Comparative Genomic Analysis and Species Delimitation: A Case for Two Species in the Zoonotic Cestode Dipylidium caninum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasite Material and Sequencing
2.2. Assembly, Mapping, and Variant Analysis
2.3. Benchmarking Universal Single-Copy Orthologs (BUSCO)
2.4. Phylogenetic and Species Delimitation Analyses
3. Results
3.1. Identity Confirmed with Complete Mitochondrial Genomes
3.2. Quality Summary of the Datasets
3.3. Genomic Differences and Variation
3.4. BUSCO Statistics and Comparisons
3.5. Phylogenetic and Species Delimitation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conboy, G. Cestodes of dogs and cats in North America. Vet. Clin. N. Am. Small Anim. Pract. 2009, 39, 1075–1090. [Google Scholar] [CrossRef] [PubMed]
- East, M.L.; Kurze, C.; Wilhelm, K.; Benhaiem, S.; Hofer, H. Factors influencing Dipylidium sp. infection in a free-ranging social carnivore, the spotted hyaena (Crocuta crocuta). Int. J. Parasitol. Parasites Wildl. 2013, 2, 257–265. [Google Scholar] [CrossRef]
- Moore, D.V.; Connell, F.H. Additional records of Dipylidium caninum infections in children in the United States with observations on treatment. Am. J. Trop. Med. Hyg. 1960, 9, 604–605. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Labuschagne, M.; Vos, C.; Crafford, D.; Fourie, J. Analysis of Dipylidium caninum tapeworms from dogs and cats, or their respective fleas-Part 2. Distinct canine and feline host association with two different Dipylidium caninum genotypes. Parasite 2018, 25, 31. [Google Scholar] [CrossRef]
- Labuschagne, M.; Beugnet, F.; Rehbein, S.; Guillot, J.; Fourie, J.; Crafford, D. Analysis of Dipylidium caninum tapeworms from dogs and cats, or their respective fleas-Part 1. Molecular characterization of Dipylidium caninum: Genetic analysis supporting two distinct species adapted to dogs and cats. Parasite 2018, 25, 30. [Google Scholar] [CrossRef]
- Zimmermann, H. Studies on the Life History of Cestodes of the Genus Dipylidium From the Dog; Purdue University: Ann Arbor, MI, USA, 1936. [Google Scholar]
- Marshall, A.G. The cat flea, Ctenocephalides felis felis (Bouché, 1835) as an intermediate host for cestodes. Parasitology 1967, 57, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Labuschagne, M.; Fourie, J.; Jacques, G.; Farkas, R.; Cozma, V.; Halos, L.; Hellmann, K.; Knaus, M.; Rehbein, S. Occurrence of Dipylidium caninum in fleas from client-owned cats and dogs in Europe using a new PCR detection assay. Vet. Parasitol. 2014, 205, 300–306. [Google Scholar] [CrossRef]
- Low, V.L.; Prakash, B.K.; Tan, T.K.; Sofian-Azirun, M.; Anwar, F.H.K.; Vinnie-Siow, W.Y.; AbuBakar, S. Pathogens in ectoparasites from free-ranging animals: Infection with Rickettsia asembonensis in ticks, and a potentially new species of Dipylidium in fleas and lice. Vet. Parasitol. 2017, 245, 102–105. [Google Scholar] [CrossRef]
- Jesudoss Chelladurai, J.; Kifleyohannes, T.; Scott, J.; Brewer, M.T. Praziquantel Resistance in the Zoonotic Cestode. Am. J. Trop. Med. Hyg. 2018, 99, 1201–1205. [Google Scholar] [CrossRef]
- von Nickisch-Rosenegk, M.; Lucius, R.; Loos-Frank, B. Contributions to the phylogeny of the Cyclophyllidea (Cestoda) inferred from mitochondrial 12S rDNA. J. Mol. Evol. 1999, 48, 586–596. [Google Scholar] [CrossRef]
- Benitez-Bolivar, P.; Rondón, S.; Ortiz, M.; Díaz-Díaz, J.; León, C.; Riveros, J.; Molina, H.; González, C. Morphological and molecular characterization of the parasite Dipylidium caninum infecting an infant in Colombia: A case report. Parasites Vectors 2022, 15, 463. [Google Scholar] [CrossRef] [PubMed]
- Varcasia, A.; Sanna, D.; Casu, M.; Lahmar, S.; Dessi, G.; Pipia, A.P.; Tamponi, C.; Gaglio, G.; Hrckova, G.; Otranto, D.; et al. Species delimitation based on mtDNA genes suggests the occurrence of new species of Mesocestoides in the Mediterranean region. Parasites Vectors 2018, 11, 619. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Taylor, A.T.; Near, T.J. Phylogenomics and species delimitation of the economically important Black Basses (Micropterus). Sci. Rep. 2022, 12, 9113. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.; Eberle, J.; Mayer, C.; Kukowka, S.; Bohacz, C.; Baur, H.; Espeland, M.; Huber, B.A.; Hutter, C.; Mengual, X. Standardized nuclear markers improve and homogenize species delimitation in Metazoa. Methods Ecol. Evol. 2022, 14, 543–555. [Google Scholar] [CrossRef]
- Liu, G.H.; Korhonen, P.K.; Young, N.D.; Lu, J.; Wang, T.; Fu, Y.T.; Koehler, A.V.; Hofmann, A.; Chang, B.C.H.; Wang, S.; et al. Dipylidium caninum draft genome-a new resource for comparative genomic and genetic explorations of flatworms. Genomics 2021, 113, 1272–1280. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control tool for High Throughput Sequence Data, 0.11.9; Babraham Institute: Cambridge, UK, 2010. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Y.; Gu, X.; Meng, X.; Wang, L.; Li, Y.; Zhou, X.; Zheng, Y.; Zuo, Z.; Yang, G. Complete mitogenome of the dog cucumber tapeworm. Mitochondrial. DNA B Resour. 2019, 4, 2670–2672. [Google Scholar] [CrossRef]
- Nakao, M.; Lavikainen, A.; Iwaki, T.; Haukisalmi, V.; Konyaev, S.; Oku, Y.; Okamoto, M.; Ito, A. Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): Proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int. J. Parasitol. 2013, 43, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In Proceedings of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019; pp. 314–324. [Google Scholar]
- Okonechnikov, K.; Conesa, A.; García-Alcalde, F. Qualimap 2: Advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics 2016, 32, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, F.; Ryan, D.P.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Turner, D.; Mesirov, J.P. igv. js: An embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV). Bioinformatics 2023, 39, btac830. [Google Scholar] [CrossRef]
- Poplin, R.; Chang, P.-C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Marçais, G.; Delcher, A.L.; Phillippy, A.M.; Coston, R.; Salzberg, S.L.; Zimin, A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput. Biol. 2018, 14, e1005944. [Google Scholar] [CrossRef]
- Jalili, V.; Afgan, E.; Gu, Q.; Clements, D.; Blankenberg, D.; Goecks, J.; Taylor, J.; Nekrutenko, A. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 2020, 48, W395–W402. [Google Scholar] [CrossRef]
- Knaus, B.J.; Grünwald, N.J. vcfr: A package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 2017, 17, 44–53. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Jombart, T.; Archer, F.; Schliep, K.; Kamvar, Z.; Harris, R.; Paradis, E.; Goudet, J.; Lapp, H. apex: Phylogenetics with multiple genes. Mol. Ecol. Resour. 2017, 17, 19–26. [Google Scholar] [CrossRef]
- Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016, 32, 2847–2849. [Google Scholar] [CrossRef]
- Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef]
- Zhang, J.; Pei, N.; Mi, X.; Zhang, M.J. Package ‘phylotools’. Dimension 2017, 12. Available online: https://github.com/helixcn/phylotools, (accessed on 27 February 2023).
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Hoang, D.T.; Chernomor, O.; Von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Chernomor, O.; Von Haeseler, A.; Minh, B.Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 2016, 65, 997–1008. [Google Scholar] [CrossRef]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Schuster, R.K. Cestodes of the genera Diplopylidium and Joyeuxiella (Eucestoda: Dipylidiiae)—A review of historical data, species inventory and geographical distribution. Sci. Parasitol 2020, 21, 1–17. [Google Scholar]
- Venard, C.E. Morphology, bionomics, and taxonomy of the cestode Dipylidium caninum. Ann. N. Y. Acad. Sci. 1937, 37, 273–328. [Google Scholar] [CrossRef]
- Dryden, M. Biology of fleas of dogs and cats. Comp. Cont. Educ. Pract. Vet 1993, 15, 569–579. [Google Scholar]
- Ahn, K.-S.; Huh, S.-E.; Seol, S.-W.; Kim, H.-J.; Suh, K.-H.; Shin, S. Ctenocephalides canis is the dominant flea species of dogs in the Republic of Korea. Parasites Vectors 2018, 11, 196. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ding, Y.; Zhu, C.D.; Zhou, X.; Orr, M.C.; Scheu, S.; Luan, Y.X. Phylogenomics from low-coverage whole-genome sequencing. Methods Ecol. Evol. 2019, 10, 507–517. [Google Scholar] [CrossRef]
- Martin, A.R.; Atkinson, E.G.; Chapman, S.B.; Stevenson, A.; Stroud, R.E.; Abebe, T.; Akena, D.; Alemayehu, M.; Ashaba, F.K.; Atwoli, L.; et al. Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations. Am. J. Hum. Genet. 2021, 108, 656–668. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesudoss Chelladurai, J.R.J.; Abraham, A.; Quintana, T.A.; Ritchie, D.; Smith, V. Comparative Genomic Analysis and Species Delimitation: A Case for Two Species in the Zoonotic Cestode Dipylidium caninum. Pathogens 2023, 12, 675. https://doi.org/10.3390/pathogens12050675
Jesudoss Chelladurai JRJ, Abraham A, Quintana TA, Ritchie D, Smith V. Comparative Genomic Analysis and Species Delimitation: A Case for Two Species in the Zoonotic Cestode Dipylidium caninum. Pathogens. 2023; 12(5):675. https://doi.org/10.3390/pathogens12050675
Chicago/Turabian StyleJesudoss Chelladurai, Jeba R. J., Aloysius Abraham, Theresa A. Quintana, Deb Ritchie, and Vicki Smith. 2023. "Comparative Genomic Analysis and Species Delimitation: A Case for Two Species in the Zoonotic Cestode Dipylidium caninum" Pathogens 12, no. 5: 675. https://doi.org/10.3390/pathogens12050675
APA StyleJesudoss Chelladurai, J. R. J., Abraham, A., Quintana, T. A., Ritchie, D., & Smith, V. (2023). Comparative Genomic Analysis and Species Delimitation: A Case for Two Species in the Zoonotic Cestode Dipylidium caninum. Pathogens, 12(5), 675. https://doi.org/10.3390/pathogens12050675