Thermal Tolerance Data and Molecular Identification Are Useful for the Diagnosis, Control and Modeling of Diseases Caused by Thielaviopsis paradoxa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Isolates
2.2. Radial Growth Studies
2.3. DNA Extraction, Amplification and Sequencing
2.4. Statistical Analysis
2.5. Phylogenetic Analysis
3. Results
3.1. Temperature versus Isolate Growth Rate
3.2. Phylogenetic Analysis of ITS Sequences
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keane, P.; Kerr, A. Factors affecting disease development. In Plant Pathogens and Plant Diseases; Brown, J.F., Ogle, H.J., Eds.; Rockvale Publications: Armidale, NSW, Australia, 1997; pp. 287–298. [Google Scholar]
- Brader, G.; Compant, S.; Vescio, K.; Mitter, B.; Trognitz, F.; Ma, L.-J.; Sessitsch, A. Ecology and genomic insights into plant-pathogenic and plant-nonpathogenic endophytes. Annu. Rev. Phytopathol. 2017, 55, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Agrios, G.N. Plant Pathology; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-08-047378-9. [Google Scholar]
- Kredics, L.; Antal, Z.; Manczinger, L.; Szekeres, A.; Kevei, F.; Nagy, E. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technol. Biotechnol. 2003, 41, 37–42. [Google Scholar]
- Almaguer, M.; Rojas, T.I.; Dobal, V.; Batista, A.; Aira, M.J. Effect of temperature on growth and germination of conidia in Curvularia and Bipolaris species isolated from the air. Aerobiologia 2013, 29, 13–20. [Google Scholar] [CrossRef]
- Li, Y.; Wadsö, L.; Larsson, L.; Bjurman, J. Correlating two methods of quantifying fungal activity: Heat production by isothermal calorimetry and ergosterol amount by gas chromatography–tandem mass spectrometry. Thermochim. Acta 2007, 458, 77–83. [Google Scholar] [CrossRef]
- Freire, S.V.P.; Paiva, L.M.; Lima, E.A.D.L.-A.; Maia, L.C. Morphological, cytological, and cultural aspects of Curvularia pallescens. Rev. Microbiol. 1998, 29, 197–201. [Google Scholar] [CrossRef]
- Webster, J.; Weber, R. Introduction to Fungi; Cambridge University Press: Cambridge, UK, 2007; ISBN 1-139-46150-8. [Google Scholar]
- Kerry, E. Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol. 1990, 10, 293–299. [Google Scholar] [CrossRef]
- Doohan, F.M.; Brennan, J.; Cooke, B.M. Influence of climatic factors on Fusarium species pathogenic to cereals. Eur. J. Plant Pathol. 2003, 109, 755–768. [Google Scholar] [CrossRef]
- Cheng, C.; Gao, X.; Feng, B.; Sheen, J.; Shan, L.; He, P. Plant immune response to pathogens differs with changing temperatures. Nat. Commun. 2013, 4, 2530. [Google Scholar] [CrossRef]
- Brasier, C. The effect of light and temperature on reproduction in vitro in two tropical species of Phytophthora. Trans. Br. Mycol. Soc. 1969, 52, 105–113.IN12. [Google Scholar] [CrossRef]
- Grove, G.G.; Madden, L.V.; Ellis, M.; Schmitthenner, A. Influence of temperature and wetness duration on infection of immature strawberry fruit by Phytophthora cactorum. Phytopathology 1985, 75, 165–169. [Google Scholar] [CrossRef]
- Granke, L.; Hausbeck, M. Effects of temperature, concentration, age, and algaecides on Phytophthora capsici zoospore infectivity. Plant Dis. 2010, 94, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Shelley, B.A.; Luster, D.G.; Garrett, W.M.; McMahon, M.B.; Widmer, T.L. Effects of temperature on germination of sporangia, infection and protein secretion by Phytophthora kernoviae. Plant Pathol. 2018, 67, 719–728. [Google Scholar] [CrossRef]
- Trecate, L.; Sedláková, B.; Mieslerová, B.; Manstretta, V.; Rossi, V.; Lebeda, A. Effect of temperature on infection and development of powdery mildew on cucumber. Plant Pathol. 2019, 68, 1165–1178. [Google Scholar] [CrossRef]
- Sabburg, R.; Obanor, F.; Aitken, E.; Chakraborty, S. Changing fitness of a necrotrophic plant pathogen under increasing temperature. Glob. Chang. Biol. 2015, 21, 3126–3137. [Google Scholar] [CrossRef] [PubMed]
- De Beer, Z.W.; Duong, T.; Barnes, I.; Wingfield, B.D.; Wingfield, M.J. Redefining Ceratocystis and allied genera. Stud. Mycol. 2014, 79, 187–219. [Google Scholar] [CrossRef]
- Mbenoun, M.; de Beer, Z.W.; Wingfield, M.J.; Wingfield, B.D.; Roux, J. Reconsidering species boundaries in the Ceratocystis paradoxa complex, including a new species from oil palm and cacao in Cameroon. Mycologia 2014, 106, 757–784. [Google Scholar] [CrossRef]
- Paulin-Mahady, A.E.; Harrington, T.C.; McNew, D. Phylogenetic and taxonomic evaluation of Chalara, Chalaropsis, and Thielaviopsis anamorphs associated with Ceratocystis. Mycologia 2002, 94, 62–72. [Google Scholar] [CrossRef]
- Py, C.; Lacoeuilhe, J.-J.; Teisson, C. The Pineapple: Cultivation and Uses; G.P. Maisonneuve & Larose: Paris, France, 1987; ISBN 978-2-7068-0948-4. [Google Scholar]
- Sánchez, V.; Rebolledo, O.; Picaso, R.M.; Cárdenas, E.; Córdova, J.; González, O.; Samuels, G.J. In vitro antagonism of Thielaviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia 2007, 163, 49–58. [Google Scholar] [CrossRef]
- Dade, H.A. Ceratostomella paradoxa, the perfect stage of Thielaviopsis paradoxa (de Seynes) von Höhnel. Trans. Br. Mycol. Soc. 1928, 13, 184–194. [Google Scholar] [CrossRef]
- McMartin, A. Pathological conditions affecting growth of sugarcane plant cuttings from Natal. S. Afri. Sugar J. 1937, 21, 353–359. [Google Scholar]
- Kile, G. Plant diseases caused by species of Ceratocystis Sensu Stricto and Chalara. In Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity; Michael, J.W., Keith, A.S., Joan, F.W., Eds.; APS Press: St. Paul, MN, USA, 1993; Volume 39, pp. 125–131. [Google Scholar]
- Abdullah, S.; Asensio, L.; Monfort, E.; Gomez-Vidal, S.; Salinas, J.; Lorca, L.; Jansson, H. Incidence of the two date palm pathogens, Thielaviopsis paradoxa and T. punctulata in soil from date palm plantations in Elx, South-East Spain. J. Plant Prot. Res. 2009, 49, 276–279. [Google Scholar] [CrossRef]
- Al-Raisi, Y.M.; B’Chir, M.M.; Al-Mandhari, A.M.; Deadman, M.L.; Gowen, S.R. First report of Ceratocystis radicicola associated with date palm disease in Oman. New Dis. Rep. 2011, 23, 23. [Google Scholar] [CrossRef]
- Al-Sadi, A.M. Phylogenetic and population genetic analysis of Ceratocystis radicicola infecting date palms. J. Plant Pathol. 2013, 95, 49–57. [Google Scholar]
- Esiegbuya, D.; Ikuenobe, C.; Ghansah, B.; Ojieabu, A. First report of Thielaviopsis ethacetica causing neck bending/inclination of the upper region of oil palms in Nigeria. Agrikul CRI J. 2022, 2, 67–75. [Google Scholar]
- Esiegbuya, D.O.; Ikuenobe, C.E.; Ghansah, B.; Ojieabu, A.; Omoregie, K.; Adeh, S.A. Chemotyping of Oil Palm (Elaeis guineensis) Seedlings defense in response to Thielaviopsis ethacetica infection. Vegetos 2022, 1–11. [Google Scholar] [CrossRef]
- Johnson, J.A.; Harrington, T.C.; Engelbrecht, C.J.B. Phylogeny and taxonomy of the North American clade of the Ceratocystis fimbriata complex. Mycologia 2005, 97, 1067–1092. [Google Scholar] [CrossRef]
- Harrington, T.C. Host specialization and speciation in the American wilt pathogen Ceratocystis fimbriata. Fitopatol. Bras. 2000, 25, 262–263. [Google Scholar]
- Engelbrecht, C.J.B.; Harrington, T.C. Intersterility, morphology and taxonomy of Ceratocystis fimbriata on sweet potato, cacao and sycamore. Mycologia 2005, 97, 57–69. [Google Scholar] [CrossRef]
- Heath, R.N.; Wingfield, M.J.; Van Wyk, M.; Roux, J. Insect associates of Ceratocystis albifundus and patterns of association in a native savanna ecosystem in South Africa. Environ. Entomol. 2009, 38, 356–364. [Google Scholar] [CrossRef]
- Thorpe, D.J.; Harrington, T.C.; Uchida, J.Y. Pathogenicity, Internal Transcribed Spacer-RDNA Variation, and Human Dispersal of Ceratocystis fimbriata on the Family Araceae. Phytopathology 2005, 95, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Harrington, T.C.; McNew, D.; Li, J. Ceratocystis Uchidae, a New Species on Araceae in Hawaii and Fiji. Mycoscience 2017, 58, 398–412. [Google Scholar] [CrossRef]
- Baker, C.J.; Harrington, T.C.; Krauss, U.; Alfenas, A.C. Genetic variability and host specialization in the Latin American clade of Ceratocystis fimbriata. Phytopathology 2003, 93, 1274–1284. [Google Scholar] [CrossRef]
- Wingfield, B.; Wyk, M.; Roos, H.; Wingfield, M. Ceratocystis: Emerging evidence for discrete generic boundaries. CBS Biodivers. Ser. 2013, 12, 57–64. [Google Scholar]
- Fajarningsih, N.D. Internal Transcribed Spacer (ITS) as DNA barcoding to identify fungal species: A review. Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2016, 11, 37–44. [Google Scholar] [CrossRef]
- Ali, M.A.L.; Xi, J.; Coudray, A.J. Comparisons of molecular methods in the diagnosis of pathogenic fungi. Int. J. Sci. Technol. Res. 2016, 4, 234–236. [Google Scholar]
- Pang, K.-L.; Mitchell, J.I. Molecular approaches for assessing fungal diversity in marine substrata. Bot. Mar. 2005, 48, 332–347. [Google Scholar] [CrossRef]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi; CBS Laboratory Manual Series; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010; Volume 2. [Google Scholar]
- Chase, M.W.; Fay, M.F. Barcoding of Plants and Fungi. Science 2009, 325, 682–683. [Google Scholar] [CrossRef]
- Das, S.; Deb, B. DNA barcoding of fungi using ribosomal ITS Marker for genetic diversity analysis: A review. Int. J. Pure Appl. Biosci. 2015, 3, 160–167. [Google Scholar]
- Seifert, K.A. Progress towards DNA barcoding of fungi. Mol. Ecol. Resour. 2009, 9, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Alvarez, E.; Llano, G.A.; Loke, J.B.; Chacon, M.I. Characterization of Thielaviopsis paradoxa Isolates from oil palms in Colombia, Ecuador and Brazil. J. Phytopathol. 2012, 160, 690–700. [Google Scholar] [CrossRef]
- Borges, A.F.; de Alcântara Neto, F.; da Silva Matos, K.; Júnior, J.E.A.B.; Júnior, N.S.M.; Moreira, S.I.; de Melo, M.P. Thielaviopsis ethacetica the etiological agent of sugarcane pineapple sett rot disease in Brazil. Trop. Plant Pathol. 2019, 44, 460–467. [Google Scholar] [CrossRef]
- Ouedraogo, A.; Fargues, J.; Goettel, M.S.; Lomer, C.J.; Ouedraogo, A.; Fargues, J.; Goettel, M.S.; Lomer, C.J. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 1997, 137, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Alwakeel, S.S. Indoor fungal and bacterial contaminations on household environment in Riyadh, Saudi Arabia. Saudi J. Biol. Sci. 2008, 15, 113–119. [Google Scholar]
- Terhonen, E.; Marco, T.; Sun, H.; Jalkanen, R.; Kasanen, R.; Vuorinen, M.; Asiegbu, F. The effect of latitude, season and needle age on the mycota of Scots Pine (Pinus sylvestris) in Finland. Silva Fenn. 2011, 45, 301–317. [Google Scholar] [CrossRef]
- Thermo Scientific “Phusion” High–Fidelity DNA Polymerase Product Information Sheet. Thermofisher Scientific Inc. 2021. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0012393_Phusion_HighFidelity_DNAPolymerase_UG.pdf (accessed on 16 September 2022).
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Davis, C.T.; Ebel, G.D.; Lanciotti, R.S.; Brault, A.C.; Guzman, H.; Siirin, M.; Lambert, A.; Parsons, R.E.; Beasley, D.W.C.; Novak, R.J.; et al. Phylogenetic analysis of North American West Nile virus isolates, 2001–2004: Evidence for the emergence of a dominant genotype. Virology 2005, 342, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-J.; Cortés-Monllor, A. Effect of temperature and moisture on various aspects of development, growth, and pathogenicity of Thielaviopsis paradoxa from sugarcane in Puerto Rico. J. Agric. Univ. P. R. 1972, 56, 162–170. [Google Scholar] [CrossRef]
- Kiryu, T. Studies on the physiological characters of Ceralostomella paradoxa. Rept. Govt. Sugar Expt. Sta. 1939, G, 21–37. [Google Scholar]
- Chi, C.C. A preliminary report on the study of pineapple disease of sugarcane in Taiwan. J. Sugarcane Res. 1949, 3, 71–102. [Google Scholar]
- Bachiller, N.C.S.J. Effect of environmental factors on the growth and sporulation of Thielaviopsis paradoxa (de Seynes) von Hohnel in culture. Philipp. J. Crop Sci. 1998, 23, 43. [Google Scholar]
- Sikder, M.; Ahmmed, M.; Sultana, A.; Alam, N. First report on black spot disease of Phyllanthus emblica L. fruits caused by Thielaviopsis paradoxa in Bangladesh. Int. J. Agril. Res. Innov. Technol. 2021, 10, 38–46. [Google Scholar] [CrossRef]
- Hewajulige, I.G.N.; Wijesundera, R.L.C. Thielaviopsis paradoxa, Thielaviopsis basicola (Black Rot, Black Root Rot). In Postharvest Decay; Elsevier: Amsterdam, The Netherlands, 2014; pp. 287–308. ISBN 978-0-12-411552-1. [Google Scholar]
- Paterson, R.R.M.; Sariah, M.; Lima, N. How will climate change affect oil palm fungal diseases? Crop Prot. 2013, 46, 113–120. [Google Scholar] [CrossRef]
- McConnell, M.; Balci, Y. Fine root dynamics of oak saplings in response to Phytophthora cinnamomi infection under different temperatures and durations. For. Pathol. 2015, 45, 155–164. [Google Scholar] [CrossRef]
- Kaba, J.S.; Zerbe, S.; Agnolucci, M.; Scandellari, F.; Abunyewa, A.A.; Giovannetti, M.; Tagliavini, M. Atmospheric nitrogen fixation by Gliricidia trees (Gliricidia sepium (Jacq.) Kunth Ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant Soil 2019, 435, 323–336. [Google Scholar] [CrossRef]
- Op De Beeck, M.; Lievens, B.; Busschaert, P.; Declerck, S.; Vangronsveld, J.; Colpaert, J.V. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 2014, 9, e97629. [Google Scholar] [CrossRef]
- Saeed, E.E.; Sham, A.; El-Tarabily, K.; Abu Elsamen, F.; Iratni, R.; AbuQamar, S.F. Chemical Control of Black Scorch Disease on Date Palm Caused by the Fungal Pathogen Thielaviopsis punctulata in United Arab Emirates. Plant Dis. 2016, 100, 2370–2376. [Google Scholar] [CrossRef] [PubMed]
S/N | Isolate ID | Host | Substrate | Origin | GPS Coordinate | Name of Collectors | Hambi Reference Number | Genebank Accession Number |
---|---|---|---|---|---|---|---|---|
1 | DA001 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2737 | OQ422120 |
2 | DA002 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2736 | OQ422121 |
3 | DA003 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2738 | OQ422122 |
4 | DA004 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2739 | OQ422123 |
5 | DA005 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2740 | OQ422124 |
6 | DA006 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′05.9″ N, 6°29′45.5″ E | D. O Esiegbuya and A. Ojieabu | 2741 | OQ422125 |
7 | DA007 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2742 | OQ422126 |
8 | DA008 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2743 | OQ422127 |
9 | DA009 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2744 | OQ422128 |
10 | DA010 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2745 | OQ422129 |
11 | DA011 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2746 | OQ422130 |
12 | DA012 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′0.01″ N, 5°51′39.5″ E | D. O Esiegbuya and A. Ojieabu | 2747 | OQ422131 |
13 | DA013 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′08.7″ N, 5°51′04.3″ E | D. O Esiegbuya and A. Ojieabu | 2748 | OQ422132 |
14 | DA014 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′08.7″ N, 5°51′04.3″ E | D. O Esiegbuya and A. Ojieabu | 2749 | OQ422133 |
15 | DA015 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′08.7″ N, 5°51′04.3″ E | D. O Esiegbuya and A. Ojieabu | 2750 | OQ422134 |
16 | DA016 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′08.7″ N, 5°51′04.3″ E | D. O Esiegbuya and A. Ojieabu | 2751 | OQ422135 |
17 | DA017 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′14.5″ N, 5°50′45.1″ E | D. O Esiegbuya and A. Ojieabu | 2752 | OQ422136 |
18 | DA018 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′14.5″ N, 5°50′45.1″ E | D. O Esiegbuya and A. Ojieabu | 2753 | OQ422137 |
19 | DA019 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′14.5″ N, 5°50′45.1″ E | D. O Esiegbuya and A. Ojieabu | 2754 | OQ422138 |
20 | DA020 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′14.5″ N, 5°50′45.1″ E | D. O Esiegbuya and A. Ojieabu | 2755 | OQ422139 |
21 | DA021 | Oil palm | Trunk | Uhiere, Nigeria | 6°46′14.5″ N, 5°50′45.1″ E | D. O Esiegbuya and A. Ojieabu | 2756 | OQ422140 |
22 | DA022 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2757 | OQ422141 |
23 | DA023 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2758 | OQ422142 |
24 | DA024 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2759 | OQ422143 |
25 | DA025 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2760 | OQ422144 |
26 | DA026 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2761 | OQ422145 |
27 | DA027 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2762 | OQ422146 |
28 | DA028 | Oil palm | Soil | Ugbowo, Nigeria | 6°39′69.3″ N, 5°60′92.02″ E | D. O Esiegbuya and A. Ojieabu | 2763 | OQ422147 |
29 | DA029 | Oil palm | Soil | Udo, Nigeria | 5°28′39.3″ N, 8°05′07.2″ E | D. O Esiegbuya and A. Ojieabu | 2764 | OQ422148 |
30 | AA030 | Oil palm | Soil | Udo, Nigeria | 5°28′39.3″ N, 8°05′07.2″ E | A. A Azeez | 2765 | OQ422149 |
31 | DA031 | Date palm | Fruit | Dutse, Nigeria | 11°18′79.3″ N, 9°55′17.2″ E | D. O Esiegbuya and A. Ojieabu. | 2735 | OQ422150 |
32 | AA032 | Sugar cane | Stem | Asaba, Nigeria | 5°29′21.32″ N, 6°00′14..42″ E | A. A Azeez | 2766 | OQ422151 |
33 | AA033 | Sugar cane | Stem | Asaba, Nigeria | 5°29′18.32″ N, 6°00′04.62″ E | A. A Azeez | 2767 | OQ422152 |
34 | AA034 | Sugar cane | Stem | Asaba, Nigeria | 5°29′54.37″ N, 6°00′17.64″ E | A. A Azeez | 2734 | OQ422153 |
35 | AA035 | Sugar cane | Stem | Asaba, Nigeria | 5°29′33.72″ N, 6°00′28.01″ E | A. A Azeez | 2735 | OQ422154 |
36 | AA036 | Sugar cane | Stem | Asaba, Nigeria | 5°29′26.11″ N, 6°00′33.34″ E | A. A Azeez | 2768 | OQ422155 |
37 | C3 | Oil palm | Trunk | MBE, Papua New Guinea | Unknown | B. Ritchie and PNGOPRA team | 2769 | OQ422156 |
38 | WGNT6 | Oil palm | Trunk | MBE, Papua New Guinea | Unknown | B. Ritchie and PNGOPRA team | 2771 | OQ422160 |
39 | WGNT9 | Oil palm | Trunk | MBE, Papua New Guinea | Unknown | B. Ritchie and PNGOPRA team | 2772 | OQ422159 |
40 | PNGU36(1) | Oil palm | Trunk | MBE, Papua New Guinea | Unknown | B. Ritchie and PNGOPRA team | 2773 | OQ422157 |
41 | PNGU36(2) | Oil palm | Trunk | MBE, Papua New Guinea | Unknown | B. Ritchie and PNGOPRA team | 2774 | OQ422158 |
Isolate | 22 °C | 25 °C | 30 °C | 32 °C | 34 °C | 35 °C |
---|---|---|---|---|---|---|
DA001 | 2.93 a | 2.93 a | 2.93 a | 2.75 abc | 1.08 BC | 0.17 OP |
DA002 | 2.17 jklmn | 2.93 a | 2.93 a | 2.93 a | 1.57 tuvwxy | 0.30 KLMNO |
DA003 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.40 GHIJKLMNO |
DA004 | 2.47 bcdef | 2.93 a | 2.93 a | 2.93 a | 1.73 qrstu | 0.67 GHIJKLMN |
DA005 | 2.75 ab | 2.93 a | 2.93 a | 2.93 a | 1.63 rstuvwxy | 0.33 JKLMNO |
DA006 | 2.53 cdefgh | 2.93 a | 2.93 a | 2.93 a | 1.73 rstuv | 0.67 EFG |
DA007 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.73 rstuv | 0.70 DEFGH |
DA008 | 2.80 abc | 2.93 a | 2.93 a | 2.93 a | 1.83 pqrst | 0.50 FGHIJK |
DA009 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.77 qrstu | 0.37 HIJKLMN |
DA010 | 2.32 ghijkl | 2.93 a | 2.93 a | 2.93 a | 1.07 BC | 0.23 MNOP |
DA011 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.80 pqrst | 0.50 FGHIJKLM |
DA012 | 2.77 abc | 2.93 a | 2.93 a | 2.93 a | 1.90 nopqr | 0.67 EFG |
DA013 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.5 uvwxyz | 0 |
DA014 | 2.53 cdefgh | 2.93 a | 2.93 a | 2.93 a | 1.67 rstuvwx | 0.67 EFGH |
DA015 | 2.8 abc | 2.93 a | 2.93 a | 2.93 a | 1.67 rstuvwx | 0.37 IJKLMNO |
DA016 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.27 LMNOP |
DA017 | 2.36 fghijk | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.30 KLMNO |
DA018 | 2.20 ijklm | 2.93 a | 2.93 a | 2.93 a | 1.67 rstuvwx | 0.40 GHIJKLMNO |
DA019 | 2.16 jklmn | 2.93 a | 2.93 a | 2.93 a | 2.03mnopq | 0.27 LMNOP |
DA020 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.87 opqrs | 0.63 EFGHI |
DA021 | 2.40 efghij | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.67 EFG |
DA022 | 2.30 ghijklm | 2.93 a | 2.93 a | 2.93 a | 1.77 qrstu | 0.37 IJKLMNO |
DA023 | 2.16 jklmn | 2.93 a | 2.93 a | 2.60 bcdef | 1.23 zAB | 0 |
DA024 | 1.80 pqrst | 2.93 a | 2.93 a | 2.93 a | 1.43 wxyzA | 0.43 GHIJKLMNO |
DA025 | 2.53 cdefgh | 2.93 a | 2.93 a | 2.93 a | 1.63 rstuvwxy | 0.63 EFGHI |
DA026 | 2.67 abcde | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.47 GHIJKLMN |
DA027 | 2.53 cdefg | 2.93 a | 2.93 a | 2.93 a | 1.77 qrstu | 0.43 GHIJKLMNO |
DA028 | 2.40 efghij | 2.93 a | 2.93 a | 2.93 a | 1.70 rstuvw | 0.60 EFGHIJ |
DA029 | 2.70 abcd | 2.93 a | 2.93 a | 2.93 a | 1.60 stuvwxy | 0.97 BCD |
AA030 | 2.12 klmno | 2.93 a | 2.93 a | 2.93 a | 1.47 vwxyzA | 0.23 MNOP |
DA031 | 2.60 bcdef | 2.93 a | 2.93 a | 2.93 a | 1.37 yzA | 0.47 GHIJKLMN |
AA032 | 1.85 opqrs | 2.93 a | 2.46 defghi | 1.36 yzA | 0.20 NOP | 0 |
AA033 | 1.63 rstuvwxy | 2.75 abc | 2.93 a | 2.93 a | 1.67 rstuvwx | 0 |
AA034 | 1.47 vwxyzA | 2.07 lmnop | 1.47 vwxyzA | 1.40 xyzA | 0.77 DEF | 0 |
AA035 | 2.26 hijklm | 2.93 a | 2.93 a | 2.93 a | 1.40 xyzA | 0 |
AA036 | 0.53 FGHIJKL | 1.83 pqrst | 2.23 ijklm | 1.20 AB | 0.87 CDE | 0 |
C3 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.03 BCD | 0.53 FGHIJKL |
WGNT6 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 0.77 DEF | 0.33 JKLMNO |
WGNT9 | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.41 xyzA | 0.57 FGHIJK |
PNGU36(1) | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.47 vwxyzA | 0.57 FGHIJK |
PNGU36(2) | 2.93 a | 2.93 a | 2.93 a | 2.93 a | 1.37 yzA | 0.57 FGHIJK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeez, A.A.; Esiegbuya, D.O.; Jaber, E.; Ren, W.; Lateef, A.A.; Ojieabu, A.; Asiegbu, F.O. Thermal Tolerance Data and Molecular Identification Are Useful for the Diagnosis, Control and Modeling of Diseases Caused by Thielaviopsis paradoxa. Pathogens 2023, 12, 727. https://doi.org/10.3390/pathogens12050727
Azeez AA, Esiegbuya DO, Jaber E, Ren W, Lateef AA, Ojieabu A, Asiegbu FO. Thermal Tolerance Data and Molecular Identification Are Useful for the Diagnosis, Control and Modeling of Diseases Caused by Thielaviopsis paradoxa. Pathogens. 2023; 12(5):727. https://doi.org/10.3390/pathogens12050727
Chicago/Turabian StyleAzeez, Abiodun Abeeb, Daniel Ofeoritse Esiegbuya, Emad Jaber, Wenzi Ren, Adebola Azeez Lateef, Amarachi Ojieabu, and Fred O. Asiegbu. 2023. "Thermal Tolerance Data and Molecular Identification Are Useful for the Diagnosis, Control and Modeling of Diseases Caused by Thielaviopsis paradoxa" Pathogens 12, no. 5: 727. https://doi.org/10.3390/pathogens12050727
APA StyleAzeez, A. A., Esiegbuya, D. O., Jaber, E., Ren, W., Lateef, A. A., Ojieabu, A., & Asiegbu, F. O. (2023). Thermal Tolerance Data and Molecular Identification Are Useful for the Diagnosis, Control and Modeling of Diseases Caused by Thielaviopsis paradoxa. Pathogens, 12(5), 727. https://doi.org/10.3390/pathogens12050727