The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polemis, M.; Mandilara, G.; Pappa, O.; Argyropoulou, A.; Perivolioti, E.; Koudoumnakis, N.; Pournaras, S.; Vasilakopoulou, A.; Vourli, S.; Katsifa, H. COVID-19 and Antimicrobial Resistance: Data from the Greek Electronic System for the Surveillance of Antimicrobial Resistance-WHONET-Greece (January 2018–March 2021). Life 2021, 11, 996. [Google Scholar] [CrossRef]
- O’Neill, J. Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Wellcome Trust: London, UK, 2016; p. 20. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 18 August 2021).
- WHO. Global Action Plan on Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 16 April 2023).
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M. Burden of AMR Collaborative Group. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020; ECDC: Stockholm, Sweden, 2022.
- Lai, C.C.; Chen, S.Y.; Ko, W.C.; Hsueh, P.R. Increased antimicrobial resistance during the COVID-19 pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Tiri, B.; Sensi, E.; Marsiliani, V.; Cantarini, M.; Priante, G.; Vernelli, C.; Martella, L.A.; Constantini, M.; Mariottini, A.; Andreani, P.; et al. Antimicrobial stewardship program, COVID-19, and infection control: Spread of carbapenem-resistant Klebsiella pneumoniae colonization in ICU COVID-19 patients. What did not work? J. Clin. Med. 2020, 9, 2744. [Google Scholar] [CrossRef] [PubMed]
- Knight, G.M.; Glover, R.E.; McQuaid, C.F.; Olaru, I.D.; Gallandat, K.; Leclerc, Q.J.; Fuller, N.M.; Willcocks, S.J.; Hasan, R.; van Kleef, E.; et al. Antimicrobial resistance and COVID-19: Intersections and implications. eLife 2021, 10, e64139. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Rossolini, G.M.; Schultsz, C.; Tacconelli, E.; Murthy, S.; Ohmagari, N.; Holmes, A.; Bachmann, T.; Goossens, H.; Canton, R. Key considerations on the potential impacts of the COVID-19 pandemic on antimicrobial resistance research and surveillance. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 1122–1129. [Google Scholar] [CrossRef]
- CLS Clinical and Laboratory Standards Institute. Available online: https://clsi.org/standards/products/microbiology/ (accessed on 24 April 2023).
- EUCAST. European Committee on Antimicrobial Susceptibility Testing. Available online: https://www.eucast.org/ (accessed on 24 April 2023).
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.; Sridhar, D. The pandemic legacy of antimicrobial resistance in the USA. Lancet Microb. 2022, 3, e726–e727. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. World Organisation for Animal Health. WHO Global Database for the Tripartite Antimicrobial Resistance (AMR) Country Self-assessment Survey (TrACSS). Available online: https://amrcountryprogress.org/#/response-overview (accessed on 16 April 2023).
- Center for Disease Control and Prevention. COVID-19: US Impact on Antimicrobial Resistance, Special Report 2022; US Department of Health and Human Services, CDC: Atlanta, GA, USA, 2022.
- Liew, Y.; Lee, W.H.L.; Tan, L.; Kwa, A.L.H.; Thien, S.Y.; Cherng, B.P.Z.; Chung, S.J. Antimicrobial stewardship programme: A vital resource for hospitals during the global outbreak of coronavirus disease 2019 (COVID-19). Int. J. Antimicrob. Agents 2020, 56, 106145. [Google Scholar] [CrossRef]
- Molla, M.M.A.; Yeasmin, M.; Islam, M.K.; Sharif, M.M.; Amin, M.R.; Nafisa, T.; Ghosh, A.K.; Parveen, M.; Arif, M.M.H.; Alam, J.A.J.; et al. Antibiotic prescribing patterns at COVID-19 dedicated wards in Bangladesh: Findings from a single center study. Infect. Prev. Pract. 2021, 3, 100134. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. J. Am. Med. Assoc. 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Castaldi, S.; Luconi, E.; Marano, G.; Auxilia, F.; Maraschini, A.; Bono, P.; Ungaro, R.; Bandera, A.; Boracchi, P.; Biganzoli, E. Hospital acquired infections in COVID-19 patients in sub intensive care unit. Acta Biomed. 2020, 91, e2020017. [Google Scholar] [PubMed]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; EJ Golzari, S. Evaluation of bacterial co-infections of the respiratory tract in COVID-19 patients admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wang, C.Y.; Hsueh, P.R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J. Microbiol. Immunol. Infect. 2020, 53, 505–512. [Google Scholar] [CrossRef]
- Lai, C.C.; Yu, W.L. COVID-19 associated with pulmonary aspergillosis: A literature review. J. Microbiol. Immunol. Infect. 2021, 54, 46–53. [Google Scholar] [CrossRef]
- Vilbrun, S.C.; Mathurin, L.; Pape, J.W.; Fitzgerald, D.; Walsh, K.F. Case report: Multidrug-resistant tuberculosis and COVID-19 coinfection in Port-au-Prince, Haiti. Am. J. Trop. Med. Hyg. 2020, 103, 1986–1988. [Google Scholar] [CrossRef]
- Yousaf, Z.; Khan, A.A.; Chaudhary, H.A.; Mushtaq, K.; Parengal, J.; Aboukamar, M.; Khan, M.U.; Mohamed, M.F.H. Cavitary pulmonary tuberculosis with COVID-19 coinfection. IDCases 2020, 22, e00973. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19: Two problems, one solution? Med. Hypotheses 2020, 144, 110139. [Google Scholar] [CrossRef]
- Yock-Corrales, A.; Lenzi, J.; Ulloa-Gutiérrez, R.; Gómez-Vargas, J.; Yassef, A.-M.O.; Rios Aida, J.A.; del Aguila, O.; Arteaga-Menchaca, E.; Campos, F.; Uribe, F.; et al. Antibiotic prescriptions in children with COVID-19 and multisystem inflammatory syndrome: A multinational experience in 990 cases from Latin America. Acta Paediatr. 2021, 110, 1902–1910. [Google Scholar] [CrossRef]
- Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Flandre, P.L.; Dubert, M.; Cally, R.; Logre, E.; Fraissé, M.; Mentec, H.; et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Polemis, M.; Tryfinopoulou, K.; Giakkoupi, P.; Vatopoulos, A.; WHONET-Greece Study Group. Eight-year trends in the relative isolation frequency and antimicrobial susceptibility among bloodstream isolates from Greek hospitals: Data from the Greek electronic system for the surveillance of antimicrobial resistance—WHONET Greece, 2010 to 2017. Eurosurveillance 2020, 25, 1900516. [Google Scholar] [CrossRef]
- Mędrzycka-Dąbrowska, W.; Lange, S.; Zorena, K.; Dąbrowski, S.; Ozga, D.; Tomaszek, L. Carbapenem-resistant Klebsiella pneumoniae infections in ICU COVID-19 patients—A scoping review. J. Clin. Med. 2021, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.C. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Teich, V.D.; Klajner, S.; Santiago de Almeida, F.A.; Batista Dantas, A.C.; Laselva, C.R.; Torritesi, M.G.; Canero, T.R.; Berwanger, O.; Rizzo, L.V.; Reis, E.P. Epidemiologic and clinical features of patients with COVID-19 in Brazil. Einstein 2020, 18, eAO6022. [Google Scholar] [CrossRef]
- Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clin. Microbiol. Infect. 2021, 27, 646–647. [Google Scholar] [CrossRef]
- Barrasa, H.; Rello, J.; Tejada, S.; Martin, A.; Balziskueta, G.; Vinuesa, C.; Fernandez-Miret, B.; Villagra, A.; Vallejo, A.; San Sebastian, A.; et al. SARS-CoV-2 in Spanish intensive care units: Early experience with 15-day survival in Vitoria. Anaesth. Crit. Care Pain Med. 2020, 39, 553–561. [Google Scholar] [CrossRef]
- Saunderson, R.B.; Gouliouris, T.; Nickerson, E.K.; Cartwright, E.J.; Kidney, A.; Aliyu, S.H.; Brown, N.M.; Limmathurotsakul, D.; Peacock, S.J.; Török, M.E. Impact of routine bedside infectious disease consultation on clinical management and outcome of Staphylococcus aureus bacteraemia in adults. Clin. Microbiol. Infect. 2015, 21, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Forsblom, E.; Ruotsalainen, E.; Ollgren, J.; Jarvinen, A. Telephone Consultation Cannot Replace Bedside Infectious Disease Consultation in the Management of Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2013, 56, 527–535. [Google Scholar] [CrossRef] [PubMed]
Risk of Death, OR (95% CI) | Risk of Prolonged Hospital Stay, OR (95% CI) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2020 | 2021 | 2022 | 2018 | 2019 | 2020 | 2021 | 2022 | |
Acinetobacter baumannii Carvapenem resistant | 3.6 (2.1–4.5) n = 145 | 3.5 (2.4–5.1) n = 136 | 3.9 (3.1–6.1) n = 125 | 4.1 (3.4–6.1) n = 162 | 4.2 (3.5–5.2) n = 174 | 7.6 (5.3–9.5) n = 145 | 7.8 (6.2–9.2) n = 136 | 7.9 (7.2–9.4) n = 125 | 7.8 (6.9–9.2) n = 162 | 8.2 (7.6–10.1) n = 174 |
Acinetobacter baumannii Non Carvapenem resistant | 2.1 (1.4–2.8) n = 44 | 2.2 (1.5–2.7) n = 38 | 2.4 (1.8–3.1) n = 33 | 2.3 (1.7–2.9) n = 20 | 2.4 (1.6–2.9) n = 26 | 4.3 (3.9–5.4) n = 44 | 4.5 (3.8–5.9) n = 38 | 4.3 (3.7–5.4) n = 33 | 4.4 (3.9–5.8) n = 20 | 4.5 (3.7–5.3) n = 26 |
Klebsiella pneumoniae Carvapenem resistant | 3.1 (2.4–5.1) n = 98 | 3.3 (2.2–5.1) n = 109 | 3.6 (2.8–5.7) n = 106 | 3.5 (2.9–4.3) n = 110 | 3.8 (2.6–4.1) n = 126 | 6.5 (5.4–7.9) n = 98 | 6.7 (5.6–8.4) n = 109 | 6.7 (6.2–8.6) n = 106 | 6.9 (5.9–7.8) n = 110 | 7.1 (6.5–8.9) n = 126 |
Klebsiella pneumoniae Non Carvapenem resistant | 2.2 (1.4–2.8) n = 46 | 1.9 (1.3–2.7) n = 38 | 2.1 (1.6–2.9) n = 40 | 2.2 (1.5–3.1) n = 36 | 2.3 (1.6–2.8) n = 30 | 3.1 (2.7–4.2) n = 46 | 3.3 (2.7–4.5) n = 38 | 3.4 (2.8–4.7) n = 40 | 3.5 (2.7–4.9) n = 36 | 3.5 (2.8–4.8) n = 30 |
Pseudomonas aeruginosa MDR, Multidrug resistant | 3.1 (2.4–4.7) n = 87 | 3.4 (2.4–4.9) n = 121 | 3.8 (2.4–5.9) n = 101 | 3.7 (2.9– 2.8) n = 131 | 3.9 (3.1–4.3) n = 129 | 5.6 (4.6–7.3) n = 87 | 5.8 (4.5–7.9) n = 121 | 5.9 (4.5–7.2) n = 101 | 6.4 (5.9–7.3) n = 131 | 6.5 (4.9–8.2) n = 129 |
Pseudomonas aeruginosa Non MDR, Non Multidrug resistant | 1.9 (1.3–3.7) n = 31 | 2.0 (1.4–3.8) n = 30 | 2.1 (1.5–3.7) n = 35 | 2.1 (1.6–3.9) n = 43 | 2.2 (1.7–3.8) n = 40 | 3.2 (2.8–4.3) n = 31 | 3.3 (2.7–4.9) n = 30 | 2.9 (2.6–4.5) n = 35 | 3.0 (2.4–4.2) n = 43 | 3.1 (2.6–4.9) n = 40 |
Enterococcus faecium VRE, Vancomycin resistant | 1.4 (0.9–1.8) n = 8 | 1.6 (1.1–3.6) n = 12 | 1.6 (1.2–3.4) n = 15 | 1.9 (1.1– 2.2) n = 17 | 2.1 (1.7–2.9) n = 18 | 3.9 (3.1–5.3) n = 8 | 3.8 (3.1–5.7) n = 12 | 4.2 (3.6–6.3) n = 15 | 4.6 (4.5–7.6) n = 17 | 4.8 (4.1–7.3) n = 18 |
Enterococcus faecium Non VRE, Non Vancomycin resistant | 1.1 (0.7–1.7) n = 27 | 1.2 (0.7–2.1) n = 29 | 1.3 (0.8–2.4) n = 32 | 1.4 (0.9–2.6) n = 30 | 1.4 (0.9–2.5) n = 36 | 2.5 (1.9–3.8) n = 27 | 2.6 (2.1–3.9) n = 29 | 2.5 (1.8–3.7) n = 32 | 2.7 (2.0–3.9) n = 30 | 2.6 (1.9–3.7) n = 36 |
Staphylococcus aureus MRSA, Methicillin resistant | 3.0 (2.1–4.9) n = 48 | 3.0 (2.2–4.7) n = 41 | 3.1 (2.3– 4.5) n = 52 | 3.2 (2.4–4.1) n = 59 | 3.4 (2.8–4.9) n = 55 | 2.3 (2.1–4.6) n = 48 | 2.3 (2.1–4.3) n = 41 | 2.4 (2.1–4.1) n = 52 | 2.4 (1.8–4.3) n = 59 | 2.6 (2.2–5.1) n = 55 |
Staphylococcus aureus Non MRSA, Non Methicillin resistant | 1.7 (0.8–2.6) n = 95 | 1.6 (0.9–2.6) n = 90 | 1.6 (1.0–2.6) n = 90 | 1.8 (1.1–2.9) n = 98 | 1.8 (1.0–2.8) n = 90 | 2.1 (1.4–3.5) n = 95 | 2.2 (1.4–3.7) n = 90 | 2.3 (1.6–3.7) n = 90 | 2.3 (1.5–3.8) n = 98 | 2.4 (1.5–3.9) n = 90 |
p-value < 0.001 | p-value < 0.001 |
Pre-Pandemic Period 2018–2019 (n = 246) Group A | COVID-19 Pandemic 2020–2022 (n = 154) Group B | |
---|---|---|
Gender, male | 166 (67.2%) | 98 (63.6%) |
Age, years, mean ± SD | 65.6 (50.4–76.4) | 65.8 (50.5–77.4) |
Duration of bacteraemia symptoms before treatment initiation | ||
0–24 h | 158 (64.2%) | 73 (47.4%) |
25–72 h | 25 (10.2%) | 34 (22.1%) |
>72 h | 55 (22.4%) | 36 (23.4%) |
Unknown | 8 (3.2%) | 11 (7.1%) |
Telephone consultation | 37 (15%) | 117 (76%) |
Bedside consultation | 209 (85%) | 37 (24%) |
Group A, 2018–2019 (n = 246) | Group B, 2020–2022 (n = 154) | p-Value | |
---|---|---|---|
Operation within 30 days | 34 (13.8%) | 29 (18.8%) | 0.04 |
Diabetes mellitus type 2 | 89 (36.2%) | 68 (44.2%) | 0.12 |
Heart failure | 26 (10.6%) | 19 (12.3%) | 0.02 |
Coronary disease | 49 (19.9%) | 18 (11.7%) | 0.45 |
Peripheral Vascular disease | 11 (4.5%) | 12 (7.8%) | 0.12 |
Cerebrovascular disease | 18 (7.3%) | 17 (11%) | 0.05 |
Chronic respiratory disease | 9 (3.7%) | 8 (5.2%) | 0.04 |
Malignancies | 25 (10.2%) | 35 (22.7%) | 0.24 |
Transplantation | 14 (5.7%) | 11 (7.14%) | 1.02 |
Immunosuppresion | 38 (15.4%) | 24 (15.6%) | 0.87 |
Chronic renal disease | 22 (8.9%) | 19 (12.3%) | 0.04 |
Prosthetic device | 56 (22.8%) | 47 (30.5%) | 0.02 |
Charlson comorbidity index Score ≥ 3 | 102 (41%) | 67 (43.5%) | 0.02 |
Group A 2018–2019 (n = 246) | Group B 2020–2022 (n = 154) | p-Value | |
---|---|---|---|
Community-acquired infection | 96 (39%) | 56 (36.3%) | 0.001 |
Hospital-acquired infection | 150 (61%) | 98 (63.6%) | 0.001 |
Multidrug-resistant bacteria | 83 (33.7%) | 57 (37%) | 0.001 |
Focus of infection | |||
Unknown | 16 (6.5%) | 18 (11.7%) | 0.004 |
Central venous catheter | 46 (18.7%) | 31 (20.1%) | 0.156 |
Peripheral venous catheter | 34 (13.8%) | 21 (13.6%) | 0.458 |
Thrombophlebitis | 12 (4.9%) | 27 (17.5%) | 0.024 |
Implanted vascular device | 21 (8.5%) | 16 (10.4%) | 0.048 |
Infective endocarditis | 11 (4.5%) | 16 (10.4%) | 0.678 |
Native valve | 6 (2.4%) | 7 (4.5%) | 0.465 |
Prosthetic valve | 5 (2%) | 9 (5.8%) | 0.247 |
Joint infection | 10 (4.1%) | 9 (5.8%) | 0.765 |
Prosthetic joint infection | 15 (6.1%) | 19 (12.3%) | 0.223 |
Vertebral osteomyelitis | 13 (5.3%) | 17 (11%) | 0.058 |
Intra-abdominal infections | 26 (10%) | 18 (11.7%) | 0.047 |
Osteomyelitis/diabetic foot ulcers | 29 (11.8%) | 20 (13%) | 0.023 |
Skin and soft-tissue infections | 24 (9.8%) | 19 (12.3%) | 0.027 |
Respiratory infections | 32 (13%) | 21 (13.6%) | 0.057 |
Urinary tract infections | 19 (7.7%) | 16 (10.4%) | 0.077 |
Central nervous system infections | 9 (3.7%) | 7 (4.5%) | 0.065 |
Complicated infection | 134 (54.5%) | 87 (56.5%) | 0.001 |
Group A 2018–2019 (n = 246) | Group B 2020–2022 (n = 154) | p-Value | |
---|---|---|---|
Septic shock | 8 (3.3%) | 7 (4.5%) | 0.118 |
Hospitalization in ICU | 11 (4.5%) | 12 (7.8%) | 0.245 |
Hospital stay, days, mean ± SD | 29 (17–52) | 30 (16–51) | 0.457 |
Mortality | |||
Within 28 days | 12 (4.9%) | 16 (10.4%) | 0.001 |
Within 90 days | 19 (7.7%) | 23 (14.9%) | 0.001 |
Repeated blood culture | 137 (55.7%) | 56 (36.4%) | 0.001 |
Negative blood culture within 7 days | 98 (40%) | 48 (31.2%) | 0.001 |
Recurrent disease | 9 (3.6%) | 6 (3.9%) | 0.458 |
Duration of antibiotic treatment, days, mean ± SD | 15 (8–19) | 11 (6–12) | 0.04 |
Repeated clinical estimation | 112 (45.5%) | 36 (23.4%) | 0.001 |
Combination of antibiotics | 26 (10.6%) | 11 (7.1%) | 0.001 |
Recorded bloodstream infection (isolated pathogen) in discharge summary | 124 (50.4%) | 44 (28.6%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrakis, V.; Panopoulou, M.; Rafailidis, P.; Lemonakis, N.; Lazaridis, G.; Terzi, I.; Papazoglou, D.; Panagopoulos, P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens 2023, 12, 780. https://doi.org/10.3390/pathogens12060780
Petrakis V, Panopoulou M, Rafailidis P, Lemonakis N, Lazaridis G, Terzi I, Papazoglou D, Panagopoulos P. The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens. 2023; 12(6):780. https://doi.org/10.3390/pathogens12060780
Chicago/Turabian StylePetrakis, Vasilios, Maria Panopoulou, Petros Rafailidis, Nikolaos Lemonakis, Georgios Lazaridis, Irene Terzi, Dimitrios Papazoglou, and Periklis Panagopoulos. 2023. "The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections" Pathogens 12, no. 6: 780. https://doi.org/10.3390/pathogens12060780
APA StylePetrakis, V., Panopoulou, M., Rafailidis, P., Lemonakis, N., Lazaridis, G., Terzi, I., Papazoglou, D., & Panagopoulos, P. (2023). The Impact of the COVID-19 Pandemic on Antimicrobial Resistance and Management of Bloodstream Infections. Pathogens, 12(6), 780. https://doi.org/10.3390/pathogens12060780