Debridement, Antibiotic Pearls, and Retention of the Implant (DAPRI) in the Treatment of Early Periprosthetic Joint Infections: A Consecutive Series
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Biofilm Identification
- (2)
- Biofilm removal
- (3)
- Prevention of PJI recurrence
3. Results
3.1. Study Population
3.2. Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le, D.H.; Goodman, S.B.; Maloney, W.J.; Huddleston, J.I. Current modes on failure in TKA: Infection, instability and stiffness predominate. Clin. Orthop. Relat. Res. 2014, 472, 2197–2200. [Google Scholar] [CrossRef]
- Shahi, A.; Tan, T.L.; Chen, A.F.; Maltenfort, M.G.; Parvizi, J. In-Hospital Mortality in Patients with Periprosthetic Joint Infection. J. Arthroplast. 2017, 32, 948–952.e1. [Google Scholar] [CrossRef]
- Iannotti, F.; Prati, P.; Fidanza, A.; Iorio, R.; Ferretti, A.; Pèrez Prieto, D.; Kort, N.; Violante, B.; Pipino, G.; Schiavone Panni, A.; et al. Prevention of Periprosthetic Joint Infection (PJI): A Clinical Practice Protocol in High-Risk Patients. Trop. Med. Infect. Dis. 2020, 5, 186. [Google Scholar] [CrossRef]
- Jin, X.; Luxan, B.G.; Hanly, M.; Pratt, N.L.; Harris, I.; de Steiger, R.; Graves, S.E.; Jorm, L. Estimating incidence rates of periprosthetic joint infection after hip and knee arthroplasty for osteoarthritis using linked registry and administrative health data. Bone Jt. J. 2022, 104, 1060–1066. [Google Scholar] [CrossRef]
- Argenson, J.N.; Arndt, M.; Babis, G.; Battenberg, A.; Budhiparama, N.; Catani, F.; Chen, F.; de Beaubien, B.; Ebied, A.; Esposito, S.; et al. Hip and Knee Section, Treatment, Debridement and Retention of Implant: Proceedings of International Consensus on Orthopedic Infections. J. Arthroplast. 2019, 34, S399–S419. [Google Scholar] [CrossRef]
- Horriat, S.; Ayyad, S.; Thakrar, R.; Haddad, F. Debridement, antibiotics and implant retention in management of infected total knee arthroplasty: A systematic review. Semin. Arthroplast. JSES 2018, 29, 244–249. [Google Scholar] [CrossRef]
- Flierl, M.A.; Culp, B.M.; Okroj, K.T.; Springer, B.D.; Levine, B.R.; Della Valle, C.J. Poor Outcomes of Irrigation and Debridement in Acute Periprosthetic Joint Infection with Antibiotic-Impregnated Calcium Sulfate Beads. J. Arthroplast. 2017, 32, 2505–2507. [Google Scholar] [CrossRef] [PubMed]
- Wouthuyzen-Bakker, M.; Sebillotte, M.; Huotari, K.; Sánchez, R.E.; Benavent, E.; Parvizi, J.; Fernandez-Sampedro, M.; Barbero, J.M.; Garcia-Cañete, J.; Trebse, R.; et al. Lower Success Rate of Débridement and Implant Retention in Late Acute versus Early Acute Periprosthetic Joint Infection Caused by Staphylococcus spp. Results from a Matched Cohort Study. Clin. Orthop. Relat. Res. 2020, 478, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Ghirardelli, S.; Fidanza, A.; Prati, P.; Iannotti, F.; Indelli, P.F. Debridement, antibiotic pearls, and retention of the implant in the treatment of infected total hip arthroplasty. HIP Int. 2020, 30, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Calanna, F.; Chen, F.; Risitano, S.; Vorhies, J.S.; Franceschini, M.; Giori, N.J.; Indelli, P.F. Debridement, antibiotic pearls, and retention of the implant (DAPRI): A modified technique for implant retention in total knee arthroplasty PJI treatment. J. Orthop. Surg. 2019, 27, 2309499019874413. [Google Scholar] [CrossRef]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314.e2. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, C.; Cabric, S.; Perka, C.; Trampuz, A.; Renz, N. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn. Microbiol. Infect. Dis. 2018, 90, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Indelli, P.F.; Ghirardelli, S.; Violante, B.; Amanatullah, D.F. Next generation sequencing for pathogen detection in periprosthetic joint infections. EFORT Open Rev. 2021, 6, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Gatti, G.; Taddei, F.; Brandolini, M.; Mancini, A.; Denicolò, A.; Congestrì, F.; Manera, M.; Arfilli, V.; Battisti, A.; Zannoli, S.; et al. Molecular Approach for the Laboratory Diagnosis of Periprosthetic Joint Infections. Microorganisms 2022, 10, 1573. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.L.; Maltenfort, M.G.; Chen, A.F.; Shahi, A.; Higuera, C.A.; Siqueira, M.; Parvizi, J. Development and Evaluation of a Preoperative Risk Calculator for Periprosthetic Joint Infection Following Total Joint Arthroplasty. J. Bone Jt. Surg. 2018, 100, 777–785. [Google Scholar] [CrossRef]
- Connaughton, A.; Childs, A.; Dylewski, S.; Sabesan, V.J. Biofilm disrupting technology for orthopedic implants: What’s on the horizon? Front. Med. 2014, 1, 22. [Google Scholar] [CrossRef]
- Tria, A.J.; Scuderi, G.R.; Cushner, F.D. Complex Cases in Total Knee Arthroplasty: A Compendium of Current Techniques; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Parvin, F.; Vickery, K.; Deva, A.K.; Hu, H. Efficacy of Surgical/Wound Washes against Bacteria: Effect of Different In Vitro Models. Materials 2022, 15, 3630. [Google Scholar] [CrossRef] [PubMed]
- Tarar, M.Y.; Khalid, A.; Usman, M.; Javed, K.; Shah, N.; Abbas, M.W. Wound Leakage with the Use of Calcium Sulphate Beads in Prosthetic Joint Surgeries: A Systematic Review. Cureus 2021, 13, e19650. [Google Scholar] [CrossRef] [PubMed]
- Uriarte, I.; Moreta, J.; Mosquera, J.; Legarreta, M.J.; Aguirre, U.; Mozos, J.L.M.D.L. Debridement, Antibiotics and Implant Retention for Early Periprosthetic Infections of the Hip: Outcomes and Influencing Factors. Hip Pelvis 2019, 31, 158–165. [Google Scholar] [CrossRef]
- Davidson, D.J.; Spratt, D.; Liddle, A.D. Implant materials and prosthetic joint infection: The battle with the biofilm. EFORT Open Rev. 2019, 4, 633–639. [Google Scholar] [CrossRef]
- Tarabichi, S.; Goh, G.S.; Zanna, L.; Qadiri, Q.S.; Baker, C.M.; Gehrke, T.; Citak, M.; Parvizi, J. Time to Positivity of Cultures Obtained for Periprosthetic Joint Infection. JBJS 2023, 105, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Goswami, K.; Clarkson, S.; Phillips, C.D.; Dennis, D.A.; Klatt, B.A.; O’malley, M.J.; Smith, E.L.; Gililland, J.M.; Pelt, C.E.; Peters, C.L.; et al. An Enhanced Understanding of Culture-Negative Periprosthetic Joint Infection with Next-Generation Sequencing. J. Bone Jt. Surg. 2022, 104, 1523–1529. [Google Scholar] [CrossRef]
- Tan, J.; Liu, Y.; Ehnert, S.; Nüssler, A.K.; Yu, Y.; Xu, J.; Chen, T. The Effectiveness of Metagenomic Next-Generation Sequencing in the Diagnosis of Prosthetic Joint Infection: A Systematic Review and Meta-Analysis. Front. Cell. Infect. Microbiol. 2022, 12, 875822. [Google Scholar] [CrossRef] [PubMed]
- Ludwick, L.; Chisari, E.; Wang, J.; Clarkson, S.; Collins, L.; Parvizi, J. Emergence of Antibiotic Resistance Across Two-Stage Revision for Periprosthetic Joint Infection. J. Arthroplast. 2021, 36, 2946–2950. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.D.; Brodke, D.S.; Williams, D.L.; Ashton, N.N. Methylene Blue Is an Effective Disclosing Agent for Identifying Bacterial Biofilms on Orthopaedic Implants. J. Bone Jt. Surg. 2020, 102, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Abosala, A.; Ali, M. The Use of Calcium Sulphate beads in Periprosthetic Joint Infection, a systematic review. J. Bone Jt. Infect. 2020, 5, 43–49. [Google Scholar] [CrossRef]
- Ene, R.; Nica, M.; Ene, D.; Cursaru, A.; Cirstoiu, C. Review of calcium-sulphate-based ceramics and synthetic bone substitutes used for antibiotic delivery in PJI and osteomyelitis treatment. EFORT Open Rev. 2021, 6, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Veerman, K.; Raessens, J.; Telgt, D.; Smulders, K.; Goosen, J.H.M. Debridement, antibiotics, and implant retention after revision arthroplasty. Bone Jt. J. 2022, 104, 464–471. [Google Scholar] [CrossRef]
- McQuivey, K.S.; Bingham, J.; Chung, A.; Clarke, H.; Schwartz, A.; Pollock, J.R.; Beauchamp, C.; Spangehl, M.J. The Double DAIR: A 2-Stage Debridement with Prosthesis-Retention Protocol for Acute Periprosthetic Joint Infections. JBJS Essent. Surg. Tech. 2021, 11, e19.00071. [Google Scholar] [CrossRef]
- Lizaur-Utrilla, A.; Asensio-Pascual, A.; Gonzalez-Parreño, S.; Miralles-Muñoz, F.A.; Lopez-Prats, F.A. Negative impact of prior debridement on functional outcome of subsequent two-stage revision for early knee periprosthetic infection. Knee Surgery, Sports Traumatol. Arthrosc. 2019, 27, 2309–2315. [Google Scholar] [CrossRef]
- Budhiparama, N.C.; Santoso, A.; Hidayat, H.; Ifran, N.N. DAIR (Debridement, Antibiotics, and Implant Retention) for the Treatment of Periprosthetic Joint Infection of Knee. In Infection in Knee Replacement; Longo, U.G., Budhiparama, N.C., Lustig, S., Becker, R., Espregueira-Mendes, J., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Hays, M.; Kildow, B.; Hartman, C.; Lyden, E.; Springer, B.; Fehring, T.; Garvin, K. Increased Incidence of Methicillin-Resistant Staphylococcus aureus in Knee and Hip Prosthetic Joint Infection. J. Arthroplast. 2023, in press. [CrossRef] [PubMed]
Primary TKA | Revision TKA | Primary THA | Revision THA | Primary TSA | Revision TSA |
---|---|---|---|---|---|
26 patients | 11 patients | 13 patients | 6 patients | 6 patients | No |
Bacterial Group | Incidence | Organisms | Prevalent Organism |
---|---|---|---|
Aerobic Gram + | 76% | S. epidermidis (41%), Streptococcus sp. (10%); MRSA (9%); MSSA (7%); S. Lugdunensis 5%, S. hominis 4% | Staphylococcus epidermidis |
Gram − | 10% | Escherichia coli (4%); Enterobacter (3%); Enterobacter cloacae (1.5%); Proteus mirabilis (1.5%) | Escherichia coli |
Other pathogen | 10% | Enterococcus faecalis (5.5%; VRE 1.5%); Candida albicans (1.5%); Corynebacterium striatum (1.5%) | Enterococcus faecalis |
Anaerobic Gram + | 4% | Cutibacterium acnes (4%) | Cutibacterium acnes |
Persistent Drainage | Hypercalcemia | PJI Recurrence | Heterotopic Ossifications |
---|---|---|---|
4 patients (knees) (6.4%) | None | 4 patients (22.5%) | 1 patient (hip) (1.6%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indelli, P.F.; Ghirardelli, S.; Valpiana, P.; Bini, L.; Festini, M.; Iannotti, F. Debridement, Antibiotic Pearls, and Retention of the Implant (DAPRI) in the Treatment of Early Periprosthetic Joint Infections: A Consecutive Series. Pathogens 2023, 12, 605. https://doi.org/10.3390/pathogens12040605
Indelli PF, Ghirardelli S, Valpiana P, Bini L, Festini M, Iannotti F. Debridement, Antibiotic Pearls, and Retention of the Implant (DAPRI) in the Treatment of Early Periprosthetic Joint Infections: A Consecutive Series. Pathogens. 2023; 12(4):605. https://doi.org/10.3390/pathogens12040605
Chicago/Turabian StyleIndelli, Pier Francesco, Stefano Ghirardelli, Pieralberto Valpiana, Lorenzo Bini, Michele Festini, and Ferdinando Iannotti. 2023. "Debridement, Antibiotic Pearls, and Retention of the Implant (DAPRI) in the Treatment of Early Periprosthetic Joint Infections: A Consecutive Series" Pathogens 12, no. 4: 605. https://doi.org/10.3390/pathogens12040605
APA StyleIndelli, P. F., Ghirardelli, S., Valpiana, P., Bini, L., Festini, M., & Iannotti, F. (2023). Debridement, Antibiotic Pearls, and Retention of the Implant (DAPRI) in the Treatment of Early Periprosthetic Joint Infections: A Consecutive Series. Pathogens, 12(4), 605. https://doi.org/10.3390/pathogens12040605