Cryptosporidium proventriculi in Captive Cockatiels (Nymphicus hollandicus)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Committee Approval
2.2. Sample Size Calculation
2.3. Study Population and Fecal Sample Collection
2.4. Epidemiological Questionaire
2.5. Fecal Sample Purification, Microscopy and DNA Extraction
2.6. Nested-PCR
2.7. Amplicons Sequencing
2.8. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alali, F.; Abbas, I.; Jawad, M.; Hijjawi, N. Cryptosporidium infection in humans and animals from Iraq: A review. Acta Trop. 2021, 220, 105946. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia—A 50 Year Perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Abe, N.; Iseki, M. Identification of Cryptosporidium isolates from cockatiels by direct sequencing of the PCR-amplified small subunit ribosomal RNA gene. Parasitol. Res. 2004, 92, 523–526. [Google Scholar] [CrossRef]
- Holubová, N.; Zikmundová, V.; Limpouchová, Z.; Sak, B.; Konečný, R.; Hlásková, L.; Rajský, D.; Kopacz, Z.; McEvoy, J.; Kváč, M. Cryptosporidium proventriculi sp. n. (Apicomplexa: Cryptosporidiidae) in psittaciformes birds. Eur. J. Protistol. 2019, 69, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Wang, R.; Ning, C.; Li, X.; Zhang, L.; Jian, F.; Sun, Y.; Xiao, L. Cryptosporidium spp. in pet birds: Genetic diversity and potential Public Health significance. Exp. Parasitol. 2011, 128, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.; Wee, S.; Kook, J.; Lee, C. Outbreak of enteric cryptosporidiosis in cockatiels (Nymphicus hollandicus). Vet. Rec. 2005, 156, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.A.; Simões, D.C.; Antunes, R.G.; da Silva, D.C.; Meireles, M.V. Molecular characterization of Cryptosporidium spp. from fecal samples of birds kept in captivity in Brazil. Vet. Parasitol. 2009, 166, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.; Pavlasek, I.; Ryan, U. Identification of novel Cryptosporidium genotypes from avian hosts. Appl. Environ. Microbiol. 2006, 72, 7548–7553. [Google Scholar] [CrossRef]
- Sevá Ada, P.; Funada, M.R.; Richtzenhain, L.; Guimarães, M.B.; Souza Sde, O.; Allegretti, L.; Sinhorini, J.A.; Duarte, V.V.; Soares, R.M. Genotyping of Cryptosporidium spp. from free-living wild birds from Brazil. Vet. Parasitol. 2011, 175, 27–32. [Google Scholar] [CrossRef]
- Alcaraz, L.D.; Hernández, A.M.; Peimbert, M. Exploring the cockatiel (Nymphicus hollandicus) fecal microbiome, bacterial inhabitants of a worldwide pet. PeerJ 2016, 4, e2837. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kwon, Y.-K.; Park, C.-K.; Kim, H.-R. Identification of Campylobacter jejuni and Chlamydia psittaci from cockatiel (Nymphicus hollandicus) using metagenomics. BMC Genomics 2021, 22, 797. [Google Scholar] [CrossRef] [PubMed]
- Lamb, S.K.; Reavill, D.; Wolking, R.; Dahlhausen, B. Retrospective review of mycobacterial conjunctivitis in cockatiels (Nymphicus hollandicus). J. Avian Med. Surg. 2020, 34, 250–259. [Google Scholar] [CrossRef]
- Nga, V.T.; Ngoc, T.U.; Minh, L.B.; Ngoc, V.T.N.; Pham, V.-H.; Nghia, L.L.; Son, N.L.H.; Van Pham, T.H.; Bac, N.D.; Tien, T.V.; et al. Zoonotic diseases from birds to humans in Vietnam: Possible diseases and their associated risk factors. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1047–1058. [Google Scholar] [CrossRef]
- Pontes, P.S.; Coutinho, S.D.A.; Iovine, R.O.; Cunha, M.P.V.; Knöbl, T.; Carvalho, V.M. Survey on pathogenic Escherichia coli and Salmonella spp. in captive cockatiels (Nymphicus hollandicus). Brazilian J. Microbiol. 2018, 49, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Sample size estimation in epidemiologic studies. Casp. J. Intern. Med. 2011, 2, 289–298. [Google Scholar]
- Elliot, A.; Morgan, U.M.; Thompson, R.C.A. Improved staining method for detecting Cryptosporidium oocysts in stools using malachite green. J. Gen. Appl. Microbiol. 1999, 45, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Soave, R. Three-step stool examination for cryptosporidiosis in 10 homosexual men with protracted watery diarrhea. J. Infect. Dis. 1983, 147, 824–828. [Google Scholar] [CrossRef]
- Xiao, L.; Escalante, L.; Yang, C.; Sulaiman, I.; Escalante, A.A.; Montali, R.J.; Fayer, R.; Lal, A.A. Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl. Environ. Microbiol. 1999, 65, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 95–98. [Google Scholar] [CrossRef]
- Bendel, R.B.; Afifi, A.A. Comparison of stopping rules in forward “stepwise” regression. J. Am. Stat. Assoc. 1977, 72, 46–53. [Google Scholar] [CrossRef]
- Jaeschke, R. Users’ guides to the medical literature. JAMA 1994, 271, 703. [Google Scholar] [CrossRef] [PubMed]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, N.-Z.; Zhao, G.-H.; Zhao, Q.; Zhu, X.-Q. Prevalence and genotyping of Cryptosporidium infection in pet parrots in North China. Biomed Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Abe, N.; Makino, I. Multilocus genotypic analysis of Cryptosporidium isolates from cockatiels, Japan. Parasitol. Res. 2010, 106, 1491–1497. [Google Scholar] [CrossRef]
- Gomes, R.S.; Huber, F.; da Silva, S.; do Bomfim, T.C.B. Cryptosporidium spp. parasitize exotic birds that are commercialized in markets, commercial aviaries, and pet shops. Parasitol. Res. 2012, 110, 1363–1370. [Google Scholar] [CrossRef]
- Li, J.; Qi, M.; Chang, Y.; Wang, R.; Li, T.; Dong, H.; Zhang, L. Molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in captive wildlife at Zhengzhou Zoo, China. J. Eukaryot. Microbiol. 2015, 62, 833–839. [Google Scholar] [CrossRef]
- Nakamura, A.A.; Homem, C.G.; da Silva, A.M.J.; Meireles, M.V. Diagnosis of gastric cryptosporidiosis in birds using a duplex real-time PCR assay. Vet. Parasitol. 2014, 205, 7–13. [Google Scholar] [CrossRef]
- Abe, N.; Matsuo, K.; Makino, I. Ascaridia nymphii n. sp. (Nematoda: Ascaridida) from the alimentary tract of a severely emaciated dead cockatiel Nymphicus hollandicus. Parasitol. Res. 2015, 114, 4281–4288. [Google Scholar] [CrossRef]
- Antunes, R.G.; Simões, D.C.; Nakamura, A.A.; Meireles, M.V. Natural infection with Cryptosporidium galli in canaries (Serinus canaria), in a cockatiel (Nymphicus hollandicus), and in lesser seed-finches (Oryzoborus angolensis) from Brazil. Avian Dis. 2008, 52, 702–705. [Google Scholar] [CrossRef]
- Ghoshal, U.; Ranjan, P.; Dey, A.; Ghoshal, U.C. Intestinal cryptosporidiosis in renal transplant recipients: Prevalence, species detection and comparative evaluation of SSU rRNA and Cryptosporidium oocyst wall protein genes. Indian J. Med. Microbiol. 2018, 36, 247–250. [Google Scholar] [CrossRef]
- Jaiswal, V.; Brar, A.P.S.; Sandhu, B.S.; Singla, L.D.; Narang, D.; Leishangthem, G.D.; Kaur, P. Comparative evaluation of various diagnostic techniques for detection of Cryptosporidium infection from the faecal samples of diarrhoeic bovine calves. Iran. J. Vet. Res. 2022, 23, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, D.S.; Blagburn, B.L.; Hoerr, F.J. Small intestinal cryptosporidiosis in cockatiels associated with Cryptosporidium baileyi-like oocysts. Avian Dis. 1990, 34, 791–793. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.A.; Krabill, V.A. Diarrhea associated with small-intestinal cryptosporidiosis in a budgerigar and in a cockatiel. Avian Dis. 1989, 33, 829–833. [Google Scholar] [CrossRef]
- Camargo, V.D.S.; Santana, B.N.; Ferrari, E.D.; Nakamura, A.A.; Nagata, W.B.; Nardi, A.R.M.; Meireles, M.V. Detection and molecular characterization of Cryptosporidium spp. in captive canaries (Serinus canaria) using different diagnostic methods. Rev. Bras. Parasitol. Veterinária 2018, 27, 60–65. [Google Scholar] [CrossRef]
- Ferrari, E.D.; Nakamura, A.A.; Nardi, A.R.M.; Santana, B.N.; da Silva Camargo, V.; Nagata, W.B.; Bresciani, K.D.S.; Meireles, M.V. Cryptosporidium spp. in caged exotic psittacines from Brazil: Evaluation of diagnostic methods and molecular characterization. Exp. Parasitol. 2018, 184, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Fayer, R.; Ryan, U.M.; Upton, S.J. Cryptosporidium taxonomy: Recent advances and implications for Public Health. Clin. Microbiol. Rev. 2004, 17, 72–97. [Google Scholar] [CrossRef]
- Luka, G.; Samiei, E.; Tasnim, N.; Dalili, A.; Najjaran, H.; Hoorfar, M. Comprehensive review of conventional and state-of-the-art detection methods of Cryptosporidium. J. Hazard. Mater. 2022, 421, 126714. [Google Scholar] [CrossRef]
- King, B.; Fanok, S.; Phillips, R.; Swaffer, B.; Monis, P. Integrated Cryptosporidium assay to determine oocyst density, infectivity, and genotype for risk assessment of source and reuse water. Appl. Environ. Microbiol. 2015, 81, 3471–3481. [Google Scholar] [CrossRef]
- Santos, S.F.O.; Silva, H.D.; Wosnjuk, L.A.C.; Anunciação, C.E.; Silveira-Lacerda, E.P.; Peralta, R.H.S.; Cunha, F.S.; Ferreira, T.D.S.; García-Zapata, M.T.A. Occurrence and evaluation of methodologies to detect Cryptosporidium spp. in treated water in the Central-West Region of Brazil. Expo. Heal. 2016, 8, 117–123. [Google Scholar] [CrossRef]
- Maikai, B.V.; Baba-Onoja, E.B.T.; Elisha, I.A. Contamination of raw vegetables with Cryptosporidium oocysts in markets within Zaria Metropolis, Kaduna State, Nigeria. Food Control 2013, 31, 45–48. [Google Scholar] [CrossRef]
- Rahman, J.; Islam Talukder, A.; Hossain, F.; Mahomud, S.; Atikul Islam, M.; Shamsuzzoha, S. Detection of Cryptosporidium oocysts in commonly consumed fresh salad vegetables. Am. J. Microbiol. Res. 2014, 2, 224–226. [Google Scholar] [CrossRef]
Variables | nPCR (Gold Standard) | Microscopic Examination | ||
---|---|---|---|---|
Malachite Green | Kinyoun Modified | Malachite Green + Kinyoun Modified | ||
Captive cockatiels (Total) | 9.00% (9) | 6.00% (6) | 5.00% (5) | 7.00% (7) |
Sex | ||||
Female | 14.81% (4) | 33.33% (2) | 40.00% (2) | 28.57% (2) |
Male | 3.33% (1) | 33.33% (2) | 0 | 28.57% (2) |
Unknown gender | 9.30% (4) | 33.33% (2) | 60.00% (3) | 42.86% (3) |
Age | ||||
Young (<12 months old) | 11.11% (1) | 0 | 20.0% (1) | 14.29% (1) |
Adult (>12 months old) | 88.89% (8) | 100% (6) | 80.00% (4) | 85.71% (6) |
Origin | ||||
Breeders | 55.56% (5) | 50.00% (3) | 60.00% (3) | 42.86% (3) |
Owners | 33.33% (3) | 33.33% (2) | 40.00% (2) | 42.86% (3) |
Pet shops | 11.11% (1) | 16.67% (1) | 0 | 14.29% (1) |
Pearson correlation (Significance Level p < 0.0001) | ||||
nPCR | NC 1 | 0.656 | 0.729 | 0.735 |
Malachite green | 0.656 | NC | 0.715 | 0.921 |
Kinyoun modified | 0.729 | 0.715 | NC | 0.836 |
Malachite green + Kinyoun modified | 0.735 | 0.921 | 0.836 | NC |
Risk Factors | PCR (Cryptosporidium proventriculi) | Total | OR (CI95%) 1 | p 2 | |
---|---|---|---|---|---|
Negative n/% | Positive n/% | ||||
Age | |||||
Young (<12 months old) | 10 (90.91%) | 1 (9.09%) | 11 (11.00%) | 1 | 0.991 |
Adult (>12 months old) | 81 (91.01%) | 8 (8.99%) | 89 (89.00%) | 1.126 (0.114 < OR < 8.959) | |
Body score | |||||
Skinny | 8 (88.89%) | 1 (11.11%) | 9 (9.00%) | 1 | 0.817 |
Normal | 83 (91.21%) | 8 (8.79%) | 91 (91.00%) | 1.296 (0.143 < OR < 11.726) | |
Vermifugation | |||||
Yes | 16 (88.89%) | 2 (11.11%) | 18 (18.00%) | 1.339 (0.254 < OR < 7.055) | 0.730 |
No | 75 (91.46%) | 7 (8.54%) | 82 (82.00%) | 1 | |
Respiratory clinical signs | |||||
No | 10 (100%) | 0 (0%) | 10 (10.00%) | 1 | 0.593 |
Yes (sneeze) | 81 (90.00%) | 9 (10.00%) | 90 (90.00%) | 1.111 (1.037 < OR < 1.190) | |
Gastrointestinal alterations | |||||
Yes (Diarrhea) | 6 (66.67%) | 3 (33.33%) | 9 (9.00%) | 7.083 (1.410 < OR < 35.591) | 0.017 * |
No | 85 (93.41%) | 6 (6.59%) | 91 (91.00%) | 1 | |
Contact with other animals | |||||
Yes | 45 (90.00%) | 5 (10.00%) | 50 (50.00%) | 1.278 (0.322 < OR < 5.066) | 0.727 |
No | 46 (92.00%) | 4 (8.00%) | 50 (50.00%) | 1 | |
Frequency of cage cleaning | |||||
Everyday | 56 (91.80%) | 5 (8.20%) | 61 (61.00%) | 1 | 0.726 |
Weekly | 35 (89.74%) | 4 (10.26%) | 39 (39.00%) | 1.280 (0.322 < OR < 5.093) | |
Cleaning agent used | |||||
Yes | 21 (91.30%) | 2 (8.70%) | 23 (23.00%) | 1 | 0.954 |
No | 70 (90.91%) | 7 (9.09%) | 77 (77.00%) | 1.050 (0.203 < OR < 5.442) | |
Environment | |||||
Cage | 84 (91.30%) | 8 (8.70%) | 92 (92.00%) | NC 3 | 0.543 |
Free | 5 (83.33%) | 1 (16.67%) | 6 (6.00%) | ||
Both | 2 (2.20%) | 0 (0%) | 2 (2.00%) | ||
Cage | 84 (91.30%) | 8 (8.70%) | 92 (92.00%) | 1 | 0.448 |
Free | 5 (83.33%) | 1 (16.67%) | 6 (6.00%) | 2.100 (0.218 < OR < 20.250) | |
Cage | 84 (91.30%) | 8 (8.70%) | 92 (92.00%) | NC | 1,000 |
Both | 2 (2.20%) | 0 (0%) | 2 (2.00%) | ||
Free | 5 (83.33%) | 1 (16.67%) | 6 (6.00%) | NC | 1,000 |
Both | 2 (2.20%) | 0 (0%) | 2 (2.00%) | ||
Origin | |||||
breeders | 45 (90.00%) | 5 (10.00%) | 50 (50.00%) | NC | 0.377 |
owners | 18 (85.71%) | 3 (14.29%) | 21 (21.00%) | ||
pet shops | 28 (96.55%) | 1 (3.45%) | 29 (29.00%) | ||
breeders | 45 (90.00%) | 5 (10.00%) | 50 (50.00%) | 1 | 0.686 |
owners | 18 (85.71%) | 3 (14.29%) | 21 (21.00%) | 1.500 (0.341 < OR < 6.943) | |
breeders | 45 (90.00%) | 5 (10.00%) | 50 (50.00%) | 3.111 (0.345 < OR < 28.030) | 0.406 |
pet shops | 28 (96.55%) | 1 (3.45%) | 29 (29.00%) | 1 | |
owners | 18 (85.71%) | 3 (14.29%) | 21 (21.00%) | 4.667 (0.450 < OR < 48.416) | 0.163 * |
pet shops | 28 (96.55%) | 1 (3.45%) | 29 (29.00%) | 1 | |
Sex | |||||
female | 23 (85.19%) | 4 (14.81%) | 27 (27.00%) | NC | 0.335 |
male | 29 (96.67%) | 1 (3.33%) | 30 (30.00%) | ||
unknown gender | 39 (90.70%) | 4 (9.30%) | 43 (43.00%) | ||
female | 23 (85.19%) | 4 (14.81%) | 27 (27.00%) | 5.044 (0.527 < OR < 48.267) | 0.179 * |
male | 29 (96.67%) | 1 (3.33%) | 30 (30.00%) | 1 | |
female | 23 (85.19%) | 4 (14.81%) | 27 (27.00%) | 1.696 (0.387 < OR < 7.439) | 0.702 |
unknown gender | 39 (90.70%) | 4 (9.30%) | 43 (43.00%) | 1 | |
male | 29 (96.67%) | 1 (3.33%) | 30 (30.00%) | 1 | 0.643 |
unknown gender | 39 (90.70%) | 4 (9.30%) | 43 (43.00%) | 2.974 (0.316 < OR < 28.035) | |
Drinking water | |||||
Drank tap | 75 (89.29%) | 9 (10.71%) | 84 (84.00%) | NC | 0.170 * |
Filtered or mineral | 16 (100%) | 0 (0%) | 16 (16.00%) |
Variables | Adjusted OR 1 | CI95% | SE 2 | p-Values |
---|---|---|---|---|
Gastrointestinal alterations | 23.05 | 2.88 < OR < 184.13 | 24.44 | 0.003 * |
Origin | 1.86 | 0.62 < OR < 5.59 | 1.04 | 0.270 |
Sex | 1.89 | 0.70 < OR < 5.09 | 0.96 | 0.205 |
Drinking water | 3.22 | 0.00 < OR < 1.00 | 5.20 | 0.991 |
Parameters | Microscopic Examination | Malachite Green + Kinyoun Modified (95% CI) | ||||
---|---|---|---|---|---|---|
Malachite Green (95% CI) | Kinyoun Modified (95% CI) | |||||
Se | 55.6% | (23.1–88.0) | 55.6% | (26.7–81.1) | 66.7% | (35.4–87.9) |
Sp | 98.9% | (96.8–100) | 100% | (95.6–100) | 98.9% | (94.0–99.8) |
AUC | 0.772 | (0.6–1.0) | 0.778 | (0.6–1.0) | 0.828 | (0.7–1.0) |
PLR | 50.6 | (6.6–386.8) | NC 1 | 60.7 | (8.2–449.69) | |
NLR | 0.5 | (0.2–0.9) | 0.4 | (0.2–0.9) | 0.3 | (0.1–0.9) |
PPV | 83.3% | (53.5–100) | 100% | (100) | 85.7% | (59.8–100) |
NPV | 95.7% | (91.7–99.8) | 95.8% | (91.8–99.8) | 96.8% | (92.2–99.6) |
AC | 95.0% | (90.7–99.3) | 96.0% | (92.2–99.8) | 96.0% | (92.2–99.8) |
κ 2 | 0.64 | (0.3–1.0) | 0.69 | (0.4–1.0) | 0.73 | (0.5–1.0) |
Agreement 3 | substantial | substantial | substantial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panegossi, M.F.d.C.; Widmer, G.; Nagata, W.B.; Oliveira, B.C.M.; Ferrari, E.D.; Gomes, J.F.; Meireles, M.V.; Nakamura, A.A.; do Santos-Doni, T.R.; da Silveira Neto, L.; et al. Cryptosporidium proventriculi in Captive Cockatiels (Nymphicus hollandicus). Pathogens 2023, 12, 710. https://doi.org/10.3390/pathogens12050710
Panegossi MFdC, Widmer G, Nagata WB, Oliveira BCM, Ferrari ED, Gomes JF, Meireles MV, Nakamura AA, do Santos-Doni TR, da Silveira Neto L, et al. Cryptosporidium proventriculi in Captive Cockatiels (Nymphicus hollandicus). Pathogens. 2023; 12(5):710. https://doi.org/10.3390/pathogens12050710
Chicago/Turabian StylePanegossi, Mariele Fernanda da Cruz, Giovanni Widmer, Walter Bertequini Nagata, Bruno César Miranda Oliveira, Elis Domingos Ferrari, Jancarlo Ferreira Gomes, Marcelo Vasconcelos Meireles, Alex Akira Nakamura, Thaís Rabelo do Santos-Doni, Luiz da Silveira Neto, and et al. 2023. "Cryptosporidium proventriculi in Captive Cockatiels (Nymphicus hollandicus)" Pathogens 12, no. 5: 710. https://doi.org/10.3390/pathogens12050710
APA StylePanegossi, M. F. d. C., Widmer, G., Nagata, W. B., Oliveira, B. C. M., Ferrari, E. D., Gomes, J. F., Meireles, M. V., Nakamura, A. A., do Santos-Doni, T. R., da Silveira Neto, L., & Bresciani, K. D. S. (2023). Cryptosporidium proventriculi in Captive Cockatiels (Nymphicus hollandicus). Pathogens, 12(5), 710. https://doi.org/10.3390/pathogens12050710