Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance?
Abstract
:1. Introduction
1.1. Role of Abiotic Stress in Cavitation
1.2. Role of Biotic Stress in Cavitation
2. Wood Anatomy, Cavitation, and Resistance to Pathogens
3. Embolism and Xylem Anatomy May Be Involved in Vulnerability to X. fastidiosa
3.1. Grapevine
3.2. Olive Tree
3.3. Citrus
4. Methods for Measuring Vulnerability to Cavitation
4.1. Acoustic Techniques
4.2. Visual Techniques
4.3. Hydraulic Detection of Embolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steudle, E. The cohesion-tension mechanism and the acquisition of water by plant roots. Annu. Rev. Plant Biol. 2001, 75, 52–847. [Google Scholar] [CrossRef] [Green Version]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sack, L.; Holbrook, N.M. Leaf hydraulics. Annu. Rev. Plant Biol. 2006, 57, 361–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debenedetti, P.G. Metastable Liquids; Princeton University Press: Princeton, NJ, USA, 1996; Volume 1, ISBN 9780691213941. [Google Scholar]
- Brodersen, C.R.; Roddy, A.B.; Wason, J.W.; McElrone, A.J. Functional status of xylem through time. Annu. Rev. Plant Biol. 2019, 70, 407–433. [Google Scholar] [CrossRef] [Green Version]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Feild, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef] [Green Version]
- Brodribb, T.J.; Holbrook, N.M. Diurnal depression of leaf hydraulic conductance in a tropical tree species. Plant Cell Environ. 2004, 27, 820–827. [Google Scholar] [CrossRef]
- Brodribb, T.J.; Pittermann, J.; Coomes, D.A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 2012, 173, 673–694. [Google Scholar] [CrossRef] [Green Version]
- Brodribb, T.J.; Holbrook, N.M. Stomatal closure during leaf dehydration, correlation with other leaf hysiological traits. Plant Physiol. 2003, 132, 2166–2173. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.M.; McCulloh, K.A.; Woodruff, D.R.; Meinzer, F.C. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 2012, 195, 48–53. [Google Scholar] [CrossRef]
- Salleo, S.; Trifilò, P.; Esposito, S.; Nardini, A.; Lo Gullo, M.A. Starch-to-sugar conversion in wood parenchyma of field-growing Laurus nobilis plants: A component of the signal pathway for embolism repair? Funct. Plant Biol. 2009, 36, 815. [Google Scholar] [CrossRef]
- Sperry, J.S.; Holbrook, N.M.; Zimmermann, M.H.; Tyree, M.T. Spring filling of xylem vessels in wild grapevine. Plant Physiol. 1987, 83, 414–417. [Google Scholar] [CrossRef] [Green Version]
- McElrone, A.J.; Jackson, S.; Habdas, P. Hydraulic Disruption and passive migration by a bacterial pathogen in oak tree xylem. J. Exp. Bot. 2008, 59, 2649–2657. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.M.; Raju, B.C.; Hung, H.Y.; Weisburg, G.W.; Mandelco-Paul, L.; Brenner, D.J. Xylella fastidiosa gen. nov., sp. nov: Gram-negative, xylem-limited, fastidious plant bacteria related to Xanthomonas spp. Int. Union Microbiol. Soc. 1987, 37, 136–143. [Google Scholar] [CrossRef]
- Uceda-Campos, G.; Feitosa-Junior, O.R.; Santiago, C.R.N.; Pierry, P.M.; Zaini, P.A.; de Santana, W.O.; Martins-Junior, J.; Barbosa, D.; Digiampietri, L.A.; Setubal, J.C.; et al. Comparative genomics of Xylella fastidiosa explores candidate host-specificity determinants and expands the known repertoire of mobile genetic elements and immunity systems. Microorganisms 2022, 10, 914. [Google Scholar] [CrossRef]
- Saponari, M.; Boscia, D.; Altamura, G.; Loconsole, G.; Zicca, S.; D’Attoma, G.; Morelli, M.; Palmisano, F.; Saponari, A.; Tavano, D.; et al. Isolation and pathogenicity of Xylella fastidiosa associated to the Olive Quick Decline Syndrome in Southern Italy. Sci. Rep. 2017, 7, 17723. [Google Scholar] [CrossRef] [Green Version]
- De Lima, J.E.O.; Alfred, L.; Coutinho, A.; Roberto, S.R.; Carlos, E.F. Coffee Leaf Scorch bacterium: Axenic culture, pathogenicity, and comparison with Xylella fastidiosa of citrus. Plant Dis. 1998, 82, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Núñez, D.; Nahuelhual, L.; Oyarzún, C. Forests and Water: The value of native temperate forests in supplying water for human consumption. Ecol. Econ. 2006, 58, 606–616. [Google Scholar] [CrossRef]
- Stenger, A.; Harou, P.; Navrud, S. Valuing environmental goods and services derived from the forests. J. Econ. 2009, 15, 1–14. [Google Scholar] [CrossRef]
- Tezza, L.; Vendrame, N.; Pitacco, A. Disentangling the carbon budget of a vineyard: The role of soil management. Agric. Ecosyst. Environ. 2019, 272, 52–62. [Google Scholar] [CrossRef]
- Montanaro, G.; Xiloyannis, C.; Nuzzo, V.; Dichio, B. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Sci. Hortic. 2017, 217, 92–101. [Google Scholar] [CrossRef]
- Entz, M.H.; Baron, V.S.; Carr, P.M.; Meyer, D.W.; Smith, S.R.; McCaughey, W.P. Potential of forages to diversify cropping systems in the Northern Great Plains. Agron. J. 2002, 94, 240. [Google Scholar] [CrossRef]
- Pimentel, D.; Allen, J.; Beers, A.; Guinand, L.; Linder, R.; McLaughlin, P.; Meer, B.; Musonda, D.; Perdue, D.; Poisson, S.; et al. World agriculture and soil erosion. Bioscience 1987, 37, 277–283. [Google Scholar] [CrossRef]
- Cochard, H. Cavitation in trees. Comptes Rendus Phys. 2006, 7, 1018–1026. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap, 2nd ed.; Springer-Verlag, Ed.; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Jarbeau, J.A.; Ewers, F.W.; Davis, S.D. The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant Cell Environ. 1995, 18, 189–196. [Google Scholar] [CrossRef]
- Lens, F.; Tixier, A.; Cochard, H.; Sperry, J.S.; Jansen, S.; Herbette, S. Embolism resistance as a key mechanism to understand adaptive plant strategies. Curr. Opin. Plant Biol. 2013, 16, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Pockman, W.T.; Sperry, J.S. Vulnerability to xylem cavitation and the distribution of Sonoran Desert vegetation. Am. J. Bot. 2000, 87, 1287–1299. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.S.; Sullivan, J.E.M. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 1992, 100, 605–613. [Google Scholar] [CrossRef]
- Sperry, J.S.; Donnelly, J.R.; Tyree, M.T. Seasonal occurrence of xylem embolism in sugar maple (Acer saccharum). Am. J. Bot. 1988, 75, 1212–1218. [Google Scholar] [CrossRef]
- Sparks, J.P.; Black, R.A. Winter hydraulic conductivity and xylem cavitation in coniferous trees from upper and lower treeline. Arct. Antarct. Alp. Res. 2000, 32, 397–403. [Google Scholar] [CrossRef]
- Zhu, X.B.; Cox, R.M.; Meng, F.R.; Arp, P.A. Responses of xylem cavitation, freezing injury and shoot dieback to a simulated winter thaw in yellow birch seedlings growing in different nursery culture regimes. Ecol. Manag. 2001, 145, 243–253. [Google Scholar] [CrossRef]
- Mayr, S.; Sperry, J.S. Freeze–thaw-induced embolism in Pinus contorta: Centrifuge experiments validate the ‘thaw-expansion hypothesis’ but conflict with ultrasonic emission data. New Phytol. 2010, 185, 1016–1024. [Google Scholar] [CrossRef]
- Pittermann, J.; Sperry, J.S. Analysis of freeze-thaw embolism in conifers. the interaction between cavitation pressure and tracheid size. Plant Physiol. 2006, 140, 374–382. [Google Scholar] [CrossRef] [Green Version]
- Pittermann, J.; Sperry, J. Tracheid diameter is the key trait determining the extent of freezing- induced embolism in conifers. Tree Physiol. 2003, 23, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.S.; Robinson, D.J. Xylem Cavitation and Freezing in Conifers; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2001; pp. 121–136. [Google Scholar] [CrossRef]
- Mayr, S.; Cochard, H.; Ameglio, T.; Kikuta, S. Embolism formation during freezing in the wood of Picea abies. Plant Physiol. 2007, 143, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological droughts in the 21st Century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [Green Version]
- Reusch, T.B.H.; Ehlers, A.; Hämmerli, A.; Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 2005, 102, 2826–2831. [Google Scholar] [CrossRef] [Green Version]
- Rigby, J.R.; Porporato, A. Spring frost risk in a changing climate. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Barigah, T.S.; Charrier, O.; Douris, M.; Bonhomme, M.; Herbette, S.; Améglio, T.; Fichot, R.; Brignolas, F.; Cochard, H. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 2013, 112, 1431–1437. [Google Scholar] [CrossRef]
- Urli, M.; Porté, A.J.; Cochard, H.; Guengant, Y.; Burlett, R.; Delzon, S. Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol. 2013, 33, 672–683. [Google Scholar] [CrossRef]
- Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 2007, 13, 1860–1872. [Google Scholar] [CrossRef]
- Vedwan, N.; Rhoades, R.E. Climate change in the Western Himalayas of India: A study of local perception and response. Clim. Res. 2001, 19, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.D.; Germino, M.J.; Breshears, D.D.; Barron-Gafford, G.A.; Guardiola-Claramonte, M.; Zou, C.B.; Huxman, T.E. Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol. 2013, 197, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, M.L.; Kolb, T.E.; Pockman, W.T.; Plaut, J.A.; Yepez, E.A.; Macalady, A.K.; Pangle, R.E.; McDowell, N.G. Drought predisposes Piñon–Juniper woodlands to insect attacks and mortality. New Phytol. 2013, 198, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Nardini, A.; Battistuzzo, M.; Savi, T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 2013, 200, 322–329. [Google Scholar] [CrossRef]
- Poyatos, R.; Aguadé, D.; Galiano, L.; Mencuccini, M.; Martínez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of scots pine. New Phytol. 2013, 200, 388–401. [Google Scholar] [CrossRef]
- Rivas-Ubach, A.; Gargallo-Garriga, A.; Sardans, J.; Oravec, M.; Mateu-Castell, L.; Pérez-Trujillo, M.; Parella, T.; Ogaya, R.; Urban, O.; Peñuelas, J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. New Phytol. 2014, 202, 874–885. [Google Scholar] [CrossRef] [Green Version]
- Haokip, S.W.; Shankar, K.; Lalrinngheta, J. Climate change and its impact on fruit crops. J. Pharm. Phytochem 2019, 9, 435–438. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Harris, P.J.C.; Ashraf, M. Abiotic Stresses: Plant Resistance through Breeding and Molecular Approaches; Ashraf, M., Harris, P., Eds.; CRC Press: New York, NY, USA, 2005; ISBN 9781482293609. [Google Scholar]
- Yadeta, K.A.; Tomma, B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Tyree, M.T.; Sperry, J.S. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Biol. 1989, 40, 19–38. [Google Scholar] [CrossRef]
- Paljakka, T.; Rissanen, K.; Vanhatalo, A.; Salmon, Y.; Jyske, T.; Prisle, N.L.; Linnakoski, R.; Lin, J.J.; Laakso, T.; Kasanen, R.; et al. Is decreased xylem sap surface tension associated with embolism and loss of xylem hydraulic conductivity in pathogen-infected norway spruce saplings? Front. Plant Sci. 2020, 11, 1090. [Google Scholar] [CrossRef]
- Ikeda, T.; Kiyohara, T. Water relations, xylem embolism and histological features of Pinus thunbergii inoculated with virulent or avirulent pine wood nematode, Bursaphelenchus xylophilus. J. Exp. Bot. 1995, 46, 441–449. [Google Scholar] [CrossRef]
- Sperry, J.S.; Tyree, M.T. Mechanism of water stress-induced xylem embolism. Plant Physiol. 1988, 88, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Roper, M.C.; Greve, L.C.; Labavitch, J.M.; Kirkpatrick, B.C. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl. Environ. Microbiol. 2007, 73, 7252–7258. [Google Scholar] [CrossRef] [Green Version]
- Roper, M.C.; Greve, L.C.; Warren, J.G.; Labavitch, J.M.; Kirkpatrick, B.C. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Am. Phytopathol. Soc. 2007, 20, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Parke, J.L.; Oh, E.; Voelker, S.; Hansen, E.M.; Buckles, G.; Lachenbruch, B. Phytophthora ramorum colonizes tanoak xylem and is associated with reduced stem water transport. Phytopathology 2007, 97, 1558–1567. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, C.Y.; Fang, Z.M.; Zhang, D.L.; Liu, L.; Lee, M.R.; Li, Z.; Li, J.J.; Sung, C.K. Advances in research of pathogenic mechanism of Pine Wilt Disease. Afr. J. Microbiol. Res. 2010, 4, 437–442. [Google Scholar] [CrossRef]
- Umebayashi, T.; Fukuda, K.; Haishi, T.; Sotooka, R.; Zuhair, S.; Otsuki, K. The developmental process of xylem embolisms in Pine Wilt Disease monitored by multipoint imaging using compact magnetic resonance imaging. Plant Physiol. 2011, 156, 943–951. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Donoso, A.G.; Lenhof, J.J.; Pinney, K.; Labavitch, J.M. Vessel embolism and tyloses in early stages of Pierce’s Disease. Aust. J. Grape Wine Res. 2016, 22, 81–86. [Google Scholar] [CrossRef]
- Trapero, C.; Alcántara, E.; Jiménez, J.; Amaro-Ventura, M.C.; Romero, J.; Koopmann, B.; Karlovsky, P.; von Tiedemann, A.; Pérez-Rodríguez, M.; López-Escudero, F.J. Starch hydrolysis and vessel occlusion related to wilt symptoms in olive stems of susceptible cultivars infected by Verticillium dahliae. Front. Plant Sci. 2018, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Newbanks, D.; Bosch, A.; Zimmermann, M.H. Evidence for xylem dysfunction by embolization in Dutch Elm Disease. Phytopathology 1983, 73, 1060–1063. [Google Scholar] [CrossRef] [Green Version]
- Bortolami, G.; Gambetta, G.A.; Delzon, S.; Lamarque, L.J.; Pouzoulet, J.; Badel, E.; Burlett, R.; Charrier, G.; Cochard, H.; Dayer, S.; et al. Exploring the hydraulic failure hypothesis of Esca Leaf symptom formation. Plant Physiol. 2019, 181, 1163–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado’s, J.L.; Tyree, M.T. Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum. Tree Physiol. 1994, 14, 219–240. [Google Scholar] [CrossRef] [PubMed]
- Herbette, S.; Cochard, H. Calcium is a major determinant of xylem vulnerability to cavitation. Tree Physiol. 2010, 153, 1448–1455. [Google Scholar] [CrossRef]
- Wortemann, R.; Herbette, S.; Barigah, T.S.; Fumanal, B.; Alia, R.; Ducousso, A.; Gomory, D.; Roeckel-Drevet, P.; Cochard, H. Genotypic variability and phenotypic plasticity of cavitation in Fagus sylvatica L. across Europe. Tree Physiol. 2011, 31, 1175–1182. [Google Scholar] [CrossRef] [Green Version]
- Lamy, J.-B.; Bouffier, L.; Gis Burlett, R.; Plomion, C.; Cochard, H.; Delzon, S. Uniform selection as a primary force reducing population genetic differentiation of cavitation resistance across a species range. PLoS ONE 2011, 6, e23476. [Google Scholar] [CrossRef] [Green Version]
- Sangsing, K.; Kasemsap, P.; Thanisawanyangkura, S.; Sangkhasila, K.; Gohet, E.; Thaler, P.; Cochard, H. Xylem embolism and stomatal regulation in two rubber clones (Hevea brasiliensis Muell. Arg.). Trees Struct. Funct. 2004, 18, 109–114. [Google Scholar] [CrossRef]
- Hacke, U.; Sauter, J.J. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.). Plant Physiol. 1996, 11, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.S.; Saliendra, N.Z. Intra-and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 1994, 17, 1233–1241. [Google Scholar] [CrossRef]
- Cochard, H.; Lemoine, D.; Dreyer, E. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ. 1999, 22, 101–108. [Google Scholar] [CrossRef]
- Lens, F.; Sperry, J.S.; Christman, M.A.; Choat, B.; Rabaey, D.; Jansen, S. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 2011, 190, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Hacke, U.G.; Sperry, J.S. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 2001, 4, 97–115. [Google Scholar] [CrossRef] [Green Version]
- Hacke, U.G.; Sperry, J.S.; Pockman, W.T.; Davis, S.D.; McCulloh, K.A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 2001, 126, 457–461. [Google Scholar] [CrossRef]
- Delzon, S.; Douthe, C.; Sala, A.; Cochard, H. Mechanism of water-stress induced cavitation in conifers: Bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ. 2010, 33, 2101–2111. [Google Scholar] [CrossRef] [Green Version]
- Choat, B.; Lahr, E.C.; Melcher, P.J.; Zwieniecki, M.A.; Holbrook, N.M. The spatial pattern of air seeding thresholds in mature sugar maple trees. Plant Cell Environ. 2005, 28, 1082–1089. [Google Scholar] [CrossRef]
- Kiorapostolou, N.; Da Sois, L.; Petruzzellis, F.; Savi, T.; Trifilò, P.; Nardini, A.; Petit, G. Vulnerability to xylem embolism correlates to wood parenchyma fraction in angiosperms but not in gymnosperms. Tree Physiol. 2019, 39, 1675–1684. [Google Scholar] [CrossRef]
- Trifilò, P.; Kiorapostolou, N.; Petruzzellis, F.; Vitti, S.; Petit, G.; Lo Gullo, M.A.; Nardini, A.; Casolo, V. Hydraulic recovery from xylem embolism in excised branches of twelve woody species: Relationships with parenchyma cells and non-structural carbohydrates. Plant Physiol. Biochem. 2019, 139, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Hacke, U.G.; Sperry, J.S.; Pittermann, J. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic Appl. Ecol. 2000, 1, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Vilalta, J.; Prat, E.; Oliveras, I.; Piñol, J. Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 2002, 133, 19–29. [Google Scholar] [CrossRef]
- Silva, M.; Funch, L.S.; da Silva, L.B. The growth ring concept: Seeking a broader and unambiguous approach covering tropical Species. Biol. Rev. 2019, 94, 1161–1178. [Google Scholar] [CrossRef]
- Secchi, F.; Zwieniecki, M.A. Accumulation of sugars in the xylem apoplast observed under water stress conditions is controlled by xylem pH. Plant Cell Environ. 2016, 39, 2350–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trifilò, P.; Casolo, V.; Raimondo, F.; Petrussa, E.; Boscutti, F.; Lo Gullo, M.A.; Nardini, A. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L.: The possible link between carbon starvation and hydraulic failure. Plant Physiol. Biochem. 2017, 120, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Tomasella, M.; Häberle, K.-H.; Nardini, A.; Hesse, B.; Machlet, A.; Matyssek, R. Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings. Sci. Rep. 2017, 7, 14308. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.Y.; Han, S.J.; Zhang, J.H.; Wang, M.; Yin, X.H.; Fang, L.D.; Yang, D.; Hao, G.Y. The interaction between nonstructural carbohydrate reserves and xylem hydraulics in Korean pine trees across an altitudinal gradient. Tree Physiol. 2018, 38, 1792–1804. [Google Scholar] [CrossRef]
- Trifilò, P.; Raimondo, F.; Lo Gullo, M.A.; Barbera, P.M.; Salleo, S.; Nardini, A. Relax and refill: Xylem rehydration prior to hydraulic measurements favours embolism repair in stems and generates artificially low PLC values. Plant Cell Environ. 2014, 37, 2491–2499. [Google Scholar] [CrossRef]
- Secchi, F.; Pagliarani, C.; Zwieniecki, M.A. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. Plant Cell Environ. 2017, 40, 858–871. [Google Scholar] [CrossRef]
- Pratt, R.B.; Jacobsen, A.L.; Ewers, F.W.; Davis, S.D. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California Chaparral. New Phytol. 2007, 174, 787–798. [Google Scholar] [CrossRef]
- Morris, H.; Plavcová, L.; Gorai, M.; Klepsch, M.M.; Kotowska, M.; Jochen Schenk, H.; Jansen, S. Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the symplast–apoplast boundary. Am. J. Bot. 2018, 105, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.M.; Jordan, G.J.; Brodribb, T.J. Wheat leaves embolized by water stress do not recover function upon rewatering. Plant Cell Environ. 2018, 41, 2704–2714. [Google Scholar] [CrossRef]
- Salleo, S.; Lo Gullo, M.A.; Trilifo, P.; Nardini, A. New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant Cell Environ. 2004, 27, 1065–1076. [Google Scholar] [CrossRef]
- Plavcová, L.; Hoch, G.; Morris, H.; Ghiasi, S.; Jansen, S. The Amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees. Am. J. Bot. 2016, 103, 603–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacke, U.G.; Sperry, J.S. Limits to xylem refilling under negative pressure in Laurus nobilis and Acer negundo. Plant Cell Environ. 2003, 26, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.M.; Weissman, R.; Stefano, G.; Mancuso, S. Accumulation of xylem transported protein at pit membranes and associated reductions in hydraulic conductance. J. Exp. Bot. 2010, 61, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W.; Tyree, M.T. Effect of stem water content on sap flow from dormant maple and butternut stems. Plant Physiol. 1992, 100, 853–858. [Google Scholar] [CrossRef] [Green Version]
- Fradin, E.F.; Thomma, B.P.H.J. Physiology and molecular aspects of Verticillium Wilt Diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol. 2006, 7, 71–86. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Pivovaroff, A.L.; Scudiero, E.; de Guzman, M.E.; Rolshausen, P.E.; Santiago, L.S. Contrasting adaptation of xylem to dehydration in two Vitis vinifera L. sub-species. Vitis J. Grapevine Res. 2020, 59, 53–61. [Google Scholar] [CrossRef]
- Moravčík, M.; Mamoňová, M.; Račko, V.; Kováč, J.; Dvořák, M.; Krajňáková, J.; Ďurkovič, J. Different responses in vascular traits between Dutch elm hybrids with a contrasting tolerance to Dutch Elm Disease. J. Fungi 2022, 8, 215. [Google Scholar] [CrossRef]
- Beier, G.L.; Lund, C.D.; Held, B.W.; Ploetz, R.C.; Konkol, J.L.; Blanchette, R.A. Variation in xylem characteristics of botanical races of Persea americana and their potential influence on susceptibility to the pathogen Raffaelea lauricola. Trop. Plant Pathol. 2021, 46, 232–239. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Scudiero, E.; Schiavon, M.; Rolshausen, P.E. Xylem vessel diameter affects the compartmentalization of the vascular pathogen Phaeomoniella chlamydospora in grapevine. Front. Plant Sci. 2017, 8, 1442. [Google Scholar] [CrossRef] [Green Version]
- Pouzoulet, J.; Scudiero, E.; Schiavon, M.; Santiago, L.S.; Rolshausen, P.E. Modeling of xylem vessel occlusion in grapevine. Tree Physiol. 2019, 39, 1438–1445. [Google Scholar] [CrossRef]
- Martín, J.A.; Solla, A.; Venturas, M.; Collada, C.; Domínguez, J.; Miranda, E.; Fuentes, P.; Burón, M.; Iglesias, S.; Gil, L. Seven Ulmus minor clones tolerant to Ophiostoma novo-ulmi registered as forest reproductive material in Spain. IForest 2014, 8, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Ewers, F.W.; Fisher, J.B.; Chiu, S.-T. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 1990, 84, 544–552. [Google Scholar] [CrossRef]
- Solla, A.; Gil, L. Xylem Vessel Diameter as a factor in resistance of Ulmus minor to Ophiostoma novo-ulmi. For. Pathol. 2002, 32, 123–134. [Google Scholar] [CrossRef]
- Martín, J.A.; Solla, A.; Esteban, L.G.; de Palacios, P.; Gil, L. Bordered pit and ray morphology involvement in elm resistance to Ophiostoma novo-ulmi. Can. J. For. Res. 2009, 39, 420–429. [Google Scholar] [CrossRef]
- Slatyer, R.O.; Taylor, S.A. Terminology in plant- and soil-water relations. Nature 1960, 187, 922–924. [Google Scholar] [CrossRef]
- Chatelet, D.S.; Wistrom, C.M.; Purcell, A.H.; Rost, T.L.; Matthews, M.A. Xylem structure of four grape varieties and 12 alternative hosts to the xylem-limited bacterium Xylella fastidious. Ann. Bot. 2011, 108, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Donoso, A.G.; Sun, Q.C.; Roper, M.; Greve, L.; Kirkpatrick, B.; Labavitch, J.M. Cell wall-degrading enzymes enlarge the pore size of intervessel pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant Physiol. 2010, 152, 1748–1759. [Google Scholar] [CrossRef] [Green Version]
- Rood, S.B.; Patiño, S.; Coombs, K.; Tyree, M.T. Branch Sacrifice: Cavitation-associated drought adaptation of riparian cottonwoods. Trees 2000, 14, 248–257. [Google Scholar] [CrossRef]
- Bové, J.M.; Garnier, M. Phloem-and xylem-restricted plant pathogenic bacteria. Plant Sci. 2003, 164, 423–438. [Google Scholar] [CrossRef]
- Baldi, P.; la Porta, N. Xylella fastidiosa: Host range and advance in molecular identification techniques. Front. Plant Sci. 2017, 8, 944. [Google Scholar] [CrossRef] [Green Version]
- EFSA. Update of the Xylella spp. host plant database—Systematic literature search up to 30 June 2019. EFSA J. 2020, 18, e06114. [Google Scholar] [CrossRef]
- Chatterjee, S.; Almeida, R.P.P.; Lindow, S. Living in two worlds: The plant and insect lifestyles of Xylella fastidiosa. Annu. Rev. Phytopathol. 2008, 46, 243–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, D.L.; Purcell, A.H. Xylella fastidiosa: Cause of Pierce’s Disease of grapevine and other emergent diseases. Plant Dis. 2002, 86, 1056–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, D.L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 1989, 27, 271–290. [Google Scholar] [CrossRef]
- Newman, K.L.; Almeida, R.P.P.; Purcell, A.H.; Lindow, S.E. Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera. Appl. Environ. Microbiol. 2003, 69, 7319–7327. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, J.F.; Matthews, M.A.; Greve, L.C.; Labavitch, J.M.; Rost, T.L. Grapevine susceptibility to Pierce’s Disease. II. The progression of anatomical symptoms. Am. J. Enol. Vitic. 2004, 55, 238–245. [Google Scholar] [CrossRef]
- Montilon, V.; De Sardis, A.; Saponari, M.; Kubaa, A.R.; Giampietruzzi, A.; D’Attorna, G.; Saldarelli, P. Xylella fastidiosa subsp pauca ST53 exploits pit membranes of susceptible olive cultivars to spread systemically in the xylem. Plant Patol. 2023, 72, 144–153. [Google Scholar] [CrossRef]
- Cochard, H.; Tyree, M.T. Xylem dysfunction in Quercus: Vessel Sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol. 1990, 6, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Brodersen, C.R.; Mcelrone, A.J.; Choat, B.; Matthews, M.A.; Shackel, K.A. The dynamics of embolism repair in xylem: In vivo visualizations using high-resolution computed tomography. Plant Physiol. 2010, 154, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Petit, G.; Bleve, G.; Gallo, A.; Mita, G.; Montanaro, G.; Nuzzo, V.; Zambonini, D.; Pitacco, A. Susceptibility to Xylella fastidiosa and functional xylem anatomy in Olea europaea: Revisiting a tale of plant-pathogen interaction. AoB Plants 2021, 13, plab027. [Google Scholar] [CrossRef]
- Pouzoulet, J.; Pivovaroff, A.L.; Santiago, L.S.; Rolshausen, P.E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch Elm Disease and Esca Disease in grapevine. Front. Plant Sci. 2014, 5, 253. [Google Scholar] [CrossRef]
- Sicard, A.; Saponari, M.; Vanhove, M.; Castillo, A.I.; Giampetruzzi, A.; Loconsole, G.; Saldarelli, P.; Boscia, D.; Neema, C.; Almeida, R.P.P. Introduction and adaptation of an emerging pathogen to olive trees in Italy data summary. Microb. Genom. 2021, 7, 735. [Google Scholar] [CrossRef]
- Flitsch, W. Farbatlas rebsorten 300 sorten und ihre weine doi. In Wein; Springer: Berlin/Heidelberg, Germany, 1999; pp. 231–242. [Google Scholar]
- Ramsing, C.K.; Gramaje, D.; Mocholí, S.; Agustí, J.; Cabello Sáenz de Santa María, F.; Armengol, J.; Berbegal, M. Relationship between the xylem anatomy of grapevine rootstocks and their susceptibility to Phaeoacremonium minimum and Phaeomoniella chlamydospora. Front. Plant Sci. 2021, 12, 726461. [Google Scholar] [CrossRef]
- Thorne, E.T.; Young, B.M.; Young, G.M.; Stevenson, J.F.; Labavitch, J.M.; Matthews, M.A.; Rost, T.L. The structure of xylem vessels in grapevine and a possible passive mechanism for the systemic spread of bacterial disease. Am. J. Bot. 2006, 93, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Schweingruber, F.; Landolt, W. The xylem database. Available online: https://www.wsl.ch/dendropro/xylemdb/ (accessed on 19 November 2022).
- Alsina, M.M.; de Herralde, F.; Aranda, X.; Savé, R.; Biel, C. Water relations and vulnerability to embolism are not related: Experiments with eight grapevine cultivars. Vitis 2007, 46, 1. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Mcelrone, A.J.; Choat, B.; Lee, E.F.; Shackel, K.A.; Matthews, M.A. In vivo visualizations of drought-induced embolism spread in Vitis vinifera. Plant Physiol. 2013, 161, 1820–1829. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.L.; Mollenhauer, H.H. Rickettsia-like bacterium associated with Pierce’s Disease of grapes. Science 1973, 179, 298–300. [Google Scholar] [CrossRef]
- Schaad, N.W.; Postnikova, E.; Lacy, G.; Fatmi, M.; Chang, C.J. Xylella fastidiosa subspecies: X. fastidiosa subsp. piercei, subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst. Appl. Microbiol. 2004, 27, 290–300. [Google Scholar] [CrossRef]
- Chen, J.; Wu, F.; Zheng, Z.; Deng, X.; Burbank, L.P.; Stenger, D.C. Draft Genome Sequence of Xylella fastidiosa subsp. fastidiosa strain stag’s leap. Genome Announc. 2016, 4, e00240-1. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.K.; Sperry, J.S.; Hacke, U.G.; Hoang, N. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant Cell Environ. 2005, 28, 800–812. [Google Scholar] [CrossRef]
- De Pascali, M.; Vergine, M.; Sabella, E.; Aprile, A.; Nutricati, E.; Nicolì, F.; Buja, I.; Negro, C.; Miceli, A.; Rampino, P.; et al. Molecular effects of Xylella fastidiosa and drought combined stress in olive trees. Plants 2019, 8, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coletta-Filho, H.D.; Pereira, E.O.; Souza, A.A.; Takita, M.A.; Cristofani-Yale, M.; Machado, M.A. Analysis of resistance to Xylella fastidiosa within a hybrid population of Pera sweet orange × Murcott tangor. Plant Pathol. 2007, 56, 661–668. [Google Scholar] [CrossRef]
- Deyett, E.; Pouzoulet, J.; Yang, J.-I.; Ashworth, V.E.; Castro, C.; Roper, M.C.; Rolshausen, P.E. Assessment of Pierce’s Disease susceptibility in Vitis vinifera cultivars with different pedigrees. Plant Pathol. 2019, 68, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Esau, K. Anatomic effects of the viruses of Pierce’s Disease and Phony Peach. Hilgardia 1948, 18, 423–482. [Google Scholar] [CrossRef] [Green Version]
- Baccari, C.; Lindow, S.E. Assessment of the process of movement of Xylella fastidiosa within susceptible and resistant grape cultivars. Phytopathology 2011, 101, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Loomis, H.N. Performance of Vitis species in the South as an indication of their relative resistance to Pierce’s Disease. Plant Dis. Rep. 1958, 42, 833–836. [Google Scholar] [CrossRef]
- Ruel, J.J.; Walker, M.A. Resistance to Pierce’s Disease in Muscadinia rotundifolia and other native grape species. Am. J. Enol. Vitic. 2006, 57, 158–165. [Google Scholar] [CrossRef]
- Fry, S.M.; Milholland, R.D. Multiplication and translocation of Xylella fastidiosa in petioles and stems of grapevine resistant, tolerant and susceptible to Pierce’s Disease. Phytopathology 1990, 80, 61–65. [Google Scholar] [CrossRef]
- Krivanek, A.F.; Walker, M.A. Vitis resistance to Pierce’s Disease is characterized by differential Xylella populations in stems and leaves. Phytopathology 2005, 95, 44–52. [Google Scholar] [CrossRef]
- Sun, Q.; Greve, L.C.; Labavitch, J.M. Polysaccharide compositions of intervessel pit membranes contribute to Pierce’s Disease resistance of grapevines. Plant Physiol. 2011, 155, 1976–1987. [Google Scholar] [CrossRef] [Green Version]
- Connor, D.J. Adaptation of olive (Olea europaea L.) to water-limited environments. Aust. J. Agric. Res. 2005, 56, 1181–1189. [Google Scholar] [CrossRef]
- Ennajeh, M.; Tounekti, T.; Vadel, M.A.; Khemira, H.; Cochaard, H. Water relations and drought-induced embolism in olive (Olea europaea) varieties ‘Meski’ and ‘Chemlali’ during severe drought. Tree Physiol. 2008, 28, 971–976. [Google Scholar] [CrossRef]
- De Micco, V.; Aronne, G.; Baas, P. Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient. Trees Struct. Funct. 2008, 22, 643–655. [Google Scholar] [CrossRef]
- Lo Gullo, M.A.; Salleo, S. Wood anatomy of some trees with diffuse- and ring-porous wood: Some functional and ecological interpretations. G. Bot. Ital. Off. J. Soc. Bot. Ital. 2009, 124, 601–613. [Google Scholar] [CrossRef]
- Miller, R.B. Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. IAWA J. 1986, 7, 421. [Google Scholar] [CrossRef]
- Bacelar, E.A.; Moutinho-Pereira, J.M.; Gonçalves, B.C.; Ferreira, H.F.; Correia, C.M. Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot. 2007, 60, 183–192. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Diaz-Espejo, A.; Morales-Sillero, A.; Martín-Palomo, M.J.; Mayr, S.; Beikircher, B.; Fernández, J.E. Shoot hydraulic characteristics, plant water status and stomatal response in olive trees under different soil water conditions. Plant Soil 2013, 373, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Trifilò, P.; lo Gullo, M.A.; Nardini, A.; Pernice, F.; Salleo, S. Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees Struct. Funct. 2007, 21, 549–556. [Google Scholar] [CrossRef]
- Martelli, G.P. The Current status of the Quick Decline Syndrome of Olive in Southern Italy. Phytoparasitica 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Boscia, D.; Altamura, G.; Ciniero, A.; di Carolo, M.; Dongiovanni, C.; Fumarola, G.; Giampietruzzi, A.; Morelli, M.; Murrone, N.; Palmisano, F.; et al. Resistenza a Xylella fastidiosa in diverse cultivar di olivo. L’informatore Agrar. 2017, 11, 59–68. [Google Scholar] [CrossRef]
- Sabella, E.; Aprile, A.; Genga, A.; Siciliano, T.; Nutricati, E.; Nicolì, F.; Vergine, M.; Negro, C.; de Bellis, L.; Luvisi, A. Xylem cavitation susceptibility and refilling mechanisms in olive trees infected by Xylella fastidiosa. Sci. Rep. 2019, 9, 9602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoffoni, C.; Albuquerque, C.; Brodersen, C.R.; Townes, S.V.; John, G.P.; Cochard, H.; Buckley, T.N.; McElrone, A.J.; Sack, L. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytol. 2017, 213, 1076–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavan, S.; Vergine, M.; Nicolì, F.; Sabella, E.; Aprile, A.; Negro, C.; Fanelli, V.; Savoia, M.A.; Montilon, V.; Susca, L.; et al. Screening of olive biodiversity defines genotypes potentially resistant to Xylella fastidiosa. Front. Plant Sci. 2021, 12, 723879. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, E.S.S.; Hegazi, A.A.; Abd Allatif, A.M. Histological indicators of dwarfism of some olive cultivars. World Appl. Sci. J. 2013, 28, 835–841. [Google Scholar] [CrossRef]
- Walker, N.C.; White, S.M.; McKay Fletcher, D.; Ruiz, S.A.; Rankin, K.E.; de Stradis, A.; Saponari, M.; Williams, K.A.; Petroselli, C.; Roose, T. The impact of xylem geometry on olive cultivar resistance to Xylella fastidiosa: An image-based study. Plant Pathol. 2022, 72, 521–535. [Google Scholar] [CrossRef]
- Ouyang, P.; Arif, M.; Fletcher, J.; Melcher, U.; Corona, O. Enhanced Reliability and Accuracy for Field Deployable Bioforensic Detection and Discrimination of Xylella fastidiosa Subsp. Pauca, Causal Agent of Citrus Variegated Chlorosis Using Razor Ex Technology and Taqman Quantitative PCR. PLoS ONE 2013, 8, e81647. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.J.; Garnier, M.; Zreik, L.; Rossetti, V.; Bove, J.M. Culture and serological detection of the xylem-limited bacterium causing Citrus Variegated chlorosis and its identification as a strain of Xylella fastidiosa. Curr. Microbiol. 1993, 27, 137–142. [Google Scholar] [CrossRef]
- Garcia, A.L.; Torres, S.C.Z.; Heredia, M.; Lopes, S.A. Citrus responses to Xylella fastidiosa infection. Plant Dis. 2012, 96, 1245–1249. [Google Scholar] [CrossRef] [Green Version]
- Niza, B.; Coletta-Filho, H.D.; Merfa, M.V.; Takita, M.A.; de Souza, A.A. Differential Colonization Patterns of Xylella fastidiosa Infecting Citrus Genotypes. Plant Pathol. 2015, 64, 1259–1269. [Google Scholar] [CrossRef]
- De Souza, A.A.; Takita, M.A.; Amaral, A.; Coletta-Filho, H.D.; Machado, M.A. Citrus responses to Xylella fastidiosa infection, the causal agent of Citrus Variegated Chlorosis. Tree For. Sci. Biotechnol. 2009, 3, 73–80. [Google Scholar]
- Cochard, H.; Badel, E.; Herbette, S.; Delzon, S.; Choat, B.; Jansen, S. Methods for measuring plant vulnerability to cavitation: A critical review. J. Exp. Bot. 2013, 64, 4779–4791. [Google Scholar] [CrossRef] [Green Version]
- Milburn, J.A.; Johnson, R.P. The Conduction of Sap: II. Detection of vibrations produced by sap cavitation in Ricinus xylem. Planta 1966, 69, 43–52. [Google Scholar] [CrossRef]
- Tyree, M.T.; Dixon, M.A.; Tyree, E.L.; Johnson, R. Ultrasonic acoustic emissions from the sapwood of cedar and hemlock: An examination of three hypotheses regarding cavitations. Plant Physiol. 1984, 75, 988–992. [Google Scholar] [CrossRef] [Green Version]
- Kikuta, S.B.; Hietz, P.; Richter, H. Vulnerability curves from conifer sapwood sections exposed over solutions with known water potentials. J. Exp. Bot. 2003, 54, 2149–2155. [Google Scholar] [CrossRef] [Green Version]
- Canny, M. Vessel contents during transpiration—Embolisms and refilling. Am. J. Bot. 1997, 84, 1223–1230. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Ahrens, E.T.; Burns, M.J.; Zwieniecki, M.A. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol. 2001, 126, 27–31. [Google Scholar] [CrossRef] [Green Version]
- Barbaroux, C.; Breda, N. Contrasting distribution and seasonal dynamics of carbohydrate in stem wood of adult ring-porous sessile oak and diffuse-porous beech Trees. Tree Physiol. 2002, 22, 1201–1210. [Google Scholar] [CrossRef]
- Pérez-Donoso, A.G.; Greve, L.C.; Walton, J.H.; Shackel, K.A.; Labavitch, J.M. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiol. 2007, 143, 1024–1036. [Google Scholar] [CrossRef] [Green Version]
- Ewart, A.J. The ascent of water in trees. Philos. Trans. R. Soc. Lond. B 1905, 198, 41–85. [Google Scholar] [CrossRef]
- Hacke, U.G.; Spicer, R.; Schreiber, S.G.; Plavcová, L. An ecophysiological and developmental perspective on variation in vessel diameter. Plant Cell Environ. 2017, 40, 831–845. [Google Scholar] [CrossRef]
- Fichot, R.; Barigah, T.S.; Chamaillard, S.; le Thiec, D.; Laurans, F.; Cochard, H.; Brignolas, F. Common trade-offs between xylem resistance to cavitation and other physiological traits do not hold among unrelated Populus deltoides x Populus nigra hybrids. Plant Cell Environ. 2010, 33, 1553–1568. [Google Scholar] [CrossRef] [PubMed]
- Noshiro, S.; Baas, P. Latitudinal trends in wood anatomy within species and genera: Case study in Cornus s.l. (Cornaceae). Am. J. Bot. 2000, 87, 1495–1506. [Google Scholar] [CrossRef] [PubMed]
- Carlquist, S. Comparative Wood Anatomy. Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Venturas, M.; Lopez, R.; Martin, J.A.; Gasco, A.; Gil, L. Heritability of Ulmus minor resistance to Dutch Elm Disease and its relationship to vessel size, but not to xylem vulnerability to drought. Plant Pathol. 2014, 63, 500–509. [Google Scholar] [CrossRef]
- Marchi, G.; Peduto, F.; Mugnai, L.; di Marco, S.; Calzarano, F.; Surico, G. Some observations on the relationship of manifest and hidden Esca to rainfall. Phytopathol. Mediterr. 2006, 45, 117–126. [Google Scholar] [CrossRef]
- Anfodillo, T.; Olson, M.E. Tree mortality: Testing the link between drought, embolism vulnerability, and xylem conduit diameter remains a priority. Front. For. Glob. Change 2021, 4, 704670. [Google Scholar] [CrossRef]
- Pearce, B. Antimicrobial Defences in the Wood of Living Trees. New Phytol. 1996, 132, 203–233. [Google Scholar] [CrossRef]
- Godefroid, M.; Cruaud, A.; Streito, J.-C.; Rasplus, J.-Y.; Rossi, J.-P. Xylella fastidiosa: Climate suitability of European continent. Sci. Rep. 2019, 9, 8844. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.; García-Madero, J.M.; Jos, Á.; Saldarelli, P.; Dongiovanni, C.; Kovacova, M.; Saponari, M.; Baños Arjona, A.; Hackl, E.; Webb, S.; et al. Xylella fastidiosa in olive: A review of control attempts and current management. Microorganisms 2021, 9, 1771. [Google Scholar] [CrossRef]
- Trkulja, V.; Tomić, A.; Iličić, R.; Nožinić, M.; Milovanović, T.P. Xylella fastidiosa in Europe: From the introduction to the current status. Plant Pathol. J. 2022, 38, 551–571. [Google Scholar] [CrossRef]
- Desprez-Loustau, M.; Balci, Y.; Cornara, D.; Gonthier, P.; Robin, C.; Jacques, M. Is Xylella fastidiosa a serious threat to European forests? For. Int. J. For. Res. 2021, 94, 1–17. [Google Scholar] [CrossRef]
- Rosado, C.C.G.; Guimarães, L.M.D.S.; Titon, M.; Lau, D.; Rosse, L.; De Resende, M.D.V.; Alfenas, A.C. Resistance to Ceratocystis Wilt (Ceratocystis fimbriata) in parents and progenies of Eucalyptus grandis x E. urophylla. Silvae Genet. 2010, 59, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Musoli, P.C.; Cilas, C.; Pot, D.; Nabaggala, A.; Nakendo, S.; Pande, J.; Charrier, A.; Leroy, T.; Bieysse, D. Inheritance of resistance to Coffee Wilt Disease (Fusarium xylarioides steyaert) in Robusta coffee (Coffea canephora Pierre) and breeding perspectives. Tree Genet. Genomes 2013, 9, 351–360. [Google Scholar] [CrossRef]
- Blanco-Lòpez, M.B.; Jiménez-Díaz, R.; Caballero, J. Symptomatology, Incidence and distribution of Verticillium Wilt of olive trees in Andalucía. Phytopathol. Mediterr. 1984, 23, 1–8. Available online: http://www.jstor.org/stable/42684673 (accessed on 19 November 2022).
- Montes-Osuna, N.; Mercado-Blanco, J. Verticillium Wilt of olive and its control: What did we learn during the last decade? Plants 2020, 9, 735. [Google Scholar] [CrossRef]
- Valverde, P.; Barranco, D.; López-Escudero, F.J.; Díez, C.M.; Trapero, C. Efficiency of breeding olives for resistance to Verticillium Wilt. Front. Plant Sci. 2023, 14, 1149570. [Google Scholar] [CrossRef]
- Castro, C.; Massonnet, M.; Her, N.; DiSalvo, B.; Jablonska, B.; Jeske, D.R.; Cantu, D.; Roper, M.C. Priming grapevine with lipopolysaccharide confers systemic resistance to Pierce’s Disease and identifies a peroxidase linked to defense priming. New Phytol. 2023, 1–18. [Google Scholar] [CrossRef]
Plant and Cultivar | Attitude Towards X. fastidiosa | Vessel Diameter (µm) | Other Factors |
---|---|---|---|
Grapevine (1) | |||
Sylvaner | Tolerant | 80–250 | 20% more of parenchyma rays (1) |
CabernetSauvignon | Susceptible | 150–400 | |
Pinot Noir | Highly susceptible | 150–400 | |
Chardonnay | Highly susceptible | 150–400 | |
Olive tree | |||
Leccino | Resistant | <30 (2) | Presence of starch grain in vessels (2) |
Compact pits (3) | |||
Occlusion with callose like structures (3) | |||
Cellina di Nardò | Susceptible | 45–75 (3) | |
Citrus tree (4) | |||
Hybrid H124 | Resistant | 20 | |
Hybrid H 34 | Resistant | 21 | |
Tangor Murcott | Resistant | 27 | |
Hybrid H155 | Susceptible | 15 | |
Hybrid H 179 | Susceptible | 19 | |
Pera sweet orange | Susceptible | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carluccio, G.; Greco, D.; Sabella, E.; Vergine, M.; De Bellis, L.; Luvisi, A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens 2023, 12, 825. https://doi.org/10.3390/pathogens12060825
Carluccio G, Greco D, Sabella E, Vergine M, De Bellis L, Luvisi A. Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens. 2023; 12(6):825. https://doi.org/10.3390/pathogens12060825
Chicago/Turabian StyleCarluccio, Giambattista, Davide Greco, Erika Sabella, Marzia Vergine, Luigi De Bellis, and Andrea Luvisi. 2023. "Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance?" Pathogens 12, no. 6: 825. https://doi.org/10.3390/pathogens12060825
APA StyleCarluccio, G., Greco, D., Sabella, E., Vergine, M., De Bellis, L., & Luvisi, A. (2023). Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to X. fastidiosa Resistance? Pathogens, 12(6), 825. https://doi.org/10.3390/pathogens12060825