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Abstract: Streptococcus pneumoniae (S. pneumoniae) is a prominent pathogen of bacterial pneumonia
and its rapid and sensitive detection in complex biological samples remains a challenge. Here, we
developed a simple but effective immunochromatographic assay (ICA) based on silica-Au core-
satellite (SiO2@20Au) SERS tags to sensitively and quantitatively detect S. pneumoniae. The high-
performance SiO2@20Au tags with superior stability and SERS activity were prepared by one-step
electrostatic adsorption of dense 20 nm AuNPs onto 180 nm SiO2 core and introduced into the
ICA method to ensure the high sensitivity and accuracy of the assay. The detection limit of the
proposed SERS-ICA reached 46 cells/mL for S. pneumoniae and was 100-fold more sensitive than the
traditional AuNPs-based colorimetric ICA method. Further, considering its good stability, specificity,
reproducibility, and easy operation, the SiO2@20Au-SERS-ICA developed here has great potential to
meet the demands of on-site and accurate detection of respiratory pathogens.

Keywords: immunochromatographic assay; SERS-ICA; SERS tag; Streptococcus pneumoniae;
sensitive detection

1. Introduction

Streptococcus pneumoniae (S. pneumoniae) is a dangerous respiratory pathogen that
causes serious diseases such as pneumonia, sepsis, otitis media, and meningitis, and kills
more than one million people worldwide a year [1–3]. S. pneumoniae easily affects children,
the elderly, and immunocompromised people, and causes clinical symptoms (e.g., cough,
fever, fatigued) resembling respiratory virus infection [4]. Timely and accurate diagnosis of
S. pneumoniae is the key to guiding medication and saving lives. The current mature tech-
nologies for bacteria identification mainly include microbial cultivation, polymerase chain
reaction (PCR), DNA sequencing, and mass spectrometry, which require laborious sample
pretreatment, complex instruments, and long detection time (3–48 h) to output results, and
thus suffer from being expensive and time-consuming [5–8]. Thus, a rapid and low-cost
analytical technique for the sensitive detection of S. pneumoniae is desperately needed.

Given its outstanding advantages of simple operation, real-time analysis,
user-friendliness, and low cost, the gold nanoparticle (AuNP)-based immunochromato-
graphic assay (ICA) has dominated the point-of-care testing (POCT) market over the past
few decades [9–11]. However, the inherent defects of colorimetric signals from AuNP
including low sensitivity and limited quantitative ability have blocked the further appli-
cation of the ICA method in trace substance detection [12–14]. To improve the sensitivity
of ICA strip, in recent years, researchers have introduced several kinds of novel signal
materials such as fluorescent microspheres, magnetic particles, nano-enzyme materials,
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and surface-enhanced Raman scattering (SERS) tags to replace the colorimetric signal
nanomaterials [15–20]. Among these novel signals, SERS has been considered a powerful,
fingerprint-specific vibrational spectroscopy, which can provide a non-destructive and
ultrasensitive characterization of molecules on or near the surface of “free-electron-like”
metal materials (mainly Au, Ag, and Cu) [21–23]. The newly developed SERS-based
ICA strategy exhibits tremendous advantages including ultra-sensitivity (single molecular
level), specific analysis (fingerprint spectrum), and highly stable signal (no photobleaching)
for target quantification [24]. Technically speaking, the performance of SERS tags highly
determined the sensitivity and stability of SERS-ICA methods [25,26]. Through many
SERS nanostructures including colloidal metal NPs (e.g., AuNP, AgNP, and Au@Ag alloy)
and Au/Ag coated nanocomposites (e.g., Fe3O4@Au, SiO2@Ag, and GO@Au) have been
proposed for ICA analysis, these SERS tags usually face the problems of poor stability in
complex samples (e.g., clinical samples, biospecimens, and foods), insufficient SERS activity,
and uncontrollable hotspots, which weaken the analytical ability (accuracy, stability, and
reproducibility) of SERS-ICA methods [27–33]. To date, a simple and efficient SERS-ICA
method for respiratory bacteria detection has yet to be developed.

In this work, we reported a highly stable SERS-ICA approach by using novel silica-Au
core-satellite (SiO2@20Au) nanocomposites as superior SERS tags for the rapid, sensitive,
and quantitative determination of S. pneumoniae. The SiO2@20Au tag was simply fabricated
by assembling one layer of dense 20 nm AuNPs onto the surface of 180 nm SiO2 via
polyethyleneimine (PEI)-mediated electrostatic interaction, which can provide strong SERS
activity, excellent colloidal and chemical stability, good dispersity, and multiple surface
sites for bacteria binding. Under optimal conditions, the established SiO2@20Au-SERS-ICA
can achieve direct detection of S. pneumoniae in 20 min with a detection limit of 46 cells/mL.
Moreover, the proposed assay maintained its high accuracy, specificity, and stability in
real biological samples. This behavior confirmed that the SiO2@20Au-SERS-ICA has great
potential for the rapid and accurate monitoring of S. pneumoniae in respiratory tract samples.

2. Experimental Section
2.1. Chemicals, Materials, and Instruments

Tetraethyl orthosilicate (TEOS), branched PEI (MW ~25 kDa), chloroauric acid tetrahy-
drate (HAuCl4·4H2O), 5,5′-Dithiobis-(2-nitrobenzoic acid) (DTNB), N-(3-dimethyaminopro-
py)-N′-ethylcarbodiimide hydrochloride (EDC), 2-(N-morpholino) ethanesulfonic (MES),
N-hydroxysulfosuccinimide sodium salt (sulfo-NHS), bovine serum albumin (BSA), and
fetal bovine serum (FBS) were purchased from Sigma-Aldrich (St Louis, MO, USA). Goat
anti-mouse IgG was supplied by Sangon Biotech Co., Ltd., (Shanghai, China). We pur-
chased a pair of mouse monoclonal anti-S. pneumoniae antibodies from ACTHTEAM, LLC
(Chicago, IL, USA). The ICA accessories (the sample pad, absorbent pad, and plastic back-
ing card) were obtained from Jieyi Biotechnology Co., Ltd., (Shanghai, China). The CN95
nitrocellulose (NC) membrane was supplied by Sartorius (Gottingen, Germany).

The instruments for nanostructure characterization and SERS signal reading are de-
scribed in Supporting Information S1.

2.2. Preparation of 180 nm SiO2 NPs, 20 nm AuNPs, and SiO2@20Au NPs

The 180 nm SiO2 NPs with high dispersibility were fabricated by using a typical
Stöber method [34]. Briefly, 3.5 mL of ammonia solution (~28%) was added to a mixture
of ethanol/deionized water (100/6 mL), and the mixture was vigorously stirred at room
temperature. Subsequently, 4 mL of TEOS was rapidly injected into the above mixture
and the reaction was kept for 4 h. The formed SiO2 NPs were collected by centrifugation
(6000 rpm, 6 min), rinsed twice with ethanol, and dried in an oven at 60 ◦C for future use.

The negatively charged AuNPs with an average diameter of 20 nm were synthesized
through the typical trisodium citrate reduction method [35]. In brief, 1 mL of 1% HAuCl4
solution (w/v) was added to 100 mL deionized water, and the solution was heated to
boiling. Then, 1.7 mL of trisodium citrate aqueous solution (1%) was quickly added into
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the boiling solution under vigorous stirring. After reaction for 15 min, the resulting 20 nm
AuNPs were naturally cooled to room temperature and stored in a 4 ◦C refrigerator for
future use.

The SiO2@20Au nanocomposites were fabricated by PEI-mediated electrostatic ad-
sorption (Scheme 1A). First, 1 mg of SiO2 NPs was dissolved in 10 mL deionized water,
and then mixed with 10 mL of PEI aqueous solution (0.5%, v/v). Under sonication for
30 min, the PEI can be assembled rapidly onto the surface of SiO2 NPs to form SiO2@PEI. By
centrifugal collection (6000 rpm, 6 min), the excess PEI in the supernatant was removed and
the SiO2@PEI NPs were redispersed in 10 mL of deionized water. Second, the SiO2@PEI
was directly reacted with 50 mL of 20 nm AuNPs (~10 nM) for 30 min under vigorous
sonication. Notably, the AuNP suspension was not concentrated or diluted before use. The
resulting SiO2@20Au NPs were separated by centrifugation (4500 rpm, 6 min) and stored
in 10 mL ethanol for later use.
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Scheme 1. Schematic of (A) the preparation of SiO2@20Au nanocomposite, (B) preparation of
antibody-conjugated SiO2@20Au tag, and (C) SiO2@20Au-based SERS-ICA for the quantitative of
S. pneumoniae.

2.3. Preparation of SiO2@20Au SERS Tags

The SiO2@20Au SERS tags were fabricated by successively modifying DTNB molecules
and anti-S. pneumoniae antibodies onto the SiO2@20Au surface, as illustrated in Scheme 1B.
In brief, 10 µL of DTNB (10 mM) ethanol solution was added into 1 mL of SiO2@20Au
solution, and the mixture was vigorously sonicated for 2 h. Next, the DTNB-modified
SiO2@20Au NPs (SiO2@20Au/DTNB) were separated by centrifugation (4500 rpm, 6 min),
resuspended in 1 mL of MES solution (10 mM, pH 5.5), and then reacted with 5 µL
of EDC (100 mM) and 10 µL of NHS (100 mM). After 15 min reaction, the activated
SiO2@20Au/DTNB was collected by centrifugal force and incubated with 200 µL of PBS
solution (10 mM, pH 7.4) and 10 µg of the detection antibody for S. pneumoniae. The mixture
was shaken in an oscillator for 2 h at 800 rpm/min and then incubated with 100 µL of BSA
(10 wt%) for another 30 min to block the excess activated sites of SiO2@20Au tags. Finally,
antibody-conjugated SiO2@20Au SERS tags were separated by centrifugation (4500 rpm,
6 min), washed with 10 mM PBST buffer (pH 7.4, 0.05% Tween), and stored in 200 µL of
preservation solution (10 mM PBST, 1% BSA (w/v) and 0.04% NaN3 (w/v)) for future use.
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2.4. Preparation of SiO2@20Au-Based SERS-ICA for S. pneumoniae Detection

The structure of the SERS-ICA strip for S. pneumoniae detection is shown in Scheme 1C,
which consisted of three independent components including a sample pad, an NC mem-
brane with a test (T) line and a control (C) line, and an absorbent pad to provide the
capillary driving force. The T line and C line were sprayed with 1 mg/mL of S. pneumoniae
capture antibody and 1 mg/mL of goat anti-mouse IgG, respectively, with a dispense rate of
0.1 µL/mm via a spraying platform (Biodot syz5050). The antibody-loaded NC membrane
was then dried at 37 ◦C for at least 3 h and assembled with the sample pad and absorbent
pad onto a plastic backing card. The prepared ICA card was cut into individual 3.5 mm
wide strips with an automatic programmable cutter and finally placed in a sealed bag with
a desiccant for storage.

2.5. Preparation of Bacterial Sample

The standard strain of S. pneumoniae (ATCC 49619) was supplied by Prof. Bing Gu’s
laboratory in Guangdong Provincial People’s Hospital and verified by PCR. The PCR
primers for target gene lytA were displayed as follows [36]:

Forward primer: 5′-AACTCTTACGCAATCTAGCAGATGAA-3′;
Reverse primer: 5′-CGTGCAATACTCGTGCGTTTTA-3′

The concentration of the S. pneumoniae sample was determined by the conventional
plate counting method. In brief, S. pneumoniae was cultivated in 5% sheep blood agar plates
at 37 ◦C in an atmosphere containing 5% CO2. After 12 h culture, dozens of colonies were
picked from the plate and transferred into 1 mL of PBS solution (10 mM, pH 7.4) as the initial
bacterial solution. Then, 0.1 mL of bacterial solution was diluted in sterile water 1 × 105

and 1 × 104 times and coated on the blood agar plate at 37 ◦C. After overnight culture,
the number of colony-forming units (CFUs) on the plates was counted. According to the
results of CFU counting, the initial bacterial solution was adjusted to concentrations of
107 cells/mL for follow-up tests. The bacteria counting results are shown in the supporting
information (Figure S1).

2.6. Bacteria Detection via SiO2@20Au-Based SERS-ICA

To verify the performance of SERS-ICA based on SiO2@20Au tags, different concen-
trations (106–10 cells/mL) of the S. pneumoniae were spiked into PBS solution and actual
clinical samples (saliva) and then detect by the proposed assay. In brief, 30 µL of running
buffer (10 mM PBS, 3% Tween, and 10% FBS) was added into 60 µL of the tested samples
containing various concentrations of S. pneumoniae, the mixture was vigorously vortexed
for 10 s and then pipetted onto the sample pad of ICA strip. After 15 min of the chromato-
graphic reaction, the colorimetric and SERS signal intensities of test lines were measured
by the naked eye and Raman spectrometer, respectively, for the direct and quantitative
detection of bacteria.

3. Results and Discussion
3.1. Preparation and Characterization of SiO2@20Au SERS Tags

The SiO2@20Au core-shell SERS tags were synthesized via a PEI-mediated electrostatic
adsorption approach as illustrated in Scheme 1A, which consisted of four parts: (i) a 180 nm
SiO2 nanosphere as a stable and monodispersed supporter to guarantee good dispersion
and high stability in complex biological samples; (ii) a layer of positively charged PEI shells
to act as a bridge connecting SiO2 to 20 nm AuNPs; (iii) a layer of dense AuNPs formed
shell to generate strong SERS activity and numerous surface sites for bacteria detection; (iv)
a layer of DTNB molecules to provide specific Raman signals for target quantitation and
abundant surface carboxyl groups for antibody conjugation.

The surface morphology and structural composition of SiO2@20Au NPs were char-
acterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spec-
troscopy (EDS) elemental analysis. Figure 1A,B,D,E display the typical TEM images of SiO2,
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SiO2@PEI, 20 nm AuNPs, and SiO2@20Au NPs, respectively. Obviously, the fabricated
180 nm SiO2 presented a spherical morphology with uniform particle size and a smooth sur-
face. Our previous works have proven that PEI can self-assemble on SiO2 surfaces to form a
positively charged thin shell under ultrasonic conditions [37,38]. High-resolution TEM was
used to verify the PEI coating, and the image in Figure 1C clearly shows the thickness of the
PEI layer is around 2 nm. Herein, negatively charged AuNPs with a suitable size (20 nm)
were used as satellites to fabricate the SiO2@20Au core-shell nanocomposites (Figure 1D).
As shown in Figure 1E, numerous 20 nm AuNPs can be firmly adhered onto the surface of
SiO2@PEI surface through the strong electrostatic adsorption of the PEI shell, thus forming
a typical core-satellite structure. The EDS elemental line scan result (Figure 1F) and EDS
elemental mapping (Figure 1G) result for a single SiO2@20Au NP revealed that the outer
layer of dense AuNPs (blue) were uniformly distributed on the surface of the SiO2 core
(red and green), which clearly demonstrated the structural components of the proposed
SERS tag. In addition, the amount of AuNPs loaded onto SiO2 can be determined by EDS
spectroscopy. As revealed in Figure S2, the EDS spectrum indicates the presence of obvious
Si, O, and Au signals in the SiO2@20Au nanostructure with the corresponding elemental
composition (atomic fraction) of 31.04%, 55.80%, and 13.17%, respectively. The UV-vis
spectra of SiO2@20Au NPs showed an obvious absorption peak at 531 nm after the coating
of 20 nm AuNPs, indicating the strong coupling of dense AuNPs formed shells (Figure S3).
All the above results confirmed the successful fabrication of SiO2@20Au NPs. In addition,
the zeta potential values in Figure 1H reveal the surface potential of the nanomaterials
in each stage. The zeta potential of SiO2 NPs increased markedly after PEI coating and
decreased sharply after the adsorption of AuNPs, suggesting the assembly of SiO2@20Au
core-shell nanocomposites was based on electrostatic interaction.
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Given the numerous AuNPs coated onto the SiO2 surface and the hotspots created on
the gaps between the two adjacent AuNPs, the SiO2@20Au composites exhibited superior
SERS activity than the common AuNPs. Figure 2A displays the SERS spectra of the Raman
reporter molecule DTNB adsorbed onto the prepared nanomaterials. The SERS spectra were
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baseline subtracted and shifted vertically for visualization. The SiO2 and SiO2@PEI NPs
had no enhancement effect (black line and red line) and the SiO2@20Au showed the best
enhancement on DTNB (green line). By comparing the main peak of DTNB (1331 cm−1),
the SERS performance of SiO2@20Au was increased about 2 times that of colloidal AuNPs.
We next assessed the colloidal stability of SiO2@20Au in complex environments through
comparison with the common AuNPs. The NP aggregation in complex samples is the main
cause of nonspecific signals of label-based SERS immunoassays. As shown in Figure 2B,
the SiO2@20Au-DTNB exhibited rather good dispersibility (i) and stable SERS signals (ii) in
high salt samples (100–1000 mM), whereas the colloidal AuNPs were severely agglomerated
in 100 mM NaCl solution. Moreover, the prepared SiO2@20Au-DTNB exhibited excellent
colloidal stability and strong SERS intensity in an aqueous solution at different pH values
(3–13) (Figure 2C). These results confirmed that the large SiO2 core greatly improved the
stability of SiO2@20Au in complex samples.
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3.2. Design and Optimization of SERS-ICA for S. pneumoniae Detection

The SERS-ICA system for sensitive detection of S. pneumoniae was designed as shown
in Scheme 1C, which consisted of a liquid SiO2@20Au SERS tag, a sample pad for sam-
ple loading, an NC membrane with one test line for target bacteria capturing, and an
absorption pad to generate capillary force. The testing process of the proposed assay could
be completed in two simple steps. Firstly, the liquid SiO2@20Au SERS tags were mixed
with the sample solution to ensure full immunobinding to target bacteria. Secondly, the
bacteria/SERS tags mixture was loaded onto the sample pad of the ICA strip to start the
chromatographic reaction. Driven by capillary action force, the solution moved forward to
the test line, and the S. pneumoniae/SiO2@20Au SERS tag immunocomplexes will bind to
the capture antibody on the test zone to form sandwich complexes. The excess SiO2@20Au
SERS tags continued to flow forward to the control line and were caught by the goat anti-
mouse IgG, which can generate a black band for quality control of the ICA strip. In theory,
higher concentrations of S. pneumoniae existed in tested samples, more bacteria/SiO2@20Au
complexes were immobilized onto the T line, and a stronger SERS intensity was produced
in the test zone. The detailed SERS signals of the test lines can be rapidly measured by using
a portable Raman spectrometer and used for the quantitative analysis of S. pneumoniae.
Notably, 785 nm laser excitation was chosen because it is suitable to reduce the fluorescence
background of the NC membrane and the damage to biological samples [29,39].

To achieve the best performance on the SiO2@20Au-based SERS-ICA system, the
optimal conditions of SERS tags and ICA strip were studied. The anti-bacterial antibody
can be easily conjugated onto the surface of SiO2@20Au-DTNB via EDC/NHS activation,
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due to the terminal carboxyl group of DTNB [40]. Zeta potential, dynamic light scattering
(DLS) and Fourier transform infrared spectroscopy (FTIR) were used to evaluate the
antibody modification effect on the SiO2@20Au surface. As revealed in Figure 3A, the
zeta potential values of SiO2@20Au-DTNB decreased with an increase in the antibody
dosage in the reaction system (0–8 µg) and remained stable at −28.4 mV, indicating the
antibody amount modified onto SERS tags has reached saturation. In addition, the DLS
(Figure S4A) and FTIR (Figure S4B) results in the supporting information also verified the
successful conjugation of anti-S. pneumoniae antibody onto SiO2@20Au surface. The binding
ability of antibody-modified SiO2@20Au SERS tags toward their target bacteria was next
assessed. The standard strain of S. pneumoniae was supplied by Prof. Bing from Guangdong
Provincial People’s Hospital and verified by PCR (Figure 3B). The prepared S. pneumoniae
was incubated with antibody-modified SiO2@20Au SERS tags and then investigated by
TEM. As shown in Figure 3C,D, the immuno-SiO2@20Au tags can effectively bind to
the surface of S. pneumoniae, suggesting the high affinity of the used antibody to the
target bacteria.
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(C) S. pneumoniae and (D) SiO2@20Au/S. pneumoniae immunocomplexes.

The key conditions of ICA strips mainly included the pore size of the NC membrane, run-
ning buffer composition, and chromatographic time. Our previous works have demonstrated
that the CN95 NC membrane with a 15 µm pore size can provide enough wide transport
channels for large nanotags (>200 nm) and is suitable for bacteria detection [41–43]. With
the CN95 membrane, in this work, we tested several widely used running buffers to ensure
the good mobility and analytical performance of the SERS-ICA for bacteria. As shown in
Figure S5A, the PBS buffer containing 1% Tween 20 and 5% FBS produced the strongest SERS
signals and the best signal-to-noise ratio (SNR) for S. pneumoniae detection. In addition, the
chromatographic time of SiO2@20Au-based ICA was investigated, as shown in Figure S5B.
The optimization results indicated that the 15 min chromatographic time can generate the
best testing results on ICA strips.

3.3. Detection Performance of SiO2@20Au-SERS-ICA for S. pneumoniae

To evaluate the ability of the proposed assay for direct detection of bacteria, the
SiO2@20Au-SERS-ICA system was used to analyze a series of bacterial samples containing
various concentrations (106–0 cells/mL) of S. pneumoniae. The photos of the tested ICA and
the SERS mapping results corresponding to the test lines (T lines) are shown in Figure 4A.
Obviously, the dark colors on the T lines were gradually weakened with the decrease in
the concentration of S. pneumoniae in the sample solution. The T line was still observable
at 1 × 103 cells/mL of S. pneumoniae with the naked eye, indicating the visual sensitivity
of the proposed SERS-ICA was about 1 × 103 cells/mL. In addition, the SERS mapping
images (22 × 8 pixels), which were obtained from the test zones using the specific signals
of DTNB (1331 cm−1) as a source, exhibited the relatively uniform SERS signal intensity
distributed on the T lines when S. pneumoniae concentration in the sample is higher than



Pathogens 2023, 12, 327 8 of 12

500 cells/mL. To achieve accurate detection, 20 spots on the one T line were randomly
measured and averaged to generate a reproducible SERS signal. The SERS spectrum of
different concentrations of S. pneumoniae was shown in Figure 4C. Notably, a rather weak
SERS signal (~1331 cm−1) on the test line can be still detected when the S. pneumoniae
concentration is 0 cells/mL. This weak SERS signal is derived from the residual SERS tags
in the running solution and can be deducted as the background signal. The calibration
curve for S. pneumoniae was constructed by utilizing the sigmoid function of bacteria
concentration and the corresponding SERS signals at 1331 cm−1, as shown in Figure 4D.
The limit of detection (LOD) of the proposed SiO2@20Au-SERS-ICA for S. pneumoniae was
calculated using the IUPAC protocol (LOD = yblank + 3 SDblank), which was determined to
be 46 cells/mL. The detection range of the SERS-ICA for S. pneumoniae spanned five orders
of magnitude (105–50 cells/mL) with correlation coefficients (R2) = 0.995. Moreover, the
limit of quantitation (LOQ) of SiO2@20Au-ICA was found to be 64 cells/mL, according to
ten times the standard deviation of the blank control. The superiority of SiO2@20Au-based
SERS-ICA was further intuitively evaluated by using the commonly used AuNP-based
colorimetric ICA method as a comparison. The AuNP-ICA strip for S. pneumoniae detection
was prepared using the same immunoreagents with SiO2@20Au-ICA and the detailed
preparation process was shown in Supporting Information S1.2. As shown in Figure 4B, the
visual sensitivity levels of the AuNP-based ICA method for S. pneumoniae observed with the
naked eye was 5× 103 cells/mL. Thus, the LOD of the AuNP-ICA strips can be determined
to be 5 × 103 cells/mL by the colorimetric signal. By comparison, the SiO2@20Au-ICA
strip based on the SERS signal can achieve about 100 times improvement in sensitivity for
S. pneumoniae detection than traditional AuNP-based ICA.
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strips at different concentrations of S. pneumoniae. (D) Corresponding calibration curve of
S. pneumoniae using the SERS intensity at 1331 cm−1. The inset shows the four-parameter logis-
tic equation and detailed parameters of the calibration curve. Error bars represent the standard
deviations from three repetitive experiments.

3.4. Reproducibility and Specificity of SiO2@20Au-SERS-ICA

As a potential POCT reagent for the rapid detection of respiratory pathogens, the
stability and reproducibility of SiO2@20Au-SERS-ICA need to be assessed. We prepared
three groups of S. pneumoniae samples at a high concentration (106 cells/mL), medium
concentration (104 cells/mL), and low concentration (102 cells/mL) and used them for
performance testing. The photographs of tested ICA strips and the corresponding SERS
signals on the T lines from five independent experiments are shown in Figure 5A(i),(ii), re-
spectively. From these results, we found that the SiO2@20Au-SERS-ICA exhibited excellent
reproducibility of SERS signals for all the tested groups. The relative standard deviations
(RSD) values for different concentrations (106, 104, and 102 cells/mL) of target bacteria
were less than 6.8%, which clearly demonstrated the good stability of our ICA method.
In addition, the specificity of SiO2@20Au-SERS-ICA was verified by detecting other com-
mon pathogenic bacteria including Staphylococcus aureus (S. aureus), Escherichia coli (E. coli),
Salmonella typhimurium (S. typhimurium), Listeria monocytogenes (L. mono), and Staphylococcus
epidermidis (S. epidermidis) and common respiratory viruses including influenza A virus
(Flu A) and influenza B virus (Flu B). As revealed in Figure 5B, only the samples containing
S. pneumoniae (104 cells/mL) can be recognized by the proposed ICA, resulting in a distinct
dark band and strong SERS signal on the test line. All the non-target pathogens could
not generate obvious SERS signals on the T lines of ICA strips, indicating the superior
specificity of our method.
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The SERS spectrum is the mean spectrum of twenty SERS single-spectrum measured from the test
line. Error bars represent the standard deviations from three repetitive experiments.

3.5. Detection in Spiked Biological Samples

We finally investigated the performance of the SiO2@20Au-ICA strip in real biological
samples. The human sputum samples collected from healthy volunteers were thoroughly
sterilized through thermal processes and spiked with S. pneumoniae at concentrations of 104,
103, and 102 cells/mL. The precision of our SERS-ICA was determined by the recovery test
of these samples. The obtained SERS spectra for each sample were averaged to generate a
reproducible signal (Figure S6) and substituted into the established calibration curves to
calculate the recoveries of S. pneumoniae in the real sputum samples. As summarized in
Table S1, the recovery rates of SiO2@20Au-ICA for spiked S. pneumoniae were calculated to
be 89.2–124.6%, with RSD values below 11.3%. These results confirmed the good accuracy
of the proposed SERS-ICA for the complex biological samples. The excellent detection
performance (sensitivity, stability, specificity, and accuracy) of the proposed SERS-ICA can
be attributed to the superior properties of SiO2@20Au tags, including high SERS activity,
good dispersibility in complex samples, and numerous surface-active sites for bacteria
binding. In theory, by using the specific antibodies for target pathogens, the proposed
SERS-ICA method can be easily used to detect other pathogenic microorganisms and has
great potential to be developed further.

4. Conclusions

We proposed a simple SERS-ICA method for rapid and sensitive detection of
S. pneumoniae in complex samples by using a high-performance SiO2@20Au SERS tag.
The SiO2@20Au tag was prepared by one-step adsorption of numerous 20 nm AuNPs onto
180 nm SiO2 NPs and then introduced into the ICA strip to replace conventional colloidal
SERS tags. The SiO2@20Au tag can provide stronger SERS activity, better dispersibility,
higher stability, and larger surface sites than the commonly used AuNP SERS tag. The
proposed SiO2@20Au-SERS-ICA achieved the rapid detection of S. pneumoniae in 20 min
with an LOD value of 46 cells/mL. Remarkably, the sensitivity of our proposed ICA was
over 100 times higher than that of traditional AuNP-based ICA strips. Based on these
findings, we believe that the proposed assay has great potential in the POCT detection
of pathogens.
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//www.mdpi.com/article/10.3390/pathogens12020327/s1. The Supporting Information is available
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SERS detection; S2 Preparation of AuNP-based ICA), Table S1 and supporting figures (Figures S1–S6)
mentioned in the main text.
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