G.; Miterpáková, M.; O’Connor, A.; Snábel, V.; Olson, P.D. Molecular and morphological circumscription of Mesocestoides tapeworms from red foxes (Vulpes vulpes) in central Europe. Parasitology 2011, 138, 638–647. [Google Scholar]
- Korpysa-Dzirba, W.; Różycki, M.; Bilska-Zając, E.; Karamon, J.; Sroka, J.; Bełcik, A.; Wasiak, M.; Cencek, T. Alaria alata in Terms of Risks to Consumers’ Health. Foods 2021, 10, 1614. [Google Scholar]
- Reperant, L.A.; Hegglin, D.; Fischer, C.; Kohler, L.; Weber, J.M.; Deplazes, P. Influence of urbanization on the epidemiology of intestinal helminths of the red fox (Vulpes vulpes) in Geneva, Switzerland. Parasitol. Res. 2007, 101, 605–611. [Google Scholar]
- Borecka, A.; Gawor, J.; Zięba, F. A survey of intestinal helminths in wild carnivores from the Tatra National Park, southern Poland. Ann. Parasitol. 2013, 59, 169–172. [Google Scholar]
- Aleksić, J.; Stepanović, P.; Dimitrijević, S.; Gajić, B.; Bogunović, D.; Davidov, I.; Aleksić-Agelidis, A.; Ilić, T. Capillaria plica in Red Foxes (Vulpes vulpes) from Serbia: Epidemiology and Diagnostic Approaches to Urinary Capillariosis in Domestic Carnivores. Acta Parasit. 2020, 65, 954–962. [Google Scholar]
- Rojas, A.; Sanchis-Monsonís, G.; Alić, A.; Hodžić, A.; Otranto, D.; Yasur-Landau, D.; Martínez-Carrasco, C.; Baneth, G. Spirocerca vulpis sp. nov. (Spiruridae: Spirocercidae): Description of a new nematode species of the red fox, Vulpes vulpes (Carnivora: Canidae). Parasitology 2018, 21, 1–12. [Google Scholar]
- Sanchis-Monsonis, G.; Tizzani, P.; Ruiz de Ybanez, R.; Rojas, A.; Baneth, G.; Martínez-Carrasco, C. Spirocercosis in Red Foxes (Vulpes vulpes) from the Valencian Community (Eastern Spain). In Proceedings of the XX Congreso de la Sociedad Española de Parasitología, La Laguna, Tenerife, Spain, 19–21 July 2017. [Google Scholar]
- Jhala, Y.V.; Moehlman, P.D. Golden jackal Canis aureus Linnaeus, 1758. Least Concern. In Status Survey and Conservation Action Plan. Canids: Foxes, Wolves, Jackals and Dogs; IUCN: Gland, Switzerland; Cambridge, UK, 2004; pp. 156–161. [Google Scholar]
- Koepfli, K.P.; Pollinger, J.; Godinho, R.; Robinson, J.; Lea, A.; Hendricks, S.; Schweizer, R.M. Genome-wide evidence reveals that African and Eurasian Golden jackals are distinct species. Curr Biol. 2015, 25, 2158–2165. [Google Scholar]
- Gherman, C.M.; Mihalca, A.D. A synoptic overview of Golden jackal parasites reveals high diversity of species. Parasit. Vectors 2017, 10, 419. [Google Scholar]
- Hoffmann, M.; Arnold, J.; Duckworth, J.W.; Jhala, Y.; Kamler, J.F.; Krofel, M. Canis aureus (errata version published in 2020). IUCN Red List. Threat. Species 2018, e.T118264161A163507876. Available online: https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T118264161A163507876.en (accessed on 27 December 2022).
- Trouwborst, A.; Krofel, M.; Linnell, J.D.C. Legal implications of range expansions in a terrestrial carnivore: The case of the Golden jackal (Canis aureus) in Europe. Biodivers Conserv. 2015, 24, 2593–2610. [Google Scholar]
- Arnold, J.; Humer, A.; Heltai, M.; Murariu, D.; Spassov, N.; Hackländer, K. Current status and distribution of golden jackals Canis aureus in Europe. Mamm Rev. 2012, 42, 1–11. [Google Scholar] [CrossRef]
- Frey, C.F.; Basso, W.U.; Zürcher-Giovannini, S.; Marti, I.; Borel, S.; Guthruf, S.; Gliga, D.; Lundström-Stadelmann, B.; Origgi, F.C.; Ryser-Degiorgis, M.P. The Golden jackal (Canis aureus): A new host for Echinococcus multilocularis and Trichinella britovi in Switzerland. Schweiz. Arch. Tierheilkd 2022, 164, 71–78. [Google Scholar]
- Ćircović, D.; Penezić, A.; Pavlović, I.; Kulišić, Z.; Ćosić, N.; Burazerović, J.; Maletić, V. First records of Dirofilaria repens in wild canids from the region of Central Balkan. Acta Vet. Hung. 2014, 62, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Penezić, A.; Selaković, S.; Pavlović, I.; Ćirović, D. First findings and prevalence of adult heartworms (Dirofilaria immitis) in wild carnivores from Serbia. Parasitol. Res. 2014, 113, 3281–3285. [Google Scholar]
- Zivojinovic, M.; Sofronic-Milosavljevic, L.J.; Cvetkovic, J.; Pozio, E.; Interisano, M.; Plavsic, B.; Radojicic, S.; Kulisic, Z. Trichinella infections in different host species of an endemic district of Serbia. Vet. Parasitol. 2013, 194, 136–138. [Google Scholar]
- Lanszki, J.; Heltai, M.; Szabó, L. Feeding habits and trophic niche overlap between sympatric Golden jackal (Canis aureus) and red fox (Vulpes vulpes) in the Pannonian ecoregion (Hungary). Can. J. Zool. 2006, 84, 1647–1656. [Google Scholar]
- Balog, T.; Nagy, G.; Halász, T.; Csányi, E.; Zomborsszky, Z.; Csivincsik, Á. The occurrence of Echinococcus spp. in Golden jackal (Canis aureus) in southwestern Hungary: Should we need to rethink its expansion? Parasitol. Int. 2021, 80, 102214. [Google Scholar]
- Széll, Z.; Marucci, G.; Pozio, E.; Sréter, T. Echinococcus multilocularis and Trichinella spiralis in Golden jackals (Canis aureus) of Hungary. Vet. Parasitol. 2013, 197, 393–396. [Google Scholar]
- Lalošević, D.; Lalošević, V.; Simin, V.; Miljević, M.; Čabrilo, B.; Bjelić Čabrilo, O. Spreading of multilocular echinococcosis in southern Europe: The first record in foxes and jackals in Serbia, Vojvodina Province. Eur. J. Wildl. Res. 2016, 62, 793–796. [Google Scholar] [CrossRef]
- Florijančić, T.; Ozimec, S.; Bošković, I.; Degmečić, D.; Urošević, B.; Nekvapil, N. Survey on sylvatic parasitosis in Podunavlje Region of Croatia. In Modern Aspects of Sustainable Management of Game Population, Proceedings of the International Symposium on Hunting, Zemun, Serbia, 22–24 June 2012; University of Belgrade, Faculty of Agriculture: Zemun, Serbia, 2012. [Google Scholar]
- Mihalca, A.D.; Ionică, A.M.; D’Amico, G.; Daskalaki, A.A.; Deak, G.; Matei, I.A. Thelazia callipaeda in wild carnivores from Romania: New host and geographical records. Parasit. Vectors. 2016, 9, 350. [Google Scholar]
- Lavrov, N.P. Results of raccoon dog introductions in different parts of the soviet union. Tr. Kafedr. Biol. MGZPI. 1971, 29, 101–160. [Google Scholar]
- Kauhala, K.; Saeki, M. Raccoon dog Nyctereutes procyonoides. In Canids: Foxes, Wolves, Jackals and Dogs: Status Survey and Conservation Action Plan; Sillero-Zubiri, C., Hoffmann, M., Macdonald, D.W., Eds.; IUCN Publication Services: Cambridge, UK, 2004; pp. 136–142. [Google Scholar]
- Al-Sabi, M.N.; Chriél, M.; Jensen, T.; Enemark, H. Endoparasites of the raccoon dog (Nyctereutes procyonoides) and the red fox (Vulpes vulpes) in Denmark 2009–2012—A comparative study. Int. J. Parasitol. Parasites Wildl. 2013, 17, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Deplazes, P.; Hegglin, D.; Gloor, S.; Romig, T. Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends Parasitol. 2004, 20, 77–84. [Google Scholar] [CrossRef]
- Kauhala, K.; Kowalczyk, R. Invasion of the raccoon dog Nyctereutes procyonoides in Europe: History of colonization, features behind its success, and threats to native fauna. Curr. Zool. 2011, 57, 584–598. [Google Scholar] [CrossRef] [Green Version]
- Oivanen, L.; Kapel, C.M.; Pozio, E.; La Rosa, G.; Mikkonen, T.; Sukura, A. Associations between Trichinella Species and Host Species in Finland. J. Parasitol. 2002, 88, 84–88. [Google Scholar]
- Cabaj, W.; Moskwa, B.; Pastusiak, K.; Bień, J. Włośnica u zwierząt wolno żyjących stałym zagrożeniem zdrowia ludzi w Polsce. Kosmos 2005, 54, 95–103. [Google Scholar]
- Osten-Sacken, N.; Solarczyk, P. Trichinella spiralis in road-killed raccoon dogs (Nyctereutes procyonoides) in western Poland. Ann. Parasitol. 2016, 62, 77–79. [Google Scholar]
- Cybulska, A.; Kornacka, A.; Moskwa, B. The occurrence and muscle distribution of Trichinella britovi in raccoon dogs (Nyctereutes procyonoides) in wildlife in the Głęboki Bród Forest District, Poland. Int. J. Parasitol. Parasites Wildl. 2019, 9, 149–153. [Google Scholar]
- Mayer-Scholl, A.; Reckinger, S.; Schulze, C.; Nöckler, K. Study on the occurrence of Trichinella spp. in raccoon dogs in Brandenburg, Germany. Vet. Parasitol. 2016, 231, 102–105. [Google Scholar] [CrossRef]
- Duscher, T.; Hodžić, A.; Glawischnig, W.; Duscher, G. The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)—Their role and impact of maintaining and transmitting zoonotic diseases in Austria, Central Europe. Parasitol. Res. 2017, 116, 1411–1416. [Google Scholar]
- Kärssin, A.; Häkkinen, L.; Niin, E.; Peik, K.; Vilem, A.; Jokelainen, P. Lassen Trichinella spp. biomass has increased in raccoon dogs (Nyctereutes procyonoides) and red foxes (Vulpes vulpes) in Estonia. Parasit. Vectors 2017, 10, 609. [Google Scholar]
- Mikkonen, L.; Oivanen, A.; Näreaho, H.; Helin, A. Sukura Predilection muscles and physical condition of raccoon dog (Nyctereutes procyonoides) experimentally infected with Trichinella spiralis and Trichinella nativa. Acta Vet. Scand. 2001, 42, 441–452. [Google Scholar]
- Kapel, C.M.O.; Torgerson, P.; Thompson, R.; Deploy, P. Reproductive potential of Echinococcus multilocularis in experimentally infected foxes, dogs, raccoon dogs and cats. Int. J. Parasitol. 2006, 36, 79–86. [Google Scholar]
- Romig, T.; Deplazes, P.; Jenkins, D.; Giraudoux, P.; Massolo, A.; Craig, P.S.; Wassermann, M.; Takahashi, K.; de la Rue, M. Ecology and life cycle patterns of Echinococcus species. In Echinococcus and Echinococcosis, Part A; Thompson, R.C.A., Deplazes, P., Lymbery, A.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 95, pp. 213–314. [Google Scholar]
- Hurníková, Z.; Miterpáková, M.; Chovancová, B. The important zoonoses in the protected areas of the Tatra National Park (TANAP). Wiad Parazytol. 2009, 55, 395–398. [Google Scholar]
- Machnicka-Rowińska, B.; Rocki, B.; Dziemian, E.; Kołodziej-Sobocińska, M. Raccoon dog (Nyctereutes procyonoides)—The new host of Echinococcus multilocularis in Poland. Wiad. Parazytol. 2002, 48, 65–68. [Google Scholar]
- Möhl, K.; Grosse, K.; Hamedy, A.; Wüste, T.; Kabelitz, P.; Lücker, E. Biology of Alaria spp. and human exposition risk to Alaria mesocercariae-a review. Parasitol. Res. 2009, 105, 1–15. [Google Scholar]
- Nowak, R.M. Walker’s Carnivores of the World, 1st ed.; The Johns Hopkins University Press: Baltimore, MD, USA, 2005; p. 313. [Google Scholar]
- Salgado, I. Is the raccoon (Procyon lotor) out of control in Europe? Biodivers. Conserv. 2018, 27, 2243–2256. [Google Scholar]
- Bauer, C. Baylisascariosis—Infections of animals and humans with ‘unusual’ roundworms. Vet. Parasitol. 2013, 193, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.L.; Hochkirch, A.; Heddergott, M.; Schulze, C.; Anheyer-Behmenburg, H.E.; Lang, J.; Michler, F.U.; Hohmann, U.; Ansorge, H.; Hoffmann, L.; et al. Historical invasion records can be misleading: Genetic evidence for multiple introductions of invasive raccoons (Procyon lotor) in Germany. PLoS ONE 2015, 10, e0125441. [Google Scholar]
- Beltrán-Beck, B.; García, F.; Gortázar, C. Raccoons in Europe: Disease hazards due to the establishment of an invasive species. Eur. J. Wildl. Res. 2012, 58, 5–15. [Google Scholar] [CrossRef]
- Al-Sabi, M.N.S.; Chriél, M.; Hansen, M.S.; Enemark, H.L. Baylisascaris procyonis in wild raccoons (Procyon lotor) in Denmark. Vet. Parasitol. Reg. Stud. Rep. 2015, 1, 55–58. [Google Scholar]
- Rosatte, R.C. Management of raccoons (Procyon lotor) in Ontario, Canada: Do human intervention and disease have significant impact on raccoon populations? In Proceedings of the 1st Euro-American Mammal Congress Mammalia, Santiago de Composte, Spain, 19–24 July 2000. [Google Scholar]
- Romeo, C.; Cafiso, A.; Fesce, E.; Martínez-Rondán, F.J.; Panzeri, M.; Martinoli, A. Lost and found: Helminths infecting invasive raccoons introduced to Italy. Parasitol. Int. 2021, 86, 102354. [Google Scholar]
- French, S.K.; Pearl, D.L.; Shirose, L.; Peregrine, A.S.; Jardine, C.M. Demographic and environmental factors associated with Baylisascaris procyonis infection of raccoons (Procyon lotor) in Ontario, Canada. J. Wildl. Dis. 2020, 56, 328–337. [Google Scholar]
- Kazacos, K.R. Baylisascaris procyonis and related species. In Parasitic Diseases of Wild Mammals, 2nd ed.; Samuel, W.M., Pybus, M.J., Kocan, A.A., Eds.; Iowa State University Press: Ames, IA, USA, 2008; pp. 301–341. [Google Scholar]
- Kazacos, K.R.; Jelicks, L.A.; Tanowitz, H.B. Baylisascaris larva migrans. In Handbook of Clinical Neurology, 1st ed.; Garcia, H.H., Tanowitz, H.B., Del Brutto, O.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 251–262. [Google Scholar]
- Rentería-Solís, Z.; Birka, S.; Schmäschke, R.; Król, N.; Obiegala, A. First detection of Baylisascaris procyonis in wild raccoons (Procyon lotor) from Leipzig, Saxony, Eastern Germany. Parasitol. Res. 2018, 117, 3289–3292. [Google Scholar]
- Lombardo, A.; Brocherel, G.; Donnini, C.; Fichi, G.; Mariacher, A.; Diaconu, E.L.; Carfora, V.; Battisti, A.; Cappai, N.; Mattioli, L.; et al. First report of the zoonotic nematode Baylisascaris procyonis in non-native raccoons (Procyon lotor) from Italy. Parasit. Vectors 2022, 15, 24. [Google Scholar]
- Stone, W.S. Intestinal obstruction in raccoons caused by the ascarid Baylisascaris Procyonis. NY Fish Game J. 1983, 30, 117–118. [Google Scholar]
- Carlson, B.L.; Nielsen, S. Jejunal obstruction due to Baylisascaris procyonis in a raccoon. J. Am. Vet. Med. Assoc. 1984, 185, 1396–1397. [Google Scholar]
- Page, K.; Beasley, J.C.; Olson, Z.H.; Smyser, T.J.; Downey, M.; Kellner, K.F. Reducing Baylisascaris procyonis roundworm larvae in raccoon latrines. Emerg. Infect. Dis. 2011, 17, 90–93. [Google Scholar] [CrossRef]
- Sorvillo, F.; Ash, L.R.; Berlin, O.G.W.; Yatabe, J.; Degiorgio, C.; Morse, S.A. Baylisascaris procyonis: An emerging helminthic zoonosis. Emerg. Infect. Dis. 2002, 8, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Gavin, P.J.; Kazacos, K.R.; Shulman, S.T. Baylisascariasis. Clin. Microbiol. Rev. 2005, 18, 703–718. [Google Scholar] [CrossRef] [Green Version]
- Küchle, M.; Knorr, H.L.J.; Medenblik-Frysch, S.; Weber, A.; Bauer, C.; Naumann, G.O.H. Diffuse unilateral subacute neuroretinitis syndrome in a German most likely caused by the raccoon roundworm, Baylisascaris procyonis. Graefe’s Arch. Clin. Exp. Ophthalmol. 1993, 231, 48–51. [Google Scholar]
- Schad, G.A. Morphology and life history of Strongylides stercoralis. In Strongyloidiasis: A Major Roundworm Infection of Man; Grove, D.I., Ed.; Taylor and Francis: London, UK, 1989; pp. 85–104. [Google Scholar]
- Little, M.D. Comparative Morphology of Six Previously Described and Seven New Species of Strongyloides (Nematoda). Ph.D. Thesis, Tulane University, New Orleans, LA, USA, 1961. [Google Scholar]
- Popiołek, M.; Staśkiewicz, J.; Bartoszewicz, M.; Okarma, H.; Smalec, B.; Zalewski, A. Helminth parasites of an introduced invasive carnivore species, the raccoon (Procyon lotor L.), from the Warta Mouth National Park (Poland). J. Parasitol. 2011, 97, 357–360. [Google Scholar]
- Little, M.D. Comparative morphology of six species of Strongyloides (Nematoda) and redefinition of the genus. J. Parasitol. 1966, 52, 69–84. [Google Scholar] [CrossRef]
- Little, M.D. Dermatitis in a human volunteer infected with Strongyloides of nutria and raccoon. Am. J. Trop. Med. Hyg. 1965, 14, 1007–1009. [Google Scholar] [CrossRef]
- Speare, R. Identification of species of Strongyloides. In Strongyloidiasis: A Major Roundworm Infection of Man; Grove, D.I., Ed.; Taylor and Francis: London, UK, 1989; pp. 11–83. [Google Scholar]
- Kitchener, A.C.; Breitenmoser-Würsten, C.; Eizirik, E.; Gentry, A.; Werdelin, L.; Wilting, A.; Yamaguchi, N.; Abramov, A.V.; Christiansen, P.; Driscoll, C.; et al. A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. Cat News 2017, 11, 80. [Google Scholar]
- Boitani, L.; Linnell, J.D. Bringing large mammals back: Large carnivores in Europe. In Rewilding European Landscapes; Springer: Cham, Switzerland, 2015; pp. 67–84. [Google Scholar]
- Hunter, L.; Barrett, P. Wild Cats of the World, Reissue ed; Bloomsbury Wildlife: London, UK, 2019; p. 240. [Google Scholar]
- Gerngross, P.; Ambarli, H.; Angelici, F.M.; Anile, S.; Campbell, R.; Ferreras de Andres, P.; Gil-Sanchez, J.M.; Götz, M.; Jerosch, S.; Mengüllüoglu, D.; et al. Felis silvestris. IUCN Red List. Threat. Species 2022, e.T181049859A181050999. Available online: https://doi.org/10.2305/IUCN.UK.2022-1.RLTS.T181049859A181050999.en (accessed on 15 August 2022).
- Steeb, S. Postmortale Untersuchungen an der Europäischen Wildkatze (Felis silvestris silvestris SCHREBER, 1777). Ph.D. Thesis, Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen, Belgrade, Serbia, 2015. Available online: http://geb.uni-giessen.de/geb/volltexte/2015/11349/ (accessed on 2 December 2022).
- Martinkovic, F.; Sindicic, M.; Lucinger, S.; Štimac, I.; Bujanic, M.; Živicnjak, T.; Jan, D.S.; Šprem, N.; Popovic, R.; Konjevic, D. Endoparasites of wildcats in Croatia. Vet. Arh. 2017, 87, 713–729. [Google Scholar]
- Napoli, E.; Anile, S.; Arrabito, C.; Scornavacca, D.; Mazzamuto, M.V.; Gaglio, G.; Otranto, D.; Giannetto, S.; Brianti, E. Survey on parasitic infections in wildcat (Felis silvestris silvestris Schreber, 1777) by scat collection. Parasitol. Res. 2016, 115, 255–261. [Google Scholar] [CrossRef]
- Diakou, A.; Migli, D.; Dimzas, D.; Morelli, S.; Di Cesare, A.; Youlatos, D.; Lymberakis, P.; Traversa, D. Endoparasites of European Wildcats (Felis silvestris) in Greece. Pathogens 2021, 10, 594. [Google Scholar] [CrossRef]
- Dubey, J.P. History of the discovery of the life cycle of Toxoplasma gondii. Int. J. Parasitol. 2009, 39, 877–882. [Google Scholar] [CrossRef]
- Lukesová, D.; Literák, I. Shedding of Toxoplasma gondii oocysts by Felidae in zoos in the Czech Republic. Vet. Parasitol. 1998, 74, 1–7. [Google Scholar] [CrossRef]
- Dubey, J.P.; Murata, F.; Cerqueira-Cézar, C.K.; Kwok, O.; Su, C. Epidemiologic and public health significance of Toxoplasma gondii infections in bears (Ursus spp.): A 50 year review including recent genetic evidence. J. Parasitol. 2021, 107, 519–528. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplamosis of Humans and Animals, 2nd ed.; CRC Press: Beltsville, MD, USA, 2010. [Google Scholar]
- Morelli, S.; Diakou, A.; Di Cesare, A.; Colombo, M.; Traversa, D. Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clin. Microbiol. Rev. 2021, 34, e0026620. [Google Scholar] [CrossRef]
- Simpson, V.R.; Hargreaves, J.; Butler, H.M.; Davison, N.J.; Everest, D.J. Causes of mortality and pathological lesions observed post-mortem in red squirrels (Sciurus vulgaris) in Great Britain. BMC Vet. Res. 2013, 9, 1–14. [Google Scholar]
- Almeria, S.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Shipley, A.; Dubey, J.P. Epidemiological and Public Health Significance of Toxoplasma gondii Infection in Wild Rabbits and Hares: 2010–2020. Microorganisms 2021, 9, 597. [Google Scholar] [CrossRef]
- McOrist, S. Diseases of the European wildcat (Felis silvestris Schreber, 1777) in Great Britain. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 1992, 11, 1143–1149. [Google Scholar] [CrossRef]
- Sobrino, R.; Cabezón, O.; Millán, J.; Pabón, M.; Arnal, M.C.; Luco, D.F.; Gortázar, C.; Dubey, J.P.; Almeria, S. Seroprevalence of Toxoplasma gondii antibodies in wild carnivores from Spain. Vet. Parasitol. 2007, 148, 187–192. [Google Scholar] [CrossRef]
- Waap, H.; Nunes, T.; Vaz, Y.; Leitão, A. Serological survey of Toxoplasma gondii and Besnoitia besnoiti in a wildlife conservation area in southern Portugal. Vet. Parasitol. Reg. Stud. Rep. 2016, 3, 7–12. [Google Scholar] [CrossRef]
- Afonso, E.; Germain, E.; Poulle, M.L.; Ruette, S.; Devillard, S.; Say, L.; Villena, I.; Aubert, D.; Gilot-Fromont, E. Environmental determinants of spatial and temporal variations in the transmission of Toxoplasma gondii in its definitive hosts. Int. J. Parasitol. Parasites Wildl. 2013, 2, 278–285. [Google Scholar] [CrossRef]
- Herrmann, D.C.; Wibbelt, G.; Götz, M.; Conraths, F.J.; Schares, G. Genetic characterisation of Toxoplasma gondii isolates from European beavers (Castor fiber) and European wildcats (Felis silvestris silvestris). Vet. Parasitol. 2013, 191, 108–111. [Google Scholar] [CrossRef]
- Hatam-Nahavandi, K.; Calero-Bernal, R.; Rahimi, M.T.; Pagheh, A.S.; Zarean, M.; Dezhkam, A.; Ahmadpour, E. Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Sci Rep. 2021, 11, 9509. [Google Scholar] [CrossRef]
- Diakou, A.; Morelli, S. Challenging the 9 lives: Parasites of cats and wildcats. In Proceedings of the XXXII Congresso SoIPa, Napoli, Italy, 27–30 June 2022; p. 41. [Google Scholar]
- Unterköfler, M.S.; Harl, J.; Barogh, B.S.; Spergser, J.; Hrazdilová, K.; Müller, F.; Jeschke, D.; Anders, O.; Steinbach, P.; Ansorge, H.; et al. Molecular analysis of blood-associated pathogens in European wildcats (Felis silvestris silvestris) from Germany. Int. J. Parasitol. Parasites Wildl. 2022, 19, 128–137. [Google Scholar] [CrossRef]
- Kegler, K.; Nufer, U.; Alic, A.; Posthaus, H.; Olias, P.; Basso, W. Fatal infection with emerging apicomplexan parasite Hepatozoon silvestris in a domestic cat. Parasites Vectors 2018, 11, 428. [Google Scholar] [CrossRef] [Green Version]
- Hodžić, A.; Alić, A.; Prašović, S.; Otranto, D.; Baneth, G.; Duscher, G.G. Hepatozoon silvestris sp. nov.: Morphological and molecular characterization of a new species of Hepatozoon (Adeleorina: Hepatozoidae) from the European wild cat (Felis silvestris silvestris). Parasitology 2017, 144, 650–661. [Google Scholar] [CrossRef] [Green Version]
- Diakou, A.; Dimzas, D.; Astaras, C.; Savvas, I.; Di Cesare, A.; Morelli, S.; Neofitos, Κ.; Migli, D.; Traversa, D. Clinical investigations and treatment outcome in a European wildcat (Felis silvestris silvestris) infected by cardio-pulmonary nematodes. Vet. Parasitol. RSR 2020, 19, 100357. [Google Scholar] [CrossRef]
- Grillini, M.; Simonato, G.; Tessarin, C.; Dotto, G.; Traversa, D.; Cassini, R.; Marchiori, E.; Frangipane di Regalbono, A. Cytauxzoon sp. and Hepatozoon spp. in Domestic Cats: A Preliminary Study in North-Eastern Italy. Pathogens 2021, 10, 1214. [Google Scholar] [CrossRef]
- Morelli, S.; Diakou, A.; Traversa, D.; Di Gennaro, E.; Simonato, G.; Colombo, M.; Dimzas, D.; Grillini, M.; Frangipane di Regalbono, A.; Beugnet, F.; et al. First record of Hepatozoon spp. in domestic cats in Greece. Ticks Tick-Borne Dis. 2021, 12, 101580. [Google Scholar] [CrossRef]
- Hornok, S.; Boldogh, S.A.; Takács, N.; Kontschán, J.; Szekeres, S.; Sós, E.; Sándor, A.D.; Wang, Y.; Tuska-Szalay, B. Molecular epidemiological study on ticks and tick-borne protozoan parasites (Apicomplexa: Cytauxzoon and Hepatozoon spp.) from wild cats (Felis silvestris), Mustelidae and red squirrels (Sciurus vulgaris) in central Europe, Hungary. Parasit. Vectors 2022, 15, 174. [Google Scholar] [CrossRef]
- Smith, T.G. The genus Hepatozoon (Apicomplexa: Adeleina). J. Parasitol. 1996, 82, 565–585. [Google Scholar]
- Baneth, G.; Sheiner, A.; Eyal, O.; Hahn, S.; Beaufils, J.P.; Anug, Y.; Talmi-Frank, D. Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission. Parasites Vectors 2013, 6, 102. [Google Scholar]
- Wang, J.L.; Li, T.T.; Liu, G.H.; Zhu, X.Q.; Yao, C. Two Tales of Cytauxzoon felis Infections in Domestic Cats. Clin. Microbiol. Rev. 2017, 30, 861–885. [Google Scholar] [CrossRef] [Green Version]
- Sherrill, M.K.; Cohn, L.A. Cytauxzoonosis: Diagnosis and treatment of an emerging disease. J. Feline Med. Surg. 2015, 17, 940–948. [Google Scholar] [CrossRef]
- Willi, B.; Meli, M.L.; Cafarelli, C.; Gilli, U.O.; Kipar, A.; Hubbuch, A.; Riond, B.; Howard, J.; Schaarschmidt, D.; Regli, W.; et al. Cytauxzoon europaeus infections in domestic cats in Switzerland and in European wildcats in France: A tale that started more than two decades ago. Parasites Vectors 2022, 15, 19. [Google Scholar] [CrossRef]
- Panait, L.C.; Mihalca, A.D.; Modrý, D.; Juránková, J.; Ionică, A.M.; Deak, G.; Gherman, C.M.; Heddergott, M.; Hodžić, A.; Veronesi, F.; et al. Three new species of Cytauxzoon in European wild felids. Vet. Parasitol. 2021, 290, 109344. [Google Scholar] [CrossRef]
- Gerichter, C.B. Studies on the nematodes parasitic in the lungs of Felidae in Palestine. Parasitology 1949, 39, 251–262. [Google Scholar] [CrossRef]
- Falsone, L.; Brianti, E.; Gaglio, G.; Napoli, E.; Anile, S.; Mallia, E.; Giannelli, A.; Poglayen, G.; Giannetto, S.; Otranto, D. The European wildcats (Felis silvestris silvestris) as reservoir hosts of Troglostrongylus brevior (Strongylida: Crenosomatidae) lungworms. Vet. Parasitol. 2014, 205, 193–198. [Google Scholar] [CrossRef]
- Deak, G.; Ionică, A.M.; Pop, R.A.; Mihalca, A.D.; Gherman, C.M. New insights into the distribution of cardio-pulmonary nematodes in road-killed wild felids from Romania. Parasit. Vectors 2022, 15, 153. [Google Scholar] [CrossRef]
- Alić, A.; Traversa, D.; Duscher, G.G.; Kadrić, M.; Di Cesare, A.; Hodžić, A. Troglostrongylus brevior in an Eurasian lynx (Lynx lynx) from Bosnia and Herzegovina. Parasit. Vectors 2015, 8, 653. [Google Scholar] [CrossRef] [Green Version]
- Brianti, E.; Gaglio, G.; Giannetto, S.; Annoscia, G.; Latrofa, M.S.; Dantas-Torres, F.; Traversa, D.; Otranto, D. Troglostrongylus brevior and Troglostrongylus subcrenatus (Strongylida: Crenosomatidae) as agents of broncho-pulmonary infestation in domestic cats. Parasit. Vectors 2012, 5, 178. [Google Scholar] [CrossRef] [Green Version]
- Morelli, S.; Diakou, A.; Colombo, M.; Di Cesare, A.; Barlaam, A.; Dimzas, D.; Traversa, D. Cat Respiratory Nematodes: Current Knowledge, Novel Data and Warranted Studies on Clinical Features, Treatment and Control. Pathogens 2021, 10, 454. [Google Scholar] [CrossRef]
- Diakou, A.; Psalla, D.; Migli, D.; Di Cesare, A.; Youlatos, D.; Marcer, F.; Traversa, D. First evidence of the European wildcat (Felis silvestris silvestris) as definitive host of Angiostrongylus chabaudi. Parasitol. Res. 2016, 115, 1235–1244. [Google Scholar] [CrossRef]
- Biocca, E. Angiostrongylus chabaudi n. sp. parassita del cuore e dei vasi polmonari del gatto selvatico (Felis silvestris). R Accad Naz Lincei 1957, 22, 526–532. [Google Scholar]
- Varcasia, A.; Tamponi, C.; Brianti, E.; Cabras, P.A.; Boi, R.; Pipia, A.P.; Giannelli, A.; Otranto, D.; Scala, A. Angiostrongylus chabaudi Biocca, 1957: A new parasite for domestic cats? Parasit. Vectors 2014, 7, 588. [Google Scholar] [CrossRef] [Green Version]
- Traversa, D.; Lepri, E.; Veronesi, F.; Paoletti, B.; Simonato, G.; Diaferia, M.; Di Cesare, A. Metastrongyloid infection by Aelurostrongylus abstrusus, Troglostrongylus brevior and Angiostrongylus chabaudi in a domestic cat. Int. J. Parasitol. 2015, 45, 685–690. [Google Scholar]
- Stevanović, O.; Diakou, A.; Morelli, S.; Paraš, S.; Trbojević, I.; Nedić, D.; Sladojević, Ž.; Kasagić, D.; Di Cesare, A. Severe verminous pneumonia caused by natural mixed infection with Aelurostrongylus abstrusus and Angiostrongylus chabaudi in a European wildcat from western Balkan area. Acta Parasitol. 2019, 64, 411–417. [Google Scholar]
- Giannelli, A.; Kirkova, Z.; Abramo, F.; Latrofa, M.S.; Campbell, B.; Zizzo, N.; Cantacessi, C.; Dantas-Torres, F.; Otranto, D. Angiostrongylus chabaudi in felids: New findings and a review of the literature. Vet. Parasitol. 2016, 228, 188–192. [Google Scholar] [CrossRef]
- Gherman, C.M.; Ionica, A.M.; D’Amico, G.; Otranto, D.; Mihalca, A.D. Angiostrongylus chabaudi (Biocca, 1957) in wildcat (Felis silvestris silvestris, S.) from Romania. Parasitol. Res. 2016, 115, 2511–2517. [Google Scholar] [CrossRef]
- Veronesi, F.; Traversa, D.; Lepri, E.; Morganti, G.; Vercillo, F.; Grelli, D.; Cassini, R.; Marangi, M.; Iorio, R.; Ragni, B.; et al. Occurrence of lungworms in European wildcats (Felis silvestris silvestris) of central Italy. J. Wildl. Dis. 2016, 52, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Dimzas, D.; Morelli, S.; Traversa, D.; Di Cesare, A.; Van Bourgonie, Y.R.; Breugelmans, K.; Backeljau, T.; Di Regalbono, A.F.; Diakou, A. Intermediate gastropod hosts of major feline cardiopulmonary nematodes in an area of wildcat and domestic cat sympatry in Greece. Parasit. Vectors. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Dimzas, D.; Di Cesare, A.; Morelli, S.; Iorio, R.; Backeljau, T.; Vanderheyden Lombal, A.; De Meyer, M.; Meganck, K.; Smitz, N.; Kassari, N.; et al. Angiostrongylus chabaudi natural infection in wild caught gastropods. In Proceedings of the 7th European Dirofilaria and Angiostrongylus Days, Madrid, Spain, 23–24 September 2022. [Google Scholar]
- Di Cesare, A.; Morelli, S.; Colombo, M.; Simonato, G.; Veronesi, F.; Marcer, F.; Diakou, A.; D’Angelosante, R.; Pantchev, N.; Psaralexi, E.; et al. Is angiostrongylosis a realistic threat for domestic cats? Front. Veter. Sci. 2020, 7, 195. [Google Scholar] [CrossRef]
- Györke, A.; Dumitrache, M.O.; Kalmár, Z.; Pastiu, A.I.; Mircean, V. Molecular survey of metastrongyloid lungworms in domestic cats (Felis silvestris catus) from Romania: A retrospective study (2008–2011). Pathogens 2020, 9, 80. [Google Scholar]
- Junker, K.; Lane, E.P.; McRee, A.E.; Foggin, C.; van Dyk, D.S.; Mutafchiev, Y. Two new species of Cylicospirura vevers, 1922 (Nematoda: Spirocercidae) from carnivores in southern Africa, with validation of the related genera Gastronodus Singh, 1934 and Skrjabinocercina Matschulsky, 1952. Folia Parasitol. 2013, 60, 339–352. [Google Scholar]
- Segeritz, L.; Anders, O.; Middelhoff, T.L.; Winterfeld, D.T.; Maksimov, P.; Schares, G.; Conraths, F.J.; Taubert, A.; Hermosilla, C. New Insights into Gastrointestinal and Pulmonary Parasitofauna of Wild Eurasian lynx (Lynx lynx) in the Harz Mountains of Germany. Pathogens 2021, 10, 1650. [Google Scholar] [CrossRef]
- Yanchev, Y.; Genov, T. The helminth fauna of the wild cat (Felis silvestris) in Bulgaria. Khelmintologiya 1978, 6, 81–101. [Google Scholar]
- Ibba, F.; Lepri, E.; Veronesi, F.; Di Cesare, A.; Paltrinieri, S. Gastric cylicospirurosis in a domestic cat from Italy. J. Feline Med. Surg. 2014, 16, 522–526. [Google Scholar] [CrossRef]
- Crossland, N.A.; Hanks, C.R.; Ferguson, J.A.; Kent, M.L.; Sanders, J.L.; Del Piero, F. First report of Cylicospirura felineus in a feral domestic shorthair cat in North America. JFMS Open Rep. 2015, 1, 2055116915593964. [Google Scholar] [CrossRef]
- Eckert, J.; Gemmell, M.A.; Meslin, F.X.; Pawlowski, Z.; World Organisation for Animal Health; World Health Organization. WHO/OIE Manual on Echinococcosis in Humans and Animals: A Public Health Problem of Global Concern. 2021. Available online: https://apps.who.int/iris/handle/10665/42427 (accessed on 2 December 2022).
- Stubbe, M. Martes foina (Erxleben, 1777)—Haus-, Steinmarder. In Handbuch der Säugetiere; Stubbe, M., Krapp, F., Eds.; Aula Verlag: Wiesbaden, Germany, 1993; pp. 427–479. [Google Scholar]
- Lanszki, J.; Heltai, M. Feeding habits of sympatric mustelids in an agricultural area of Hungary. Acta Zool. Acad. Sci. Hung. 2011, 57, 291–304. [Google Scholar]
- Ionică, A.M.; Deak, G.; D’Amico, G.; Stan, G.F.; Chișamera, G.B.; Constantinescu, I.C.; Adam, C.; Lefkaditis, M.; Gherman, C.M.; Mihalca, A.D. Thelazia callipaeda in mustelids from Romania with the European badger, Meles meles, as a new host for this parasite. Parasit. Vectors. 2019, 12, 1–6. [Google Scholar]
- Ionică, A.M.; Deak, G.; Boncea, R.; Gherman, C.M.; and Mihalca, A.D. The European Badger as a New Host for Dirofilaria immitis and an Update on the Distribution of the Heartworm in Wild Carnivores from Romania. Pathogens 2022, 11, 420. [Google Scholar] [CrossRef]
- Hurníková, Z.; Kołodziej-Sobocińska, M.; Dvorožňáková, E.; Niemczynowicz, A.; Zalewski, A. An invasive species as an additional parasite reservoir: Trichinella in introduced American mink (Neovison vison). Vet. Parasitol. 2016, 231, 106–109. [Google Scholar] [CrossRef]
- Kranz, A.; Abramov, A.V.; Herrero, J.; Maran, T. Meles meles. IUCN Red List. Threat. Species 2016, e.T29673A45203002. Available online: https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T29673A45203002.en (accessed on 2 December 2022).
- Piza-Roca, C.; Haye, M.L.; Jongejans, E. Environmental drivers of the distribution and density of the European badger (Meles meles): A review. Lutra 2014, 57, 87–109. [Google Scholar]
- Do Linh San, E.; Ferrari, N.; Weber, J.M. Ecology of European badgers (meles meles) in rural areas of Western Switzerland. In Middle-Sized Carnivores in Agricultural Landscapes; Nova Science Publishers NY: New York, NY, USA, 2011; pp. 83–104. [Google Scholar]
- Hancox, M. Dental anomalies in the Eurasian badger. J. Zool. 1988, 216, 606–608. [Google Scholar] [CrossRef]
- Sidorchuk, N.; Maslov, M.; Rozhnov, V. Role of badger setts in life of other carnivores. Stud. Ecol. Et Bioethicae 2015, 13, 81–95. [Google Scholar] [CrossRef]
- Barlow, A.M.; Mullineaux, E.; Wood, R.; Taweenan, W.; Wastling, J.M. Giardiosis in Eurasian badgers (Meles meles). Vet. Rec. 2010, 167, 1017. [Google Scholar] [CrossRef]
- Maestrini, M.; Berrilli, F.; Di Rosso, A.; Coppola, F.; Guadano Procesi, I.; Mariacher, A.; Perrucci, S. Zoonotic Giardia duodenalis Genotypes and Other Gastrointestinal Parasites in a Badger Population Living in an Anthropized Area of Central Italy. Pathogens 2022, 11, 906. [Google Scholar] [CrossRef]
- Stojecki, K.; Sroka, J.; Cacciò, S.M.; Cencek, T.; Dutkiewicz, J.; Kusyk, P. Prevalence and molecular typing of Giardia duodenalis in wildlife from eastern Poland. Folia Parasitol. 2015, 62, 1. [Google Scholar] [CrossRef] [Green Version]
- Mateo, M.; de Mingo, M.H.; de Lucio, A.; Morales, L.; Balseiro, A.; Espí, A.; Carmena, D. Occurrence and molecular genotyping of Giardia duodenalis and Cryptosporidium spp. in wild mesocarnivores in Spain. Vet. Parasitol. 2017, 235, 86–93. [Google Scholar]
- Del Río, L.; Chitimia, L.; Cubas, A.; Victoriano, I.; De la Rúa, P.; Gerrikagoitia, X.; Berriatua, E. Evidence for widespread Leishmania infantum infection among wild carnivores in L. infantum periendemic northern Spain. Prev. Vet. Med. 2014, 113, 430–435. [Google Scholar]
- Risueño, J.; Ortuño, M.; Pérez-Cutillas, P.; Goyena, E.; Maia, C.; Cortes, S.; Berriatua, E. Epidemiological and genetic studies suggest a common Leishmania infantum transmission cycle in wildlife, dogs and humans associated to vector abundance in Southeast Spain. Vet. Parasitol. 2018, 259, 61–67. [Google Scholar] [CrossRef]
- Oleaga, A.; Zanet, S.; Espí, A.; de Macedo, M.R.P.; Gortázar, C.; Ferroglio, E. Leishmania in wolves in northern Spain: A spreading zoonosis evidenced by wildlife sanitary surveillance. Vet. Parasitol. 2018, 255, 26–31. [Google Scholar]
- Alcover, M.M.; Ribas, A.; Guillén, M.C.; Berenguer, D.; Tomás-Pérez, M.; Riera, C.; Fisa, R. Wild mammals as potential silent reservoirs of Leishmania infantum in a Mediterranean area. Prev. Vet. Med. 2020, 175, 104874. [Google Scholar] [CrossRef]
- Thompson, R.C.; Ash, A. Molecular epidemiology of Giardia and Cryptosporidium infections. Infect. Genet. Evol. 2016, 40, 315–323. [Google Scholar]
- Cacciò, S.M.; Putignani, L. Epidemiology of human Cryptosporidiosis. In Cryptosporidium Parasite and Disease; Cacciò, S.M., Widmer, G., Eds.; Springer: Vienna, Austria, 2014; pp. 43–79. [Google Scholar]
- McKerr, C.; Chalmers, R.M.; Elwin, K.; Ayres, H.; Vivancos, R.; O’Brien, S.J.; Christley, R.M. Cross-sectional household transmission study of Cryptosporidium shows that C. hominis infections are a key risk factor for spread. BMC Inf. Dis. 2022, 22, 1–13. [Google Scholar]
- Sturdee, A.P.; Chalmers, R.M.; Bull, S.A. Detection of Cryptosporidium oocysts in wild mammals of mainland Britain. Vet. Parasitol. 1999, 80, 273–280. [Google Scholar]
- Anwar, A.; Knaggs, J.; Service, K.M.; McLaren, G.W.; Riordan, P.; Newman, C.; Delahay, R.J.; Cheesman, C.; Macdonald, D.W. Antibodies to Toxoplasma gondii in Eurasian badgers. J. Wild. Dis. 2006, 42, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Millán, J.; Candela, M.G.; Palomares, F.; Cubero, M.J.; Rodríguez, A.; Barral, M.; de la Fuente, J.; Almería, S.; León-Vizcaíno, L. Disease threats to the endangered Iberian lynx (Lynx pardinus). Vet. J. 2009, 182, 114–124. [Google Scholar] [CrossRef]
- Lopes, A.P.; Sargo, R.; Rodrigues, M.; Cardoso, L. High seroprevalence of antibodies to Toxoplasma gondii in wild animals from Portugal. Parasitol. Res. 2011, 108, 1163–1169. [Google Scholar] [CrossRef]
- Burrells, A.; Bartley, P.M.; Zimmer, I.A.; Roy, S.; Kitchener, A.C.; Meredith, A.; Wright, S.E.; Innes, E.A.; Katzer, F. Evidence of the three main clonal Toxoplasma gondii lineages from wild mammalian carnivores in the UK. Parasitolology 2013, 140, 1768–1776. [Google Scholar]
- Turcekova, L.; Hurníková, Z.; Spisak, F.; Miterpáková, M.; Chovancová, B. Toxoplasma gondii in protected wildlife in the Tatra National Park (TANAP), Slovakia. Ann. Agric. Environ. Med. 2014, 21, 235–238. [Google Scholar]
- Sroka, J.; Karamon, J.; Wójcik-Fatla, A.; Dutkiewicz, J.; Bilska-Zajac, E.; Zajac, V.; Piotrowska, W.; Cencek, T. Toxoplasma gondii infection in selected species of free-living animals in Poland. Ann. Agric. Environ. Med. 2019, 26, 656–660. [Google Scholar] [CrossRef]
- Kornacka, A.; Cybulska, A.; Bień, J.; Goździk, K.; Moskwa, B. The usefulness of direct agglutination test, enzyme-linked immunosorbent assay and polymerase chain reaction for the detection of Toxoplasma gondii in wild animals. Vet. Parasitol. 2016, 228, 85–89. [Google Scholar]
- Karakavuk, M.; Aldemir, D.; Atalay Şahar, E.; Can, H.; Özdemir, H.G.; Değirmenci Döşkaya, A.; Gürüz, A.Y.; Döşkaya, M. Detection of Toxoplasma gondii in a Eurasian badger (Meles meles) Living in Wildlife Areas of Izmir, Turkey. Turkiye Parazitol Derg. 2018, 42, 237–239. [Google Scholar] [CrossRef]
- Máca, O. Molecular identification of Sarcocystis lutrae in the European otter (Lutra lutra) and the European badger (Meles meles) from the Czech Republic. Parasitol. Res. 2018, 117, 943–945. [Google Scholar] [CrossRef]
- Marucci, G.; Tonanzi, D.; Interisano, M.; Vatta, P.; Galati, F.; La Rosa, G. The International Trichinella Reference Centre data-base. Report on thirty-three years of activity and future perspectives. Food Waterborne Parasitol. 2022, 27, e00156. [Google Scholar] [CrossRef]
- Varodi, E.I.; Malega, A.M.; Kuzmin, Y.I.; Kornyushin, V.V. Helminths of wild predatory mammals of Ukraine. Nematodes. Vestn. Zool. 2017, 5, 187. [Google Scholar] [CrossRef] [Green Version]
- Järvis, T.; Miller, I.; Pozio, E. Epidemiological studies on animal and human trichinellosis in Estonia. Parasite 2001, 8, S86–S87. [Google Scholar]
- Kärssin, A.; Häkkinen, L.; Vilem, A.; Jokelainen, P.; Lassen, B. Trichinella spp. in wild boars (Sus scrofa), brown bears (Ursus arctos), Eurasian lynxes (Lynx lynx) and badgers (Meles meles) in Estonia, 2007–2014. Animals 2021, 11, 183. [Google Scholar]
- Deksne, G.; Segliņa, Z.; Jahundoviča, I.; Esīte, Z.; Bakasejevs, E.; Bagrade, G.; Kirjušina, M. High prevalence of Trichinella spp. in sylvatic carnivore mammals of Latvia. Vet. Par. 2016, 231, 118–123. [Google Scholar]
- Lee, H.C.; Kim, J.S.; Oh, H.Y.; Kim, J.H.; Kim, H.G.; Lee, M.S.; Kim, W.J.; Kim, H.T. A case of trichinosis caused by eating a wild badger. Korean J. Med. 1999, 1999, 134–138. [Google Scholar]
- Sohn, W.M.; Kim, H.M.; Chung, D.I.; Yee, S.T. The first human case of Trichinella spiralis infection in Korea. Korean J. Parasitol. 2000, 38, 111. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Anaya, A.; Herrero, J.; Rosell, C.; Couto, S.; García-Serrano, A. Food habits of wild boars (Sus scrofa) in a Mediterranean coastal wetland. Wetlands 2008, 28, 197–203. [Google Scholar] [CrossRef]
- .Jędrzejewski, W.; Schmidt, K.; Miłkowski, L.; Jędrzejewska, B.; Okarma, H. Foraging by lynx and its role in ungulate mortality: The local (Białowieża Forest) and the Palaearctic viewpoints. Acta Theriol. 1993, 38, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Hennig, R. Schwarzwild—Biologie, Verhalten, Hege und Jagd; BLV Verlagsgesellschaft: München, Germnay, 1998. [Google Scholar]
- Torres, J.; Miquel, J.; Motjé, M. Helminth parasites of the Eurasian badger (Meles meles L.) in Spain: A biogeographic approach. Parasitol. Res. 2001, 87, 259–263. [Google Scholar]
- Millán, J.; Sevilla, I.; Gerrikagoitia, X.; García-Pérez, A.L.; Barral, M. Helminth parasites of the Eurasian badger (Meles meles L.) in the Basque Country (Spain). Eur. J. Wildl. Res. 2004, 50, 37–40. [Google Scholar]
- Davidson, R.K.; Handeland, K.; Gjerde, B. The first report of Aelurostrongylus falciformis in Norwegian badgers (Meles meles). Acta Vet. Scand. 2006, 48, 1–4. [Google Scholar]
- Magi, M.; Guardone, L.; Dell’Omodarme, M.; Prati, M.; Mignone, W.; Torracca, B.; Monni, G.; Macchioni, F. Angiostrongylus vasorum in red foxes (Vulpes vulpes) and badgers (Meles meles) from Central and Northern Italy. Hystrix 2009, 20, 4442. [Google Scholar]
- Nagy, E.; Benedek, I.; Zsolnai, A.; Halász, T.; Csivincsik, Á.; Ács, V.; Nagy, G.; Tari, T. Habitat characteristics as potential drivers of the Angiostrongylus daskalovi infection in European badger (Meles meles) populations. Pathogens 2021, 10, 715. [Google Scholar]
- Tikhonov, A.; Cavallini, P.; Maran, T.; Krantz, A.; Herrero, J.; Giannatos, G.; Stubbe, M.; Libois, R.; Fernandes, M.; Yonzon, P.; et al. Martes foina (Mediterranean assessment). IUCN RedList Threat. Species 2010, e.T29672A9521091. Available online: https://www.iucnredlist.org/species/29672/9521091 (accessed on 27 December 2022).
- Virgós, E.; Zalewski, A.; Rosalino, L.M.; Mergey, M.; Aubrey, K.B.; Zielinski, W.J.; Buskirk, S.W. Habitat ecology of Martes species in Europe. In Biology and Conservation of Martens, Sables, and Fishers: A New Synthesis; Cornel University Press: New York, NY, USA, 2012; pp. 255–266. [Google Scholar]
- Abramov, A.V.; Kranz, A.; Herrero, J.; Choudhury, A.; Maran, T. Martes foina. IUCN Red List. Threat. Species 2016, e. T29672A45202514. Available online: https://www.researchgate.net/profile/Alexei-Abramov/publication/311304303_Martes_foina/links/58411cb008ae8e63e6213a1c/Martes-foina.pdf (accessed on 20 December 2022).
- Schnur, L.F. On the clinical manifestations and parasites of old world leishmaniases and Leishmania tropica causing visceral leishmaniasis. In Leishmaniasis; Springer: Boston, MA, USA, 1989; pp. 939–943. [Google Scholar]
- Muñoz-Madrid, R.; Belinchón-Lorenzo, S.; Iniesta, V.; Fernández-Cotrina, J.; Parejo, J.C.; Serrano, F.J.; Monroy, I.; Baz, V.; Gómez-Luque, A.; Gómez-Nieto, L.C. First detection of Leishmania infantum kinetoplast DNA in hair of wild mammals: Application of qPCR method to determine potential parasite reservoirs. Acta Trop. 2013, 128, 706–709. [Google Scholar]
- Hejlíček, K.; Literák, I.; Nezval, J. Toxoplasmosis in wild mammals from the Czech Republic. J. Wildl. Dis. 1997, 33, 480–485. [Google Scholar]
- Hůrková, L.; Modrý, D. PCR detection of Neospora. caninum, Toxoplasma gondii and Encephalitozoon cuniculi in brains of wild carnivores. Vet. Parasitol. 2006, 137, 150–154. [Google Scholar]
- Deksne, G.; Segliņa, Z.; Ligere, B.; Kirjušina, M. The Pine marten (Martes martes) and the Stone marten (Martes foina) as possible wild reservoirs of Toxoplasma gondii in the Baltic States. Vet. Parasitol. Reg. Stud. Rep. 2017, 9, 70–74. [Google Scholar]
- Baghli, A.; Engel, E.; Verhagen, R. Feeding habits and trophic niche overlap of two sympatric Mustelidae, the polecat Mustela putorius and the beech marten Martes foina. Z. Für Jagdwiss. 2002, 48, 217–225. [Google Scholar]
- do Vale, B.; Lopes, A.P.; da Conceição Fontes, M.; Silvestre, M.; Cardoso, L.; Coelho, A.C. Systematic review on infection and disease caused by Thelazia callipaeda in Europe: 2001–2020. Revue systématique de l’infection et de la maladie provoquées par Thelazia callipaeda en Europe (2001–2020). Parasite 2020, 27, 52. [Google Scholar] [CrossRef]
- Seixas, F.; Travassos, P.; Coutinho, T.; Lopes, A.P.; Latrofa, M.S.; dos Anjos Pires, M.; Otranto, D. The eyeworm Thelazia callipaeda in Portugal: Current status of infection in pets and wild mammals and case report in a beech marten (Martes foina). Vet. Parasitol. 2018, 252, 163–166. [Google Scholar]
- Lemming, L.; Jørgensen, A.C.; Nielsen, L.B.; Nielsen, S.T.; Mejer, H.; Chriél, M.; Petersen, H.H. Cardiopulmonary nematodes of wild carnivores from Denmark: Do they serve as reservoir hosts for infections in domestic animals? IJP-PW 2020, 13, 90–97. [Google Scholar]
- Remonti, L.; Balestrieri, A.; Domenis, L.; Banchi, C.; Lo Valvo, T.; Robetto, S.; Orusa, R. Red fox (Vulpes vulpes) cannibalistic behaviour and the prevalence of Trichinella britovi in NW Italian Alps. Parasitol. Res. 2005, 97, 431–435. [Google Scholar]
- Hurníková, Z.; Chovancová, B.; Bartková, D.; Dubinský, P. The role of wild carnivores in the maintenance of trichinellosis in the Tatras National Park, Slovakia. Helminthologia 2007, 44, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Klun, I.; Ćosić, N.; Ćirović, D.; Vasilev, D.; Teodorović, V.; Djurković-Djaković, O. Trichinella spp. in wild mesocarnivores in an endemic setting. Acta Vet. Hung. 2019, 67, 34–39. [Google Scholar]
- Oltean, M.; Kalmár, Z.; Kiss, B.J.; Marinov, M.; Vasile, A.; Sándor, A.D.; Domşa, C.; Gherman, C.M.; Boireau, P.; Cozma, V.; et al. European muste-lids occupying pristine wetlands in the Danube Delta are infected with Trichinella likely derived from domesticated swine. J. Wildl. Dis. 2014, 50, 972–975. [Google Scholar]
- Piekarska, J.; Gorczykowski, M.; Kicia, M.; Pacon, J.; Soltysiak, Z.; Merta, D. Trichinella spp. (Nematoda) in free-living carnivores (Mammalia: Carnivora) from the Lower Silesia (Poland). Ann. Parasitol. 2016, 62 (Suppl.), 64. [Google Scholar]
- Herrero, J.; Kranz, A.; Skumatov, D.; Abramov, A.V.; Maran, T.; Monakhov, V.G. Martes martes. IUCN Red List Threat. Species 2016, e. T12848A45199169. Available online: https://www.researchgate.net/profile/Vladimir-Monakhov/publication/306105785_Martes_martes_Pine_Marten/links/57b1b98508ae95f9d8f4bbda/Martes-martes-Pine-Marten.pdf (accessed on 27 December 2022).
- Rossi, L.; Pozio, E.; Mignone, W.; Ercolini, C.; Dini, V. Epidemiology of sylvatic trichinellosis in north-western Italy. Rev. Sci. Et Tech. (Int. Off. Epizoot.) 1992, 11, 1039–1046. [Google Scholar]
- Pozio, E.; La Rosa, G.; Serrano, F.J.; Barrat, J.; Rossi, L. Environmental and human influence on the ecology of Trichinella spiralis and Trichinella britovi in Western Europe. Parasitology 1996, 113, 527–533. [Google Scholar]
- Senutaitė, J.; Grikienienė, J. Prevalence of Trichinella in muscles of some domestic and wild mammals in Lithuania and their impact on the organism. Acta Zool. Litu. 2001, 11, 395–404. [Google Scholar]
- Airas, N.; Saari, S.; Mikkonen, T.; Virtala, A.M.; Pellikka, J.; Oksanen, A.; Isomursu, M.; Kilpelä, S.S.; Lim, C.W.; Sukura, A. Sylvatic Trichinella spp. infection in Finland. J. Parasitol. 2010, 96, 67–76. [Google Scholar]
- Bakasejevs, E.; Daukšte, A.; Zolovs, M.; Zdanovska, A. Investigation of Trichinella in wildlife in Latgale region (Latvia). Acta Biol. Daugavp. 2012, 12, 1–5. [Google Scholar]
- Moskwa, B.; Goździk, K.; Bień, J.; Borecka, A.; Gawor, J.; Cabaj, W. First report of Trichinella pseudospiralis in Poland, in red foxes (Vulpes vulpes). Acta Parasitol. 2013, 58, 149–154. [Google Scholar] [CrossRef]
- Bērziņa, Z.; Stankevičiūtė, J.; Šidlauskas, G.; Bakasejevs, E.; Zdankovska, A.; Gackis, M. Trichinella sp. infection in Martens (Martes martes, Martes foina) in Latvia and Lithuania (Kaunas region). Rural Dev. 2013, 2013, 34. [Google Scholar]
- Badagliacca, P.; Di Sabatino, D.; Salucci, S.; Romeo, G.; Cipriani, M.; Sulli, N.; Morelli, D. The role of the wolf in endemic sylvatic Trichinella britovi infection in the Abruzzi region of Central Italy. Vet. Parasitol. 2016, 231, 124–127. [Google Scholar] [CrossRef]
- Cybulska, A.; Kornacka, A.; Skopek, R.; Moskwa, B. Trichinella britovi infection and muscle distribution in free-living martens (Martes spp.) from the Głęboki Bród Forest District, Poland. IJP-PAW 2020, 12, 176–180. [Google Scholar] [CrossRef]
- Maran, T.; Skumatov, D.; Gomez, A.; Põdra, M.; Abramov, A.V.; Dinets, V. Mustela lutreola. IUCN Red List. Threat. Species 2016. Available online: https://www.researchgate.net/profile/Alexei-Abramov/publication/307907972_Mustela_lutreola/links/5c17a24fa6fdcc494ffb2862/Mustela-lutreola.pdf (accessed on 2 December 2022).
- Santos, M.J.; Matos, H.M.; Baltazar, C.; Grilo, C.; Santos-Reis, M. Is Polecat (Mustela putorius). affected by ‘mediterraneity’? Mamm. Biol. 2009, 74, 448–455. [Google Scholar] [CrossRef]
- Shimalov, V.; Shimalov, V. Helminth fauna of the European polecat (Mustela putorius Linnaeus, 1758) in Belorussian Polesie. Parasitol. Res. 2002, 88, 259–260. [Google Scholar] [CrossRef]
- Boros, Z.; Ionică, A.M.; Deak, G.; Mihalca, A.D.; Chișamera, G.; Constantinescu, I.C.; Adam, C.; Gherman, C.M.; Cozma, V. Trichinella spp. Infection in European Polecats (Mustela Putorius Linnaeus, 1758) from Romania. Helminthologia 2021, 58, 323–327. [Google Scholar] [CrossRef]
- Simpson, V. Angiostrongylus vasorum infection in a stoat. Vet. Rec. 2010, 166, 182. [Google Scholar] [CrossRef]
- Loy, A.; Kranz, A.; Oleynikov, A.; Roos, A.; Savage, M.; Duplaix, N. Lutra lutra (amended versionof 2021 assessment). IUCN RedList. Threat. Species 2022, e.T12419A218069689. Available online: https://dx.doi.org/10.2305/IUCN.UK.2022-2.RLTS.T12419A218069689.en (accessed on 27 December 2022).
- El Alami, A.; Fattah, A.; Chait, A. A Survey of the Eurasian Otter Lutra lutra and Human-Otter Interaction in the Middle Oum Er Rbia River, Morocco. IUCN Otter Spec. Group Bull. 2020, 37, 219–231. [Google Scholar]
- Takeuchi-Storm, N.; Al-Sabi, M.N.S.; Chriel, M.; Enemark, H.L. Systematic examination of the cardiopulmonary, urogenital, muscular and gastrointestinal parasites of the Eurasian otters (Lutra lutra) in Denmark, a protected species recovering from a dramatic decline. Parasitol. Int. 2021, 84, 102418. [Google Scholar] [CrossRef]
- Méndez-Hermida, F.; Gómez-Couso, H.; Romero-Suances, R.; Ares-Mazás, E. Cryptosporidium and Giardia in wild otters (Lutra lutra). Vet. Parasitol. 2007, 144, 153–156. [Google Scholar] [CrossRef]
- Smallbone, W.A.; Chadwick, E.A.; Francis, J.; Guy, E.; Perkins, S.E.; Sherrard-Smith, E.; Cable, J. East-West Divide: Temperature and land cover drive spatial variation of Toxoplasma gondii infection in Eurasian otters (Lutra lutra) from England and Wales. Parasitology 2017, 144, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Chadwick, E.A.; Cable, J.; Chinchen, A.; Francis, J.; Guy, E.; Kean, E.F.; Paul, S.C.; Perkins, S.E.; Sherrard-Smith, E.; Wilkinson, C.; et al. Seroprevalence of Toxoplasma gondii in the Eurasian otter (Lutra lutra) in England and Wales. Parasites Vectors 2013, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Torres, J.; Feliu, C.; Fernández-Morán, J.; Ruíz-Olmo, J.; Rosoux, R.; Santos-Reis, M.; Miquel, J.; Fons, R. Helminth parasites of the Eurasian otter Lutra lutra in southwest Europe. J. Helminthol. 2004, 78, 353–359. [Google Scholar] [CrossRef]
- Fusillo, R.; Romanucci, M.; Marcelli, M.; Massimini, M.; Della Salda, L. Health and Mortality Monitoring in Threatened Mammals: A First Post Mortem Study of Otters (Lutra lutra L.) in Italy. Animals 2022, 12, 609. [Google Scholar] [CrossRef]
- Hegyeli, Z.; Kecskés, A. The occurrence of wild-living American Mink Neovison vison in Transylvania, Romania. Small Carniv. Conserv. 2014, 51, 23–28. [Google Scholar]
- Bueno, F. Alimentacion del vison Americana (Mustela vison, Schreber) en el Rio Voltoya (Avila, Cuenca del Duero). Doñana Acta Vertebr. 1994, 215, 13. [Google Scholar]
- Mezzetto, D.; Dartora, F.; Mori, E. Feeding plasticity and temporal behaviour of the alien American mink in Europe. Acta Oecol. 2021, 110, 103700. [Google Scholar]
- Harrington, L.A.; Gelling, M.; Simpson, V.; Harrington, A.; Macdonald, D.W. Notes on the health status of free-living, non-native American mink, Neovison vison, in southern England. Eur. J. Wildl. Res. 2012, 58, 875–880. [Google Scholar]
- Ribas, M.P.; Almería, S.; Fernández-Aguilar, X.; De Pedro, G.; Lizarraga, P.; Alarcia-Alejos, O.; Molina-López, R.; Obón, E.; Gholipour, H.; Temiño, C.; et al. Tracking Toxoplasma gondii in freshwater ecosystems: Interaction with the invasive American mink (Neovison vison) in Spain. Parasitol. Res. 2018, 117, 2275–2281. [Google Scholar]
- Sengupta, M.E.; Pagh, S.; Stensgaard, A.S.; Chriel, M.; Petersen, H.H. Prevalence of Toxoplasma gondii and Cryptosporidium in feral and farmed American mink (Neovison vison) in Denmark. Acta Parasitol. 2021, 66, 1285–1291. [Google Scholar]
- Nugaraitė, D.; Mažeika, V.; Paulauskas, A. Helminths of mustelids (Mustelidae) in Lithuania. Biologija 2014, 60, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Nugaraitė, D.; Mažeika, V.; Paulauskas, A. Helminths of mustelids with overlapping ecological niches: Eurasian otter (Linnaeus, 1758), American mink Schreber, 1777, and European polecat Linnaeus, 1758. Helminthologia 2019, 56, 66–74. [Google Scholar] [CrossRef] [Green Version]
Parasites | Animal Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Vulpes vulpes | Canis aureus | Nyctereutes procyonoides | Procyon lotor | Felis silvestris | Meles meles | Martes foina | Martes martes | Mustela spp. | Lutra lutra | Neogalevison | |
Gia | ● | ✓ | ✓ | ● | |||||||
Lei | ✓ | ● | ● | ✓ | ✓ | ● | |||||
Bab | ✓ | ● | |||||||||
Hep | ✓ | ● | ✓ | ||||||||
Txp | ✓ | ● | ✓ | ✓ | ✓ | ● | ● | ● | |||
Cry | ● | ✓ | ● | ● | |||||||
Cyt | ✓ | ||||||||||
Ala | ● | ● | ● | ||||||||
Ech | ✓ | ● | ✓ | ● | |||||||
Tae | ● | ● | ● | ||||||||
Mes | ● | ● | |||||||||
Ang | ✓ | ● | ✓ | ✓ | ● | ● | |||||
Dir | ✓ | ✓ | ● | ✓ | ● | ||||||
Tri | ✓ | ● | ✓ | ● | ✓ | ✓ | ● | ● | |||
Cap | ✓ | ● | ● | ✓ | ● | ||||||
The | ✓ | ● | ● | ✓ | ✓ | ||||||
Spi | ● | ● | |||||||||
Tro | ✓ | ||||||||||
Cyl | ✓ | ||||||||||
Bay | ✓ | ||||||||||
Str | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veronesi, F.; Deak, G.; Diakou, A. Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe. Pathogens 2023, 12, 178. https://doi.org/10.3390/pathogens12020178
Veronesi F, Deak G, Diakou A. Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe. Pathogens. 2023; 12(2):178. https://doi.org/10.3390/pathogens12020178
Chicago/Turabian StyleVeronesi, Fabrizia, Georgiana Deak, and Anastasia Diakou. 2023. "Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe" Pathogens 12, no. 2: 178. https://doi.org/10.3390/pathogens12020178
APA StyleVeronesi, F., Deak, G., & Diakou, A. (2023). Wild Mesocarnivores as Reservoirs of Endoparasites Causing Important Zoonoses and Emerging Bridging Infections across Europe. Pathogens, 12(2), 178. https://doi.org/10.3390/pathogens12020178