Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review
Abstract
:1. Introduction
2. A Microbial Symbiosis Approach Associated with Aquatic Animals for Antimicrobial Discovery
3. Aquatic Animal-Microbial Symbionts Derived Antifungal Compounds and Their Targets
3.1. Compounds Acting on the Plasma Membrane
3.1.1. Iturin
3.1.2. 3,5-Dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol
3.1.3. YM-202204
3.1.4. Theonellamide F
3.1.5. Theopalauamide
3.2. Immunomodulation and Apoptosis
3.2.1. Indole 3-carboxaldehyde
3.2.2. Isatin
3.3. Cell Differentiation and Multiplication
3.3.1. Griseofulvin
3.3.2. Majusculamide C
3.3.3. Surfactin
3.4. Cellular Enzymes
3.4.1. Brefeldin A
3.4.2. Roridin A
3.5. Resistance Factors
3.5.1. Modiolide A
3.5.2. Fumiquinazoline
3.6. Cell Wall
Chitinase 34 kDa
3.7. Compounds with Unknown Targets
4. Relevant Information for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef]
- Fausto, A.; Rodrigues, M.L.; Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 2019, 10, 214. [Google Scholar]
- Fisher, M.C.; Henk, D.A.; Briggs, C.J.; Brownstein, J.S.; Madoff, L.C.; McCraw, S.L.; Gurr, S.J. Emerging fungal threats to animal, plant and ecosystem health. Nature 2012, 484, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Seipke, R.F.; Grüschow, S.; Goss, R.J.M.; Hutchings, M.I. Isolating antifungals from fungus-growing ant symbionts using a genome-guided chemistry approach. Methods Enzymol. 2012, 517, 47–70. [Google Scholar] [PubMed]
- Chemaly, R.F. The ever-growing world of infections in immunocompromised patients: Major headways with numerous shortcomings. Clin. Microbiol. Infect. 2021, 27, 1379–1380. [Google Scholar] [CrossRef]
- Wall, G.; Lopez-Ribot, J.L. Current Antimycotics, New Prospects, and Future Approaches to Antifungal Therapy. Antibiotics 2020, 9, 445. [Google Scholar] [CrossRef]
- Gogineni, V.; Chen, X.; Hanna, G.; Mayasari, D.; Hamann, M.T. Role of symbiosis in the discovery of novel antibiotics. J. Antibiot. 2020, 73, 490–503. [Google Scholar] [CrossRef]
- Barke, J.; Seipke, R.F.; Grüschow, S.; Heavens, D.; Drou, N.; Bibb, M.J.; Goss, R.J.M.; Yu, D.W.; Hutchings, M.I. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010, 8, 109. [Google Scholar] [CrossRef]
- Haeder, S.; Wirth, R.; Herz, H.; Spiteller, D. Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 4742. [Google Scholar] [CrossRef]
- Seipke, R.F.; Barke, J.; Brearley, C.; Hill, L.; Yu, D.W.; Goss, R.J.M.; Hutchings, M.I. A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant acromyrmex octospinosus. PLoS ONE 2011, 6, e22028. [Google Scholar] [CrossRef]
- Kolachana, P.; Smith, M.T. Induction of kinetochore-positive micronuclei in human lymphocytes by the anti-fungal drug griseofulvin. Mutat. Res. Toxicol. 1994, 322, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Goldman, L.; Schwarz, J.; Preston, R.H.; Beyer, A.; Loutzenhiser, J. Current Status of Griseofulvin: Report on One Hundred Seventy-Five Cases. J. Am. Med. Assoc. 1960, 172, 532–538. [Google Scholar] [CrossRef]
- Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 2010, 8, 1417–1468. [Google Scholar] [CrossRef] [PubMed]
- Bollmann, M.; Bosch, T.; Cau, K.; Colijn, F.; Cau, K.; Ebinghaus, R.; Gkss, R.C.; Körtzinger, A.; Leibniz, I. Living With the Oceans—World ocean review. World Ocean Rev. 2010, 1, 236. [Google Scholar]
- Grosberg, R.K.; Vermeij, G.J.; Wainwright, P.C. Biodiversity in water and on land. Curr. Biol. 2012, 22, R900–R903. [Google Scholar] [CrossRef]
- Vaughan, T.A.; Ryan, J.M.; Czaplewski, N.J. Mammalogy, 6th ed.; Jones & Bartlett Learning: Burlington, VT, USA, 2013; p. 755. [Google Scholar]
- Tarazona, A.M.; Ceballos, M.C.; Broom, D.M. Animals: One Health, One Welfare, One Biology. Animals 2020, 10, 1516. [Google Scholar]
- Hart, B.L. Behavioural defences in animals against pathogens and parasites: Parallels with the pillars of medicine in humans. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3406. [Google Scholar] [CrossRef]
- Tiralongo, F.; Messina, G.; Lombardo, B.M.; Longhitano, L.; Li Volti, G.; Tibullo, D. Skin Mucus of Marine Fish as a Source for the Development of Antimicrobial Agents. Front. Mar. Sci. 2020, 7, 541853. [Google Scholar] [CrossRef]
- Vennila, R.; Rajesh Kumar, K.; Kanchana, S.; Arumugam, M.; Vijayalakshmi, S.; Balasubramaniam, T. Preliminary investigation on antimicrobial and proteolytic property of the epidermal mucus secretion of marine stingrays. Asian Pac. J. Trop. Biomed. 2011, 1, S239–S243. [Google Scholar] [CrossRef]
- Becker, M.H.; Walke, J.B.; Cikanek, S.; Savage, A.E.; Mattheus, N.; Santiago, C.N.; Minbiole, K.P.C.; Harris, R.N.; Belden, L.K.; Gratwicke, B. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142881. [Google Scholar] [CrossRef]
- Lowrey, L.; Woodhams, D.C.; Tacchi, L.; Salinas, I. Topographical mapping of the rainbow trout (Oncorhynchus mykiss) microbiome reveals a diverse bacterial community with antifungal properties in the skin. Appl. Environ. Microbiol. 2015, 81, 6915–6925. [Google Scholar] [CrossRef] [PubMed]
- Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 2018, 3, 41. [Google Scholar] [CrossRef]
- Florez, L.V.; Biedermann, P.H.W.; Engl, T.; Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 2015, 32, 879–1156. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.W. Trading molecules and tracking targets in symbiotic interactions. Nat. Chem. Biol. 2008, 4, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A. Pharmacological significance of marine microbial bioactive compounds. Environ. Chem. Lett. 2019, 17, 1741–1751. [Google Scholar] [CrossRef]
- Arioka, M.; Hirata, A.; Takatsuki, A.; Yamasaki, M. Brefeldin A blocks an early stage of protein transport in Candida albicans. J. Gen. Microbiol. 1991, 137, 1253–1262. [Google Scholar] [CrossRef]
- Johns, A. Towards the Development of Novel Aspergillus Fumigatus Targeted Antifungals with an In-Depth Analysis of Sfp-PPTase, PptA [Internet]. 2015. Available online: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.684773 (accessed on 31 May 2022).
- Xie, L.W.; Jiang, S.M.; Zhu, H.H.; Sun, W.; Ouyang, Y.C.; Dai, S.K.; Li, X. Potential inhibitors against Sclerotinia sclerotiorum, produced by the fungus Myrothecium sp. associated with the marine sponge Axinella sp. Eur. J. Plant Pathol. 2008, 122, 571–578. [Google Scholar] [CrossRef]
- Liu, J.Y.; Huang, L.L.; Ye, Y.H.; Zou, W.X.; Guo, Z.J.; Tan, R.X. Antifungal and new metabolites of Myrothecium sp. Z16, a fungus associated with white croaker Argyrosomus argentatus. J. Appl. Microbiol. 2006, 100, 195–202. [Google Scholar] [CrossRef]
- Reiss, J. Influence of Fusarium and Myrothecium mycotoxins on dehydrogenase activity of Saccharomyces cerevisiae. Mycopathologia 1983, 81, 187–189. [Google Scholar] [CrossRef]
- Tsuda, M.; Mugishima, T.; Komatsu, K.; Sone, T.; Tanaka, M.; Mikami, Y.; Kobayashi, J. Modiolides A and B, two new 10-membered macrolides from a marine-derived fungus. J. Nat. Prod. 2003, 66, 412–415. [Google Scholar] [CrossRef]
- Bajpai, V.K. Antimicrobial secondary metabolites from marine fungi: A mini review. Indian J. Mar. Sci. 2016, 45, 1067–1075. [Google Scholar]
- Li, X.; Zhang, Q.; Zhang, A.; Gao, J. Metabolites from Aspergillus an endophytic fungus associated with Melia azedarach, and Their Antifungal, Antifeedant and Toxic Activities. J. Agric. Food Chem. 2012, 60, 3424–3431. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, J.; Ishibashi, M. Bioactive Metabolites of Symbiotic Marine Microorganisms. Chem. Rev. 1993, 93, 1753–1769. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Boonpothong, P.; Sousa, E.; Kijjoa, A.; Pinto, M.M.M. Chemistry of the fumiquinazolines and structurally related alkaloids. Nat. Prod. Rep. 2019, 36, 7–34. [Google Scholar] [CrossRef]
- Han, Y.; Yang, B.; Zhang, F.; Miao, X.; Li, Z. Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China sea sponge Craniella australiensis. Mar. Biotechnol. 2009, 11, 132–140. [Google Scholar] [CrossRef]
- Dunlap, W.C.; Battershill, C.N.; Liptrot, C.H.; Cobb, R.E.; Bourne, D.G.; Jaspars, M.; Long, P.F.; Newman, D.J. Biomedicinals from the phytosymbionts of marine invertebrates: A molecular approach. Methods 2007, 42, 358–376. [Google Scholar] [CrossRef]
- Williams, D.E.; Burgoyne, D.L.; Rettig, S.J. The Isolation of Majusculamide C from the Sponge of the 2-Methyl-3-Aminopentanoic. J. Nat. Prod. 1993, 56, 545–551. [Google Scholar] [CrossRef]
- Niedermeyer, T.H.J. Anti-infective Natural Products from Cyanobacteria. Planta Med. 2015, 81, 1309–1325. [Google Scholar] [CrossRef]
- Moore, R.E. Cyclic peptides and depsipeptides from cyanobacteria: A review. J. Ind. Microbiol. 1996, 16, 134–143. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, L.; Bie, X.; Lu, Z.; Liu, H.; Zhang, C.; Lu, F.; Zhao, H. Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiol. 2016, 16, 31. [Google Scholar] [CrossRef]
- Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R. Biosurfactants: Potential applications in medicine. J. Antimicrob. Chemother. 2006, 57, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Mongkolthanaruk, W. Classification of bacillus beneficial substances related to plants, humans and animals. J. Microbiol. Biotechnol. 2012, 22, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Niekawa, E.T.G.; Simionato, A.S.; Barazetti, A.R.; Cano, B.G.; Emiliano, J.; Afonso, L.; de Lima Andreata, M.F.; Dealis, M.L.; Chryssafidis, A.L.; Andrade, G. The microbial role in the control of phytopathogens—An alternative to agrochemicals. In Microbiome Stimulants for Crops; Woodhead Publishing: Cambridge, UK, 2021; pp. 159–177. [Google Scholar] [CrossRef]
- Parray, J.A.; Shameem, N. Metabolomics and microbial biocontrol agents. In Sustainable Agriculture; Academic Press: Cambridge, MA, USA, 2020; pp. 181–229. [Google Scholar] [CrossRef]
- Elyakov, G.B.; Kuznetsova, T.; Mikhailov, V.V.; Maltsev, I.I.; Voinov, V.G.; Fedoreyev, S.A. Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 1991, 47, 632–633. [Google Scholar] [CrossRef]
- Sionov, E.; Roth, D.; Sandovsky-Losica, H.; Kashman, Y.; Rudi, A.; Chill, L.; Berdicevsky, I.; Segal, E. Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J. Infect. 2005, 50, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Kamigiri, K.; Matsumoto, H.; Kawano, Y.; Yamaoka, M.; Shimoi, H.; Watanabe, M.; Suzuki, K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J. Antibiot. 2002, 55, 1036–1041. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, S.; Fusetani, N.; Hashimoto, V.K.; Walchlit, M.; Theonellamide, F. A Novel Antifungal Bicyclic Peptide from a Marine Sponge Theonella sp. J. Am. Chem. Soc. 1989, 2, 2582–2588. [Google Scholar] [CrossRef]
- Nishimura, S.; Arita, Y.; Honda, M.; Iwamoto, K.; Matsuyama, A.; Shirai, A.; Kawasaki, H.; Kakeya, H.; Kobayashi, T.; Matsunaga, S.; et al. Marine antifungal theonellamides target 3β 2-hydroxysterol to activate Rho1 signaling. Nat. Chem. Biol. 2010, 6, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S. Synthesis of the Western Hemisphere of Theonellamide C. The Graduate School at LSU Digital Commons, Editor. 2013. Available online: https://digitalcommons.lsu.edu/gradschool_dissertations/2836 (accessed on 3 February 2023).
- Schmidt, E.W.; Obraztsova, A.Y.; Davidson, S.K.; Faulkner, D.J.; Haygood, M.G. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar. Biol. 2000, 136, 969–977. [Google Scholar] [CrossRef]
- Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 2004, 26, 338–362. [Google Scholar] [CrossRef]
- Ho, C.H.; Magtanong, L.; Barker, S.L.; Gresham, D.; Nishimura, S.; Natarajan, P.; Koh, J.L.Y.; Porter, J.; Gray, C.A.; Andersen, R.J.; et al. A molecular barcoded yeast ORF library enables mode-of-action analysis of bioactive compounds. Nat. Biotechnol. 2009, 27, 369–377. [Google Scholar] [CrossRef]
- Ho, C.H.; Piotrowski, J.; Dixon, S.J.; Baryshnikova, A.; Costanzo, M.; Boone, C. Combining functional genomics and chemical biology to identify targets of bioactive compounds. Curr. Opin. Chem. Biol. 2011, 15, 66–78. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.W.; Bewley, C.A.; Faulkner, D.J. Theopalauamide, a Bicyclic Glycopeptide from Filamentous Bacterial Symbionts of the Lithistid Sponge Theonella swinhoei from Palau and Mozambique. J. Org. Chem. 1998, 63, 1254–1258. [Google Scholar] [CrossRef]
- Brucker, R.M.; Harris, R.N.; Schwantes, C.R.; Gallaher, T.N.; Flaherty, D.C.; Lam, B.A.; Minbiole, K.P.C. Amphibian Chemical Defense: Antifungal Metabolites of the Microsymbiont Janthinobacterium lividum on the Salamander Plethodon cinereus. J. Chem. Ecol. 2008, 34, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Borghi, M.; Pariano, M.; Solito, V.; Puccetti, M.; Bellet, M.M.; Stincardini, C.; Renga, G.; Vacca, C.; Sellitto, F.; Mosci, P.; et al. Targeting the Aryl Hydrocarbon Receptor With Indole-3-Aldehyde Protects From Vulvovaginal Candidiasis via the IL-22-IL-18 Cross-Talk. Front. Immunol. 2019, 10, 02364. [Google Scholar] [CrossRef] [PubMed]
- Mirjana, K.; Marica, M.-S.; Marija, M.; Dusica, M. Antiviral, antibacterial, and antifungal activities of isatin N-mannich bases. J. Pharm. Sci. 1975, 64, 881–882. [Google Scholar]
- Chohan, Z.H.; Rauf, A.; Khan, K.M.; Supuran, C.T. Isatin-derived Antibacterial and Antifungal Compounds and their Transition Isatin-derived Antibacterial and Antifungal Compounds and their Transition Metal Complexes. J. Enzym. Inhib. Med. Chem. 2004, 417–423. [Google Scholar] [CrossRef]
- Gil-Turnes, M.S.; Hay, M.E.; Fenical, W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 1989, 246, 116–118. [Google Scholar] [CrossRef]
- Dar, O.A.; Lone, S.A.; Malik, M.A.; Aqlan, F.M.; Wani, M.Y.; Hashmi, A.A.; Ahmad, A. Synthesis and synergistic studies of isatin based mixed ligand complexes as potential antifungal therapeutic agents. Heliyon 2019, 5, 02055. [Google Scholar] [CrossRef]
- Brucker, R.M.; Baylor, C.M.; Walters, R.L.; Lauer, A.; Harris, R.N.; Minbiole, K.P.C. The Identification of 2, 4-diacetylphloroglucinol as an Antifungal Metabolite Produced by Cutaneous Bacteria of the Salamander Plethodon cinereus. J. Chem. Ecol. 2008, 34, 39–43. [Google Scholar] [CrossRef]
- De Souza, J.T.; Arnould, C.; Deulvot, C.; Lemanceau, P.; Gianinazzi-Pearson, V.; Raaijmakers, J.M. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 2003, 93, 966–975. [Google Scholar] [CrossRef]
- Troppens, D.M.; Dmitriev, R.I.; Papkovsky, D.B.; O’Gara, F.; Morrissey, J.P. Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae. FEMS Yeast Res. 2013, 13, 322–334. [Google Scholar] [CrossRef] [PubMed]
- Gil-Turnes, M.S.; Fenical, W. Embryos of Homarus americanus are protected by epibiotic bacteria. Biol. Bull. 1992, 182, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, D.R.; Arias, L.S.; Fernades, A.R.; Da Silva, L.F.D.; De Castilho, M.O.V.F.; Da Rosa, T.O.; Vieira, A.P.M.; Straioto, F.G.; Barbosa, D.B.; Delbem, A.C.B. Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms. J. Appl. Microbiol. 2017, 123, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, R.S.N.; Caetano, É.P.; de Lima, R.A.C.; Marques, F.J.d.F.; Castelo-Branco, D.d.S.C.M.; Melo, C.V.S.d.; Guedes, G.M.d.M.; Oliveira, J.S.d.; Camargo, Z.P.d.; Moreira, J.L.B.; et al. Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Braz. J. Microbiol. 2016, 47, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Sebaa, S.; Boucherit-Otmani, Z.; Courtois, P. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol. Med. Rep. 2019, 19, 3201–3209. [Google Scholar] [CrossRef]
- Franks, A.; Haywood, P.; Egan, S.; Kjelleberg, S.; Kumar, N.; Sciences, B.; Wales, S. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium. Molecules 2005, 10, 1286–1291. [Google Scholar] [CrossRef]
- Sasidharan, A.; Sasidharan, N.K.; Amma, D.B.N.S.; Vasu, R.K.; Nataraja, A.V.; Bhaskaran, K. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522). J. Microbiol. 2015, 53, 694–701. [Google Scholar] [CrossRef]
- Choi, S.Y.; Yoon, K.H.; Lee, J.I.; Mitchell, R.J. Violacein: Properties and production of a versatile bacterial pigment. BioMed Res. Int. 2015, 2015, 465056. [Google Scholar] [CrossRef]
- Bewley, C.A.; Holland, N.D.; Faulker, D.J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 1996, 52, 716–722. [Google Scholar] [CrossRef]
- Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P.D. Antifungal Peptides as Therapeutic Agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [Google Scholar] [CrossRef]
- Liu, Q.; Shao, C.; Gu, Y.; Blum, M.; Gan, L.; Wang, K.; Chen, M.; Wang, C. Antifouling and Fungicidal Resorcylic Acid Lactones from the Sea Anemone-Derived Fungus Cochliobolus lunatus. J. Agric. Food Chem. 2014, 62, 3183–3191. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zheng, Y.Y.; Shao, C.L.; Wang, C.Y. Metabolites from marine invertebrates and their symbiotic microorganisms: Molecular diversity discovery, mining, and application. Mar. Life Sci. Technol. 2019, 1, 60–94. [Google Scholar] [CrossRef]
- Höller, U.; König, G.M.; Wright, A.D. Three new metabolites from marine-derived fungi of the genera coniothyrium and microsphaeropsis. J. Nat. Prod. 1999, 62, 114–118. [Google Scholar] [CrossRef] [PubMed]
- König, G.M.; Kehraus, S.; Seibert, S.F.; Abdel-Lateff, A.; Müller, D. Natural products from marine organisms and their associated microbes. ChemBioChem 2006, 7, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Edrada, R.A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Gra, U.; Wohlfarth, M.; Schaumann, K.; Bringmann, G.; Proksch, P.; et al. Online Analysis of Xestodecalactones A–C, Novel Bioactive Metabolites from the Fungus Penicillium cf. montanense and Their Subsequent Isolation from the Sponge Xestospongia exigua. J. Nat. Prod. 2002, 2, 1598–1604. [Google Scholar] [CrossRef]
- El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; El-Sayed Hamed, A.N.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem. 2017, 126, 631. [Google Scholar] [CrossRef]
- Liu, Y.; Mándi, A.; Li, X.M.; Meng, L.H.; Kurtán, T.; Wang, B.G. Peniciadametizine A, a dithiodiketopiperazine with a unique spiro[furan-2,7′-pyrazino[1,2-b][1,2]oxazine] skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar. Drugs 2015, 13, 3640–3652. [Google Scholar] [CrossRef]
- Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.; Mishra, P.D.; D’Souza, L.; Ranadive, P. Caerulomycin A—An Antifungal Compound Isolated from Marine Actinomycetes. Adv. Microbiol. 2014, 04, 567–578. [Google Scholar] [CrossRef]
- Biabani, M.A.F.; Laatsch, H. Advances in chemical studies on low-molecular weight metabolites of marine fungi. J. Prakt. Chem. Chem. Ztg. 1998, 340, 589–607. [Google Scholar] [CrossRef]
- Selvin, J.; Shanmughapriya, S.; Gandhimathi, R.; Seghal Kiran, G.; Rajeetha Ravji, T.; Natarajaseenivasan, K.; Hema, T.A. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl. Microbiol. Biotechnol. 2009, 83, 435–445. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Ghabbour, H.A. Isocoumarin derivatives from the marine-derived fungus Phoma sp. 135. Tetrahedron Lett. 2016, 57, 354–356. [Google Scholar] [CrossRef]
- Bhadury, P.; Mohammad, B.T.; Wright, P.C. The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol. 2006, 33, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Swathi, J.; Narendra, K.; Sowjanya, M.; Satya, K. Marine fungal metabolites as a rich source of bioactive compounds. Afr. J. Biochem. Res. 2013, 7, 184–196. [Google Scholar] [CrossRef]
- Blockley, A.; Elliott, D.R.; Roberts, A.P.; Sweet, M. Symbiotic microbes from marine invertebrates: Driving a new era of natural product drug discovery. Diversity 2017, 9, 49. [Google Scholar] [CrossRef]
- Klich, M.A.; Lax, A.R.; Bland, J.M. Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 1991, 116, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. BioMed. Res. Int. 2015, 2015, 473050. [Google Scholar] [CrossRef]
- Hiramatsu, F.; Miyajima, T.; Murayama, T.; Takahashi, K.; Koseki, T.; Shiono, Y. Isolation and structure elucidation of neofusapyrone from a marine-derived fusarium species, and structural revision of fusapyrone and deoxyfusapyrone. J. Antibiot. 2006, 59, 704–709. [Google Scholar] [CrossRef]
- Fusetani, N.; Matsunaga, S. Bioactive Sponge Peptides. Chem. Rev. 1993, 93, 1793–1806. [Google Scholar] [CrossRef]
- Falcone, C.; Mazzoni, C. External and internal triggers of cell death in yeast. Cell. Mol. Life Sci. 2016, 73, 2237–2250. [Google Scholar] [CrossRef] [PubMed]
- Wissing, S.; Ludovico, P.; Herker, E.; Büttner, S.; Engelhardt, S.M.; Decker, T.; Link, A.; Proksch, A.; Rodrigues, F.; Corte-Real, M.; et al. An AIF orthologue regulates apoptosis in yeast. J. Cell Biol. 2004, 166, 969–974. [Google Scholar] [CrossRef]
- Mcfall-ngai, M.J. Consequences of evolving with bacterial symbionts: Insights from the Squid-Vibrio associations. Annu. Rev. Ecol. Syst. 1999, 30, 235–256. [Google Scholar]
- Singh, G.S.; Desta, Z.Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev. 2012, 112, 6104–6155. [Google Scholar] [CrossRef] [PubMed]
- Oxford, A.E.; Raistrick, H.; Simonart, P. Studies in the biochemistry of micro-organisms. Biochem. J. 1939, 33, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Boothe, D.M.; Auburn University College of Veterinary Medicine. Griseofulvin—Pharmacology—MSD Veterinary Manual. 2016. Available online: https://www.msdvetmanual.com/pharmacology/antifungal-agents/griseofulvin (accessed on 14 January 2022).
- Théatre, A.; Cano-Prieto, C.; Bartolini, M.; Laurin, Y.; Deleu, M.; Niehren, J.; Fida, T.; Gerbinet, S.; Alanjary, M.; Medema, M.H.; et al. The Surfactin-Like Lipopeptides from Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front. Bioeng. Biotechnol. 2021, 9, 623701. [Google Scholar] [CrossRef] [PubMed]
- Trisuwan, K.; Rukachaisirikul, V.; Sukpondma, Y.; Phongpaichit, S.; Preedanon, S.; Sakayaroj, J. Lactone derivatives from the marine-derived fungus Penicillium sp. PSU-F44. Chem. Pharm. Bull. 2009, 57, 1100–1102. [Google Scholar] [CrossRef]
- Ishii, K.; Ueno, Y. Isolation and characterization of two new trichothecenes from Fusarium sporotrichioides strain M-1-1. Appl. Environ. Microbiol. 1981, 42, 541–543. [Google Scholar] [CrossRef]
- Abbas, H.K.; Johnson, B.B.; Shier, W.T.; Tak, H.; Jarvis, B.B.; Boyette, C.D. Phytotoxicity and mammalian cytotoxicity of macrocyclic trichothecene mycotoxins from Myrothecium verrucaria. Phytochemistry 2002, 59, 309–313. [Google Scholar] [CrossRef]
- Mondol, M.A.M.; Farthouse, J.; Islam, M.T.; Schüffler, A.; Laatsch, H. Metabolites from the Endophytic Fungus Curvularia sp. M12 Act as Motility Inhibitors against Phytophthora capsici Zoospores. J. Nat. Prod. 2017, 80, 347–355. [Google Scholar] [CrossRef]
- Horio, T.; Kawabata, Y.; Takayama, T.; Tahara, S.; Kawabata, J.; Fukushi, Y.; Nishimura, H.; Mizutani, J. A potent attractant of zoospores of Aphanomyces cochlioides isolated from its host, Spinacia oleracea. Cell. Mol. Life Sci. 1992, 48, 410–414. [Google Scholar] [CrossRef]
- Judelson, H.S.; Blanco, F.A. The spores of Phytophthora: Weapons of the plant destroyer. Nat. Rev. Microbiol. 2005, 3, 47–58. [Google Scholar] [CrossRef]
- Ibe, C.; Oladele, R.O.; Alamir, O. Our pursuit for effective antifungal agents targeting fungal cell wall components: Where are we? Int. J. Antimicrob. Agents 2022, 59, 106477. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.; Minz, D.; Kolesnik, I.; Barbul, O.; Zveibil, A.; Maymon, M.; Nitzani, Y.; Kirshner, B.; Rav-david, D.; Bilu, A.; et al. Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur. J. Plant Pathol. 2004, 110, 361–370. [Google Scholar] [CrossRef]
- Hoster, F.; Schmitz, J.E.; Daniel, R. Enrichment of chitinolytic microorganisms: Isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Appl. Microbiol. Biotechnol. 2005, 66, 434–442. [Google Scholar] [CrossRef]
- Gomes, R.C.; Sêmedo, L.T.A.S.; Soares, R.M.A. Purification of a thermostable endochitinase from Streptomyces RC1071 isolated from a cerrado soil and its antagonism against phytopathogenic fungi. J. Appl. Microbiol. 2001, 90, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, M.; Sakai, K.; Tateyama, R.; Furuta, Y.; Wakayama, M. Isolation and characterization of salt-tolerant glutaminases from marine Micrococcus luteus K-3. J. Ferment. Bioeng. 1994, 77, 621–625. [Google Scholar] [CrossRef]
- Höller, U. Isolation, Biological Activity and Secondary Metabolite Investigations of Marine-Derived Fungi and Selected Host Sponges. Ph.D. Thesis, Technical University of Braunschweig, Braunschweig, Germany, 1999. [Google Scholar]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential oils: Sources of antimicrobials and food preservatives. Front. Microbiol. 2017, 7, 02161. [Google Scholar] [CrossRef] [PubMed]
- Nett, J.E.; Andes, D.R. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect. Dis. Clin. N. Am. 2016, 30, 51–83. [Google Scholar] [CrossRef]
- Beesoo, R.; Neergheen-Bhujun, V.; Bhagooli, R.; Bahorun, T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2014, 768, 84–97. [Google Scholar] [CrossRef]
- Ngo Mback, M.N.L.; Agnaniet, H.; Nguimatsia, F.; Jazet Dongmo, P.-M.; Hzounda Fokou, J.-B.; Bakarnga-via, I.; Fekam Boyom, F.; Menut, C. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. J. Mycol. Médicale J. Med. Mycol. 2016, 26, 233–243. [Google Scholar] [CrossRef]
- Hzounda Fokou, J.B.; Jazet Dongmo, P.M.; Bakarnga-Via, I.; Ngo Mback, M.N.L.; Zeuko’o, M.E.; Fall, A.D.; Bassene, E.; Fekam, B.F. Optimized combinaition of Ocimum essential oils Inhibit growth of four Candida albicans. Int. J. Drug Discov. 2014, 6, 198–206. [Google Scholar]
- Van Vuuren, S.F.; Suliman, S.; Viljoen, A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009, 48, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.; Viljoen, A. Plant-Based Antimicrobial Studies—Methods and Approaches to Study the Interaction between Natural Products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
Targets | Nb | Compounds | Producing Sources | Inhibited Fungi | * Chemical Formula | References | |
---|---|---|---|---|---|---|---|
M.O. Symbiont | Aquatic Animals | ||||||
Cellular enzymes | 1 | Brefeldin A | Penicillium sp. | Annelle sea fan | Microsporum gypseum (M. gypseum) Candida sp. | [26,27,28] | |
2 | Roridin A | Myrothecium sp. | Sponge Axinelle sp. | Saccharomyces cerevisiae (S. cerevisiae) Magnaporthe grisea (M. grisea) Sclerotinia sclerotiorum (S. sclerotiorum) | [29,30,31] | ||
Resistance factors | 3 | Modiolide A | Paraphaeosphaeria sp. | Modiolus auriculatus (M. auriculatus) P. capsici | Neurospora crassa (N. crassa) P. capsici | [32,33] | |
4 | Fumiquinazoline A | Aspergillus fumigatus (A. fumigatus) | Pseudolabrus japonicus | Botrytis cinerea (B. cinerea), Alternaria solani (A. solani); (A. alternata), Colletotrichum gloeosporioides (C. gloeosporioides), Fusarium solani (F. solani), Fusarium oxysporum (F. oxysporum), Gibberella saubinettii | [34,35,36] | ||
Cell wall | 5 | Chitinase 34 kDa | Streptomyces sp. DA11 | Sponge Craniella australiensis | A. niger C. albicans | [37] | |
Cell differentiation and multiplication | 6 | Griseofulvin | Penicillium sp. (Ascomycota (fungus)) | A. verrucosa | Dermatophytes | [11,13] | |
7 | Majusculamide C | Lyngbya majuscule (a cyanobacteria) | Ptilocaulis trachys (P. trachys) | Rhizoctonia solani (R. solani) Pythium aphanidermatu (P. aphanidermatum) Aphanomyces euteiches (A.euteiches) Phytophthora infestans (P.infestans) | [13,38,39,40,41] | ||
8 | Surfactin | Bacillus subtilis A190 (B. subtilis) B. subtilis A184 | Aplysina aerophoba (A. aerophoba) | Antifungal Fusarium moniliforme (F. moniliforme) | [13,42] | ||
Plasma membrane | 9 | Iturin | B. subtilis A202 B. subtilis A184 | A. aerophoba | Fusarium sp. Penicellium sp. Monilinia sp. R. solani | [13,43,44,45,46] | |
10 | 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol | Vibro sp. | Dysidea sp. Dysidea herbacea | A. fumigatus Aspergillus flavus (A. flavus) A. niger C. tropicalis C. albicans Candida glabrata (C. glabrata) | [35,47,48] | ||
11 | YM-202204 | Phoma sp. Q60596 | sponge Halichondria japonica | C. albicans Cryptococcus neoformans (C. neoformans) A. fumigatus | [49] | ||
12 | Theonellamide F | - | Theonella sp. | Candida sp. Trichophyton sp. Aspergillus sp. | [50,51,52] | ||
13 | Theopalauamide | Candidatus Entotheonella palauensis(C. Entotheonella) | Theonella swinhoei (T. swinhoei) | Fungi | [53,54,55,56,57] | ||
Immunomodulatio n and apoptosis | 14 | Indole 3-carboxaldehyde | Janthinobacterium lividum (J. lividum) | Plethodon cinereus (P. cinereus) | B. dendrobatidis C. albicans | [58,59] | |
15 | Isatin | Alteromonas sp. (bacterium) | Palaemon macrodactylus (P. macrodactylus) embryos | Lagenidium callinectes (L. callinectes) C. albicans Candida monosa (C. monosa) C. glabrata Tricophyton longifusus(T. longifusus) Microsporum canis (M. canis) A. flavus | [60,61,62,63] | ||
Multicellular targets | 16 | Diacetylphloroglucinol | Lysobacter gummosus | P. cinereus | B. dendrobatidis Pythium ultimum var. sporangiiferum S. cereviaseae | [64,65,66] | |
17 | Tyrosol | Bacterium SGT-76 | Homarus americanus embryos | L. callinectes C. glabrata Coccidioides posadasii Histoplasma capsulatum | [67,68,69,70] | ||
Unknown targets | 18 | Tambjamine C | Pseudoalteromonas tunicata (P. tunicata) | Bryozoans and some other marine animals | Mallassezia furfur (M. furfur) C. albicans | [24,71] | |
19 | Tambjamine E | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
20 | Roridin D | Myrothecium sp. | Sponge Axinelle sp. | S. cerevisiae M. grisea S. sclerotiorum | [29,30] | ||
21 | Violacein | J. lividum | P. cinereus | B. dendrobatidis | [58,72,73] | ||
22 | Tambjamine F | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
23 | Tambjamine G | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
24 | Theonegramide | C. Entotheonella palauenis (δ- Proteobacteria) | T. swinhoei | C. albicans (ATCC 32354) | [13,74,75] | ||
25 | Tambjamine H | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
26 | Tambjamine I | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
27 | Tambjamine J | P. tunicata | Bryozoans and some other marine animals | M. furfur C. albicans | [24,71] | ||
28 | LL-Z1640-2 | Cochliobolus lunatus (C. lunatus) | Sea Anemone | P. calabae, Plasmopara viticola (P. viticola) P. infestans | [76,77] Détail activités y est | ||
29 | 1-hydroxy-6-methyl-8-(hydroxymethyl)xanthone | Ulocladium botrytis | Callyspongia vaginalis (C. vaginalis) | Fungi | [78,79] | ||
30 | Xestodecalactone B | Penicillium cf. montanense (P. montanense) | Xestospongia exigua | C. albicans | [13,80] | ||
31 | Peniciadametizine A | Penicillium adametzioides (P. adametzioides) AS-53 | An unidentified marine sponge | Alternaria brassicae (A. brassicae) | [81,82] | ||
32 | Caerulomycin A | Actinoalloteichus sp. | A marine invertebrate | Candida sp. | [81,83] | ||
33 | Unidentified compound | F. oxysporum DLFP2008005 | Hymeniacidon perlevis | Fungi | / | [13,84] | |
34 | 87.12 KDa active Protein | Nocardiopsis dassonvillei MAD08 | Sponge Dendrilla nigra | Candida sp. | / | [85] | |
35 | 1-hydroxy-6-methyl-8-(hydroxylmethyl)xanthone | Ulocladium botrylis | Sponge C. vaginalis | C. albicans | / | [79] | |
36 | Modiolide B | Paraphaeosphaeria sp. | M. auriculatus | N. crassa | [32,33] | ||
37 | (3S)-(3,5-dihydroxyphenyl)butan-2-one | Coniothyrium sp. | Ectyplasia perox (E. perox) | Ustilago violacea (U. violacea) Mycotypha microspora | [78] | ||
38 | (3R,4S)- Hydroxymellein | Microsphaeropsis sp. | Myxilla incrustans (M. incrustans) | U. violacea | [78] | ||
39 | 3R)-6-methoxy-7-chloromellein | Coniothyrium sp. | E. perox | Eurotium repens (E. repens) | [78,86] | ||
40 | (3R)-6-methoxymellein | Coniothyrium sp. | E.perox | E. repens | [78] | ||
41 | 4,8-dihydroxy-3,4-dihydro-2H-naphthalen-1-one | Microsphaeropsis sp. | M. incrustans | E. repens U. violacea | [78] | ||
42 | (3R,4R)-hydroxymellein | Microsphaeropsis sp. | M. incrustans | E. repens U. violacea | [78] | ||
43 | (R)-mellein | Microsphaeropsis sp. | M. incrustans | E. repens | [78] | ||
44 | Seragikinone A | Unidentified fungus | Ceratodictyon spongiosum | C. albicans | [26,33,87,88] | ||
45 | Microsphaeropsin | Microsphaeropsis sp. | M. incrustans | E. repens U. violacea | microsphaeropsin A microsphaeropsin B | [33,78] | |
46 | (3S)-(3,5-dihydroxyphenyl)butan-2-one | Coniothyrium sp. | E. perox | U. violacea Mycotypha microspora | [78] | ||
47 | Xestolactone B | P. cf. montanense | Xestospongia exigua | C. albicans | [26,33,80] | ||
48 | Resorcylic acid lactones “zeaenol” | C. lunatus | Palythoa haddoni | P. viticola, P.infestans | [76,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo-Mback, M.N.L.; Zeuko’o Menkem, E.; Marco, H.G. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens 2023, 12, 617. https://doi.org/10.3390/pathogens12040617
Ngo-Mback MNL, Zeuko’o Menkem E, Marco HG. Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens. 2023; 12(4):617. https://doi.org/10.3390/pathogens12040617
Chicago/Turabian StyleNgo-Mback, Madeleine Nina Love, Elisabeth Zeuko’o Menkem, and Heather G. Marco. 2023. "Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review" Pathogens 12, no. 4: 617. https://doi.org/10.3390/pathogens12040617
APA StyleNgo-Mback, M. N. L., Zeuko’o Menkem, E., & Marco, H. G. (2023). Antifungal Compounds from Microbial Symbionts Associated with Aquatic Animals and Cellular Targets: A Review. Pathogens, 12(4), 617. https://doi.org/10.3390/pathogens12040617