Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota–Immunity Axis in the New Diagnostic and Prognostic Frontiers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Coronary Artery Disease and Familial Hypercholesterolemia
3.2. Coagulation Factors, Lipoprotein (a) and Familial Hypercholesterolemia
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
Narverud et al. [32] | Observational | 2013 | 16 children born of mother with FH compared to 16 ones born of mother without FH | High level of plasminogen activator inhibitor and tissue factor pathway inhibitor in children born from mother affected by FH independently of children FH status |
Bianciardi et al. [33] | Comparative | 2015 | 11 type 2 diabetic patients, 6 FH patients and 5 healthy subjects | Platelet activation is increased in people affected by FH and type 2 diabetes |
Icli et al. [34] | Mulricenter study | 2016 | 324 individuals, 164 affected by FH and 160 without | MPV was increased in patients affected by FH compared to the control |
Huijgen et al. [36] | Comparative | 2011 | 421 individuals both affected by FH and non-affected were enrolled | FH group with a lack functional LDLR had increased levels of FVII suggesting that the LDLR might have a suppressing role on this FVII |
Martinelli et al. [37] | Comparative | 2010 | 1122 patients undergoing a coronary angiography examination | Pleiotropic effect of LDLR locus on plasma lipid and coagulation factor levels, and its role in modulating CVD risk |
Alonso et al. [49] | Observational | 2014 | 1960 patients with FH and 957 non-FH | Lpa is an independent predictive risk factor for CVD in people affected by FH. Lp(a) levels > 50 mg/dL and negative mutation in the LDLR increase CVD risk |
Page et al. [51] | Comparative | 2020 | 763 patients affected by FH | Lp(a) rs3798220-C allele is associated with FH and Lp(a) high levels are predictive factors of coronary artery disease |
Ellis et al. [54] | Comparative | 2019 | 2927 people tested for genetic FH and Lp(a) levels > 50 mg/dL | Individuals affected by FH with high Lp(a) blood levels have an increased atherosclerotic cardiovascular risk |
3.3. Unexpected Role of the Microbiome in Familial Hypercholesterolemia
3.4. New Potential Therapeutic Strategies for Familial Hypercholesterolemia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.-P.; Fullerton, H.J.; et al. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.A.; Winkel, M.; Ali, M.K.; Narayan, K.M.V.; Mehta, N.K. Cardiovascular mortality associated with 5 leading risk factors: National and state preventable fractions estimated from survey data. Ann. Intern. Med. 2015, 163, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Koutsogianni, A.D.; Adamidis, P.S.; Barkas, F.; Liberopoulos, E.; Su, T.-C.; Yamashita, S.; Liamis, G.; Rizzo, M. Familial Hypercholesterolemia and Lipoprotein(a): A Gordian Knot in Cardiovascular Prevention. Metabolites 2022, 12, 1065. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J.J.P.; Reeskamp, L.F.; Hovingh, G.K. Familial Hypercholesterolemia: The Most Common Monogenic Disorder in Humans. J. Am. Coll. Cardiol. 2020, 75, 2567–2569. [Google Scholar] [CrossRef]
- Defesche, J.C.; Gidding, S.S.; Harada-Shiba, M.; Hegele, R.A.; Santos, R.D.; Wierzbicki, A.S. Familial hypercholesterolaemia. Nat. Rev. Dis. Prim. 2017, 3, 17093. [Google Scholar] [CrossRef]
- Mainieri, F.; Tagi, V.M.; Chiarelli, F. Recent Advances on Familial Hypercholesterolemia in Children and Adolescents. Biomedicines 2022, 10, 1043. [Google Scholar] [CrossRef]
- Ravnskov, U.; De Lorgeril, M.; Diamond, D.M.; Hama, R.; Hamazaki, T.; Hammarskjöld, B.; Hynes, N.; Kendrick, M.; Langsjoen, P.H.; Mascitelli, L.; et al. LDL-C does not cause cardiovascular disease: A comprehensive review of the current literature. Expert Rev. Clin. Pharmacol. 2018, 11, 959–970. [Google Scholar] [CrossRef]
- Di Taranto, M.D.; Giacobbe, C.; Fortunato, G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur. J. Med. Genet. 2020, 63, 103831. [Google Scholar] [CrossRef]
- Benito-Vicente, A.; Uribe, K.B.; Jebari, S.; Galicia-Garcia, U.; Ostolaza, H.; Martin, C. Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int. J. Mol. Sci. 2018, 19, 3426. [Google Scholar] [CrossRef]
- Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018, 132, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Khatana, C.; Saini, N.K.; Chakrabarti, S.; Saini, V.; Sharma, A.; Saini, R.V.; Saini, A.K. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. Oxid. Med. Cell. Longev. 2020, 2020, 5245308. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Baass, A. Predicting cardiovascular disease in familial hypercholesterolemia. Curr. Opin. Lipidol. 2018, 29, 299–306. [Google Scholar] [CrossRef]
- Miname, M.H.; Santos, R.D. Reducing cardiovascular risk in patients with familial hypercholesterolemia: Risk prediction and lipid management. Prog. Cardiovasc. Dis. 2019, 62, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Galema-Boers, A.M.; Lenzen, M.J.; Engelkes, S.R.; Sijbrands, E.J.; van Lennep, J.E.R. Cardiovascular risk in patients with familial hypercholesterolemia using optimal lipid-lowering therapy. J. Clin. Lipidol. 2018, 12, 409–416. [Google Scholar] [CrossRef]
- Bianconi, V.; Banach, M.; Pirro, M. Why patients with familial hypercholesterolemia are at high cardiovascular risk? Beyond LDL-C levels. Trends Cardiovasc. Med. 2021, 31, 205–215. [Google Scholar] [CrossRef]
- Lande, K.E.; Sperry, W.M. Human atherosclerosis in relation to the cholesterol content of the blood serum. Am. Heart J. 1937, 13, 125. [Google Scholar] [CrossRef]
- Paquette, M.; Bernard, S.; Cariou, B.; Hegele, R.A.; Genest, J.; Trinder, M.; Brunham, L.R.; Béliard, S.; Baass, A. Familial Hypercholesterolemia-Risk-Score: A New Score Predicting Cardiovascular Events and Cardiovascular Mortality in Familial Hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2632–2640. [Google Scholar] [CrossRef]
- Neefjes, L.A.; Kate, G.-J.R.T.; Alexia, R.; Nieman, K.; Galema-Boers, A.J.; Langendonk, J.G.; Weustink, A.C.; Mollet, N.R.; Sijbrands, E.J.; Krestin, G.P.; et al. Accelerated subclinical coronary atherosclerosis in patients with familial hypercholesterolemia. Atherosclerosis 2011, 219, 721–727. [Google Scholar] [CrossRef]
- Khoury, E.; Brisson, D.; Roy, N.; Tremblay, G.; Gaudet, D. Identifying markers of cardiovascular event-free survival in familial hypercholesterolemia. J. Clin. Med. 2021, 10, 64. [Google Scholar] [CrossRef]
- Ravnskov, U.; de Lorgeril, M.; Kendrick, M.; Diamond, D.M. Importance of Coagulation Factors as Critical Components of Premature Cardiovascular Disease in Familial Hypercholesterolemia. Int. J. Mol. Sci. 2022, 23, 9146. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Cheng, Y.; Zhu, P.; Nasser, M.I.; Zhang, X.; Zhao, M. Implication of Gut Microbiota in Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 5394096. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Gencer, B.; Nanchen, D. Identifying familial hypercholesterolemia in acute coronary syndrome. Curr. Opin. Lipidol. 2016, 27, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.-X.; Wu, N.-Q.; Sun, D.; Liu, H.-H.; Jin, J.-L.; Li, S.; Guo, Y.-L.; Zhu, C.-G.; Gao, Y.; Dong, Q.-T.; et al. Application of expanded genetic analysis in the diagnosis of familial hypercholesterolemia in patients with very early-onset coronary artery disease. J. Transl. Med. 2018, 16, 345. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, B.; Simpson, T.F.; Osman, M.; Balla, S.; Rahmouni, H.; Mehta, A.; Pokharel, Y.; Nasir, K.; Fazio, S.; Shapiro, M.D. Familial hypercholesterolemia related admission for acute coronary syndrome in the United States: Incidence, predictors, and outcomes. J. Clin. Lipidol. 2021, 15, 460–465. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, A.; Collins, B.L.; Qamar, A.; Monda, K.L.; Biery, D.; Lopez, J.A.G.; de Ferranti, S.D.; Plutzky, J.; Cannon, C.P.; et al. Familial Hypercholesterolemia Among Young Adults With Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2439–2450. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Triantafyllis, A.S.; Tsirebolos, G.; Katsaras, D.; Rallidi, M.; Moutsatsou, P.; Lekakis, J. Prevalence of heterozygous familial hypercholesterolaemia and its impact on long-term prognosis in patients with very early ST-segment elevation myocardial infarction in the era of statins. Atherosclerosis 2016, 249, 17–21. [Google Scholar] [CrossRef]
- Danchin, N.; Farnier, M.; Zeller, M.; Puymirat, E.; Cottin, Y.; Belle, L.; Lemesle, G.; Cayla, G.; Ohlmann, P.; Jacquemin, L.; et al. Long-term outcomes after acute myocardial infarction in patients with familial hypercholesterolemia: The French registry of Acute ST-elevation and non-ST-elevation Myocardial Infarction program. J. Clin. Lipidol. 2020, 14, 352–360.e6. [Google Scholar] [CrossRef]
- Watts, G.F.; Gidding, S.; Wierzbicki, A.S.; Toth, P.P.; Alonso, R.; Brown, W.V.; Bruckert, E.; Defesche, J.; Lin, K.K.; Livingston, M.; et al. Integrated guidance on the care of familial hypercholesterolemia from the International FH Foundation. J. Clin. Lipidol. 2014, 8, 148–172. [Google Scholar] [CrossRef]
- Vallejo-Vaz, A.J.; Stevens, C.A.; Lyons, A.R.; Dharmayat, K.I.; Freiberger, T.; Hovingh, G.K.; Mata, P.; Raal, F.J.; Santos, R.D.; Soran, H.; et al. Global perspective of familial hypercholesterolaemia: A cross-sectional study from the EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Lancet 2021, 398, 1713–1725. [Google Scholar] [CrossRef] [PubMed]
- Narverud, I.; Iversen, P.O.; Aukrust, P.; Halvorsen, B.; Ueland, T.; Johansen, S.G.; Nenseter, M.S.; Sandset, P.M.; Ulven, S.M.; Ose, L.; et al. Maternal familial hypercholesterolaemia (FH) confers altered haemostatic profile in offspring with and without FH. Thromb. Res. 2013, 131, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Bianciardi, G.; Stefanutti, C.; Tanganelli, I. Platelet entropy is increased in familial hypercholesterolemia and in type 2 diabetic patients. Int. Angiol. 2015, 34, 489–494. [Google Scholar] [PubMed]
- Icli, A.; Aksoy, F.; Nar, G.; Kaymaz, H.; Alpay, M.F.; Nar, R.; Guclu, A.; Arslan, A.; Dogan, A. Increased mean platelet volume in familial hypercholesterolemia. Angiology 2016, 67, 146–150. [Google Scholar] [CrossRef]
- Pafili, K.; Penlioglou, T.; Mikhailidis, D.P.; Papanas, N. Mean platelet volume and coronary artery disease. Curr. Opin. Cardiol. 2019, 34, 390–398. [Google Scholar] [CrossRef]
- Huijgen, R.; Kastelein, J.J.P.; Meijers, J.C.M. Increased coagulation factor VIII activity in patients with familial hypercholesterolemia. Blood 2011, 118, 6990–6991. [Google Scholar] [CrossRef]
- Martinelli, N.; Girelli, D.; Lunghi, B.; Pinotti, M.; Marchetti, G.; Malerba, G.; Pignatti, P.F.; Corrocher, R.; Olivieri, O.; Bernardi, F. Polymorphisms at LDLR locus may be associated with coronary artery disease through modulation of coagulation factor VIII activity and independently from lipid profile. Blood 2010, 116, 5688–5697. [Google Scholar] [CrossRef]
- Schooling, C.M.; Au Yeung, S.L.; Zhao, J.V. Exploring Pleiotropic Effects of Lipid Modifiers and Targets on Measures of the Coagulation System with Genetics. Thromb. Haemost. 2022, 122, 1296–1303. [Google Scholar] [CrossRef]
- Puccini, M.; Landmesser, U.; Rauch, U. Pleiotropic Effects of PCSK9: Focus on Thrombosis and Haemostasis. Metabolites 2022, 12, 226. [Google Scholar] [CrossRef]
- Paciullo, F.; Petito, E.; Falcinelli, E.; Gresele, P.; Momi, S. Pleiotropic effects of PCSK9-inhibition on hemostasis: Anti-PCSK9 reduce FVIII levels by enhancing LRP1 expression. Thromb. Res. 2022, 213, 170–172. [Google Scholar] [CrossRef]
- Paciullo, F.; Momi, S.; Gresele, P. PCSK9 in Haemostasis and Thrombosis: Possible Pleiotropic Effects of PCSK9 Inhibitors in Cardiovascular Prevention. Thromb. Haemost. 2019, 119, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Ravnskov, U.; de Lorgeril, M.; Kendrick, M.; Diamond, D.M. Inborn coagulation factors are more important cardiovascular risk factors than high LDL-cholesterol in familial hypercholesterolemia. Med. Hypotheses 2018, 121, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K.; Noureen, A.; Kronenberg, F.; Utermann, G. Structure, function, and genetics of lipoprotein (a). J. Lipid Res. 2016, 57, 1339–1359. [Google Scholar] [CrossRef] [PubMed]
- Mellwig, K.P.; Vogt, A. Lipoprotein(a). Clin. Res. Cardiol. Suppl. 2019, 14, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Nave, A.H.; von Eckardstein, A. Is lipoprotein(a) a risk factor for ischemic stroke and venous thromboembolism? Clin. Res. Cardiol. Suppl. 2019, 14, 28–32. [Google Scholar] [CrossRef]
- Kamstrup, P.R. Lipoprotein(a) and Cardiovascular Disease. Clin. Chem. 2021, 67, 154–166. [Google Scholar] [CrossRef]
- Lau, F.D.; Giugliano, R.P. Lipoprotein(a) and its Significance in Cardiovascular Disease. JAMA Cardiol. 2022, 7, 760. [Google Scholar] [CrossRef]
- Ruscica, M.; Sirtori, C.R.; Corsini, A.; Watts, G.F.; Sahebkar, A. Lipoprotein(a): Knowns, unknowns and uncertainties. Pharmacol. Res. 2021, 173, 105812. [Google Scholar] [CrossRef]
- Alonso, R.; Andres, E.; Mata, N.; Fuentes-Jiménez, F.; Badimón, L.; López-Miranda, J.; Padró, T.; Muñiz, O.; Díaz-Díaz, J.L.; Mauri, M.; et al. Lipoprotein(a) levels in familial hypercholesterolemia: An important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J. Am. Coll. Cardiol. 2014, 63, 1982–1989. [Google Scholar] [CrossRef]
- Alonso, R.; Argüeso, R.; Álvarez-Baños, P.; Muñiz-Grijalvo, O.; Diaz-Diaz, J.L.; Mata, P. Familial Hypercholesterolemia and Lipoprotein(a): Two Partners in Crime? Curr. Atheroscler. Rep. 2022, 24, 427–434. [Google Scholar] [CrossRef]
- Page, M.M.; Ellis, K.L.; Pang, J.; Chan, D.C.; Hooper, A.J.; Bell, D.A.; Burnett, J.R.; Watts, G.F. Coronary artery disease and the risk-associated LPA variants, rs3798220 and rs10455872, in patients with suspected familial hypercholesterolaemia. Clin. Chim. Acta 2020, 510, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Willeit, P.; Yeang, C.; Moriarty, P.M.; Tschiderer, L.; Varvel, S.A.; McConnell, J.P.; Tsimikas, S. Low-density lipoprotein cholesterol corrected for lipoprotein(A) cholesterol, risk thresholds, and cardiovascular events. J. Am. Heart Assoc. 2020, 9, e016318. [Google Scholar] [CrossRef] [PubMed]
- Langsted, A.; Nordestgaard, B.G. Lipoprotein(a) as Part of the Diagnosis of Clinical Familial Hypercholesterolemia. Curr. Atheroscler. Rep. 2022, 24, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ellis, K.L.; Pérez de Isla, L.; Alonso, R.; Fuentes, F.; Watts, G.F.; Mata, P. Value of Measuring Lipoprotein(a) During Cascade Testing for Familial Hypercholesterolemia. J. Am. Coll. Cardiol. 2019, 73, 1029–1039. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef]
- Kastl, A.J.; Terry, N.A.; Wu, G.D.; Albenberg, L.G. The Structure and Function of the Human Small Intestinal Microbiota: Current Understanding and Future Directions. Cell. Mol. Gastroenterol. Hepatol. 2020, 9, 33–45. [Google Scholar] [CrossRef]
- Verhaar, B.J.H.; Prodan, A.; Nieuwdorp, M.; Muller, M. Gut microbiota in hypertension and atherosclerosis: A review. Nutrients 2020, 12, 2982. [Google Scholar] [CrossRef]
- Piccioni, A.; de Cunzo, T.; Valletta, F.; Covino, M.; Rinninella, E.; Raoul, P.; Zanza, C.; Mele, M.C.; Franceschi, F. Gut microbiota and environment in coronary artery disease. Int. J. Environ. Res. Public Health 2021, 18, 4242. [Google Scholar] [CrossRef]
- Guasti, L.; Galliazzo, S.; Molaro, M.; Visconti, E.; Pennella, B.; Gaudio, G.V.; Lupi, A.; Grandi, A.M.; Squizzato, A. TMAO as a biomarker of cardiovascular events: A systematic review and meta-analysis. Intern. Emerg. Med. 2021, 16, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Taşcanov, M.B.; Tanrıverdi, Z.; Güngören, F.; Beşli, F.; Erkuş, M.E.; Koyuncu, İ.; Gönel, A.; Tapar, G.G. Comparisons of microbiota-generated metabolites in patients with young and elderly acute coronary syndrome. Anatol. J. Cardiol. 2020, 24, 175. [Google Scholar] [CrossRef] [PubMed]
- Ascher, S.; Reinhardt, C. The gut microbiota: An emerging risk factor for cardiovascular and cerebrovascular disease. Eur. J. Immunol. 2018, 48, 564–575. [Google Scholar] [CrossRef]
- Din, A.U.; Hassan, A.; Zhu, Y.; Yin, T.; Gregersen, H.; Wang, G. Amelioration of TMAO through probiotics and its potential role in atherosclerosis. Appl. Microbiol. Biotechnol. 2019, 103, 9217–9228. [Google Scholar] [CrossRef] [PubMed]
- Naghipour, S.; Cox, A.J.; Peart, J.N.; du Toit, E.F.; Headrick, J.P. Trimethylamine N-oxide: Heart of the microbiota-CVD nexus? Nutr. Res. Rev. 2021, 34, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut microbiota-dependent marker TMAO in promoting cardiovascular disease: Inflammation mechanism, clinical prognostic, and potential as a therapeutic target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef]
- Chen, H.; Li, J.; Li, N.; Liu, H.; Tang, J. Increased circulating trimethylamine N-oxide plays a contributory role in the development of endothelial dysfunction and hypertension in the RUPP rat model of preeclampsia. Hypertens. Pregnancy 2019, 38, 96–104. [Google Scholar] [CrossRef]
- George, T.W.; Waroonphan, S.; Niwat, C.; Gordon, M.H.; Lovegrove, J.A. The Glu298Asp single nucleotide polymorphism in the endothelial nitric oxide synthase gene differentially affects the vascular response to acute consumption of fruit and vegetable puree based drinks. Mol. Nutr. Food Res. 2012, 56, 1014–1024. [Google Scholar] [CrossRef]
- Trenteseaux, C.; Gaston, A.-T.; Aguesse, A.; Poupeau, G.; De Coppet, P.; Andriantsitohaina, R.; Laschet, J.; Amarger, V.; Krempf, M.; Nobecourt-Dupuy, E.; et al. Perinatal hypercholesterolemia exacerbates atherosclerosis lesions in offspring by altering metabolism of trimethylamine-n-oxide and bile acids. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2053–2063. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, M.; Wang, D.; Hu, H.; Guo, C.; Chen, W.; Li, Q.; Zheng, L.; Chen, B. Coronary Plaque Characterization Assessed by Optical Coherence Tomography and Plasma Trimethylamine-N-oxide Levels in Patients With Coronary Artery Disease. Am. J. Cardiol. 2016, 118, 1311–1315. [Google Scholar] [CrossRef] [PubMed]
- Calandrini, C.A.; Ribeiro, A.C.; Gonnelli, A.C.; Ota-Tsuzuki, C.; Rangel, L.P.; Saba-Chujfi, E.; Mayer, M.P.A. Microbial composition of atherosclerotic plaques. Oral. Dis. 2014, 20, e128–e134. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.L.; Hållenius, F.F.; Akrami, R.; Johansson, E.; Wester, P.; Arnerlöv, C.; Bäckhed, F.; Bergström, G. Bacterial profile in human atherosclerotic plaques. Atherosclerosis 2017, 263, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Drautz-Moses, D.I.; Alhede, M.; Maw, M.T.; Liu, Y.; Purbojati, R.W.; Yap, Z.H.; Kushwaha, K.K.; Gheorghe, A.G.; Bjarnsholt, T.; et al. In silico analyses of metagenomes from human atherosclerotic plaque samples. Microbiome 2015, 3, 38. [Google Scholar] [CrossRef] [PubMed]
- Epstein, S.E.; Zhu, J.; Burnett, M.S.; Zhou, Y.F.; Vercellotti, G.; Hajjar, D. Infection and atherosclerosis: Potential roles of pathogen burden and molecular mimicry. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1417–1420. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Mitomo, S.; Yuki, H.; Araki, M.; Seegers, L.M.; McNulty, I.; Lee, H.; Kuter, D.; Ishibashi, M.; Kobayashi, K.; et al. Gut Microbiota and Coronary Plaque Characteristics. J. Am. Heart Assoc. 2022, 11, e026036. [Google Scholar] [CrossRef]
- Toya, T.; Corban, M.T.; Marrietta, E.; Horwath, I.E.; Lerman, L.O.; Murray, J.A.; Lerman, A. Coronary artery disease is associated with an altered gut microbiome composition. PLoS ONE 2020, 15, e0227147. [Google Scholar] [CrossRef]
- Curini, L.; Alushi, B.; Christopher, M.R.; Baldi, S.; Di Gloria, L.; Stefano, P.; Laganà, A.; Iannone, L.; Grubitzsch, H.; Landmesser, U.; et al. The first taxonomic and functional characterization of human CAVD-associated microbiota. Microb. Cell 2023, 10, 36–48. [Google Scholar] [CrossRef]
- Brandsma, E.; Kloosterhuis, N.J.; Koster, M.; Dekker, D.C.; Gijbels, M.J.; van der Velden, S.; Ríos-Morales, M.; van Faassen, M.J.; Loreti, M.G.; de Bruin, A.; et al. A Proinflammatory Gut Microbiota Increases Systemic Inflammation and Accelerates Atherosclerosis. Circ. Res. 2019, 124, 94–100. [Google Scholar] [CrossRef]
- Curia, M.C.; Pignatelli, P.; D’antonio, D.L.; D’ardes, D.; Olmastroni, E.; Scorpiglione, L.; Cipollone, F.; Catapano, A.L.; Piattelli, A.; Bucci, M.; et al. Oral Porphyromonas gingivalis and Fusobacterium nucleatum Abundance in Subjects in Primary and Secondary Cardiovascular Prevention, with or without Heterozygous Familial Hypercholesterolemia. Biomedicines 2022, 10, 2144. [Google Scholar] [CrossRef]
- Liu, H.; Jin, Y.; Tian, R.; Feng, S.; Zhang, S.; Zhang, C. A Comprehensive Analysis of Genomics and Metagenomics in a Heterozygote Familial Hypercholesterolemia Family. Front. Cell. Infect. Microbiol. 2021, 11, 605954. [Google Scholar] [CrossRef] [PubMed]
- Storm-Larsen, C.; Hande, L.N.; Kummen, M.; Thunhaug, H.; Vestad, B.; Hansen, S.H.; Hovland, A.; Trøseid, M.; Lappegård, K.T.; Hov, J.R. Reduced gut microbial diversity in familial hypercholesterolemia with no effect of omega-3 polyunsaturated fatty acids intervention—A pilot trial. Scand. J. Clin. Lab. Investig. 2022, 82, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Passariello, A.; Malamisura, M.; Leone, L.; Paparo, L.; Gioielli, G.; Nocerino, R.; Amato, F.; De Matteo, A.; Bruno, V.; Malamisura, B.; et al. Positive effect of a new symbiotic formulation containing lactobacillus paracasei B21060 in children with familial hypercholesterolemia. J. Clin. Gastroenterol. 2016, 50, S218–S219. [Google Scholar]
- Wang, Z.; Roberts, A.B.; Buffa, J.A.; Levison, B.S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595. [Google Scholar] [CrossRef]
- Roberts, A.B.; Gu, X.; Buffa, J.A.; Hurd, A.G.; Wang, Z.; Zhu, W.; Gupta, N.; Skye, S.M.; Cody, D.B.; Levison, B.S.; et al. Development of a gut microbe–targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 2018, 24, 1407–1417. [Google Scholar] [CrossRef]
- Pathak, P.; Helsley, R.N.; Brown, A.L.; Buffa, J.A.; Choucair, I.; Nemet, I.; Gogonea, C.B.; Gogonea, V.; Wang, Z.; Garcia-Garcia, J.C.; et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1474–H1486. [Google Scholar] [CrossRef]
- Ivashkin, V.T.; Kashukh, Y.A. Impact of L-carnitine and phosphatidylcholine containing products on the proatherogenic metabolite TMAO production and gut microbiome changes in patients with coronary artery disease. Vopr. Pitan. 2019, 88, 25–33. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Bharathi, M.; Kesika, P.; Suganthy, N.; Chaiyasut, C. The administration of probiotics against hypercholesterolemia: A systematic review. Appl. Sci. 2021, 11, 6913. [Google Scholar] [CrossRef]
- Moroti, C.; Souza Magri, L.; De Rezende Costa, M.; Cavallini, D.C.U.; Sivieri, K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis. 2012, 11, 29. [Google Scholar] [CrossRef]
- Fuentes, M.C.; Lajo, T.; Carrión, J.M.; Cuñé, J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br. J. Nutr. 2013, 109, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-specificity and disease-specificity of probiotic efficacy: A systematic review and meta-analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Smits, L.P.; Kootte, R.S.; Levin, E.; Prodan, A.; Fuentes, S.; Zoetendal, E.G.; Wang, Z.; Levison, B.S.; Cleophas, M.C.P.; Kemper, E.M.; et al. Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J. Am. Heart Assoc. 2018, 7, e008342. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Sung, J.; Cheng, F.; Tang, W.; Wong, S.H.; Chan, P.K.; Kamm, M.A.; Sung, J.J.Y.; Kaplan, G.; Chan, F.K.; et al. Systematic review with meta-analysis: Review of donor features, procedures and outcomes in 168 clinical studies of faecal microbiota transplantation. Aliment. Pharmacol. Ther. 2019, 49, 354–363. [Google Scholar] [CrossRef]
- Draper, L.A.; Ryan, F.; Smith, M.K.; Jalanka, J.; Mattila, E.; Arkkila, P.A.; Ross, R.; Satokari, R.; Hill, C. Long-term colonisation with donor bacteriophages following successful faecal microbial transplantation. Microbiome 2018, 6, 220. [Google Scholar] [CrossRef]
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
Cao et al. [25] | Observational | 2018 | 105 patients with very early-onset CAD | The prevalence of FH pathogenic mutations was 38.1% |
Kheiri et al. [26] | Observational | 2021 | 1,697,513 ACS admissions to the hospitals | People affected by FH were younger and more likely to present ST elevation and high incidence of recurrence among people with ACS |
Singh et al. [27] | Retrospective | 2019 | 1996 patients with a median age of 45 years | 1 in 10 patients with myocardial infarction at young age was affected by FH |
Rallidis et al. [28] | Prospective | 2016 | 320 individuals who had their first STEMI ≤ 35 years of age | 1 in 5 patients have clinical heterozygous FH and high recurrence rate of cardiac events during long-term follow-up |
Danchin et al. [29] | Observational | 2020 | 5147 patients admitted to the hospital and discharged alive (FH status not known) | risk of long-term mortality is twice as high in FH population |
Authors | Type | Year | Subjects | Findings |
---|---|---|---|---|
Taşcanov et al. [62] | Observational | 2020 | 127 individuals affected by acute coronary syndromes | Young patients who have developed acute coronary syndromes had higher levels of TMAO and choline compared to the elderly group |
Curia et al. [80] | Observational | 2022 | 30 patients without HeFH and 10 patients with HeFH | The heterozygous FH subgroup showed a Porphyromonas gingivalis abundance even greater than that of non-heterozygous FH patients with CVD. |
Liu et al. [81] | Observational | 2021 | Three-generation Chinese family with FH | The gut microbiota in FH individuals may exhibit stronger function of pro-inflammatory potential which facilitates lipometabolic disturbance. |
Storm-Larsen et al. [82] | Retrospective | 2022 | Heterozygote FH aged 18–75 and using statins > 12 months | Individuals with FH have an altered gut microbial composition especially individuals on cholesterol-lowering drug ezetimibe in addition to statins. |
Brandsma et al. [79] | Observational | 2019 | female Ldlr−/− mice transplanted with fecal microbiota from Casp1−/− mice | Pro-inflammatory microbiota is sufficient to promote atherosclerosis in antibiotic-treated Ldlr−/− mice |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccioni, A.; Niccolai, E.; Rozzi, G.; Spaziani, G.; Zanza, C.; Candelli, M.; Covino, M.; Gasbarrini, A.; Franceschi, F.; Amedei, A. Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota–Immunity Axis in the New Diagnostic and Prognostic Frontiers. Pathogens 2023, 12, 627. https://doi.org/10.3390/pathogens12040627
Piccioni A, Niccolai E, Rozzi G, Spaziani G, Zanza C, Candelli M, Covino M, Gasbarrini A, Franceschi F, Amedei A. Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota–Immunity Axis in the New Diagnostic and Prognostic Frontiers. Pathogens. 2023; 12(4):627. https://doi.org/10.3390/pathogens12040627
Chicago/Turabian StylePiccioni, Andrea, Elena Niccolai, Gloria Rozzi, Giacomo Spaziani, Christian Zanza, Marcello Candelli, Marcello Covino, Antonio Gasbarrini, Francesco Franceschi, and Amedeo Amedei. 2023. "Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota–Immunity Axis in the New Diagnostic and Prognostic Frontiers" Pathogens 12, no. 4: 627. https://doi.org/10.3390/pathogens12040627
APA StylePiccioni, A., Niccolai, E., Rozzi, G., Spaziani, G., Zanza, C., Candelli, M., Covino, M., Gasbarrini, A., Franceschi, F., & Amedei, A. (2023). Familial Hypercholesterolemia and Acute Coronary Syndromes: The Microbiota–Immunity Axis in the New Diagnostic and Prognostic Frontiers. Pathogens, 12(4), 627. https://doi.org/10.3390/pathogens12040627