Rodents as Sentinels for Toxoplasma gondii in Rural Ecosystems in Slovakia—Seroprevalence Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling of Rodents
2.2. Detection of Antibodies to Toxoplasma gondii
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hejlíček, K.; Literák, I.; Nezval, J. Toxoplasmosis in wild mammals from the Czech Republic. J. Wildl. Dis. 1997, 33, 480–485. [Google Scholar] [CrossRef]
- Gotteland, C.; Chaval, Y.; Villena, I.; Galan, M.; Geers, R.; Aubert, D.; Poulle, M.L.; Charbonnel, N.; Gilot-Fromont, E. Species or local environment, what determines the infection of rodents by Toxoplasma gondii? Parasitology 2014, 141, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Pappas, G.; Roussos, N.; Falagas, M.E. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int. J. Parasitol. 2009, 39, 1385–1394. [Google Scholar] [CrossRef] [PubMed]
- Machala, L.; Kodym, P.; Malý, M.; Geleneky, M.; Beran, O.; Jilich, D. Toxoplasmosis in immunocompromised patients. Epidemiol. Mikrobiol. Imunol. 2015, 64, 59–65. [Google Scholar] [PubMed]
- Dubey, J.P.; Murata, F.H.A.; Cerqueira-Cézar, C.K.; Kwok, O.C.H.; Villena, I. Congenital toxoplasmosis in humans: An update of worldwide rate of congenital infections. Parasitology 2021, 148, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 12, e00037. [Google Scholar] [CrossRef]
- Samra, N.A.; McCrindle, C.M.; Penzhorn, B.; Cenci-Goga, B.T. Seroprevalence of toxoplasmosis in sheep in South Africa. J. S. Afr. Vet. Assoc. 2007, 78, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Dubey, J.P.; Rollor, E.A.; Smith, K.; Kwok, O.C.H.; Thulliez, P. Low seroprevalence of Toxoplasma gondii in feral pigs from a remote island lacking cats. J. Parasitol. 1997, 83, 839–841. [Google Scholar] [CrossRef]
- Dabritz, H.A.; Miller, M.A.; Gardner, I.A.; Packham, A.E.; Atwill, E.R.; Conrad, P.A. Risk factors for Toxoplasma gondii infection in wild rodents from central coastal California and a review of T. gondii prevalence in rodents. J. Parasitol. 2008, 94, 675–684. [Google Scholar] [CrossRef]
- Pelikán, J. Reproduction, population structure and elimination of males in Apodemus agrarius (Pall.). Folia Zool. 1965, 14, 317–332. [Google Scholar]
- Pelikán, J. Sex ration in three Apodemus species. Folia Zool. 1970, 19, 23–24. [Google Scholar]
- Antolová, D.; Reiterová, K.; Stanko, M.; Zalesny, G.; Fričová, J.; Dvorožňaková, E. Small mammals: Paratenic hosts for species of Toxocara in eastern Slovakia. J. Helminthol. 2013, 87, 52–58. [Google Scholar] [CrossRef]
- Essbauer, S.; Schmidt, J.; Conraths, F.J.; Friedrich, R.; Koch, J.; Hautmann, W.; Pfeffer, M.; Wölfel, R.; Finke, J.; Dobler, G.; et al. A new Puumala hantavirus subtype in rodents associated with an outbreak of Nephropathia epidemica in South-East Germany in 2004. Epidemiol. Infect. 2006, 134, 1333–1344. [Google Scholar] [CrossRef] [PubMed]
- Reperant, L.A.; Hegglin, D.; Tanner, I.; Fischer, C.; Deplazes, P. Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology 2009, 136, 329–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiterová, K.; Antolová, D.; Zaleśny, G.; Stanko, M.; Špilovská, S.; Mošanský, L. Small rodents—Permanent reservoirs of toxocarosis in different habitats of Slovakia. Helminthologia 2013, 50, 20–26. [Google Scholar] [CrossRef]
- Grzybek, M.; Antolová, D.; Tołkacz, K.; Alsarraf, M.; Behnke-Borowczyk, J.; Nowicka, J.; Demetraki-Paleolog, J.; Biernat, B.; Behnke, J.M.; Bajer, A. Seroprevalence of Toxoplasma gondii among sylvatic rodents in Poland. Animals 2021, 11, 1048. [Google Scholar] [CrossRef]
- Hughes, H.P.; Van Knapen, F.; Atkinson, H.J.; Balfour, A.H.; Lee, D.L. A new soluble antigen preparation of Toxoplasma gondii and its use in serological diagnosis. Clin. Exp. Immunol. 1982, 49, 239–246. [Google Scholar]
- Opsteegh, M.; Teunis, P.; Mensink, M.; Züchner, L.; Titilincu, A.; Langelaar, M.; van der Giessen, J. Evaluation of ELISA test characteristics and estimation of Toxoplasma gondii seroprevalence in Dutch sheep using mixture models. Prev. Vet. Med. 2010, 96, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Naguleswaran, A.; Hemphill, A.; Rajapakse, R.P.V.J.; Sager, H. Elaboration of crude antigen ELISA for serodiagnosis of caprine neosporosis: Validation of the test by detection of Neospora caninum-specific antibodies in goats from Sri Lanka. Vet. Parasitol. 2004, 126, 257–262. [Google Scholar] [CrossRef]
- Reiczigel, J.; Marozzi, M.; Fabian, I.; Rozsa, L. Biostatistics for parasitologists—A primer to Quantitative Parasitology. Trends Parasitol. 2019, 35, 277–281. [Google Scholar] [CrossRef]
- Achazi, K.; Růžek, D.; Donoso-Mantke, O.; Schlegel, M.; Sheikh, A.H.; Wenk, M.; Schmidt-Chanasit, J.; Ohlmeyer, L.; Rühe, F.; Vor, T.; et al. Rodents as sentinels for the prevalence of Tick-Borne Encephalitis Virus. Vector Borne Zoonotic Dis. 2011, 11, 641–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzybek, M.; Sironen, T.; Mäk, S.; Tołkacz, K.; Alsarraf, M.; Strachecka, A.; Paleolog, J.; Biernat, B.; Szczepaniak, K.; Behnke-Borowczyk, J.; et al. Zoonotic Virus Seroprevalence among Bank Voles, Poland, 2002–2010. Emerg. Infect. Dis. 2019, 25, 1607–1609. [Google Scholar] [CrossRef] [PubMed]
- Waindok, P.; Özbakis-Beceriklisoy, G.; Janecek-Erfurth, E.; Springer, A.; Pfeffer, M.; Leschnik, M.; Strube, C. Parasites in brains of wild rodents (Arvicolinae and Murinae) in the city of Leipzig, Germany. Int. J. Parasitol. Parasites Wildl. 2019, 10, 211–217. [Google Scholar] [CrossRef]
- Galeh, T.M.; Sarvi, S.; Montazeri, M.; Moosazadeh, M.; Nakhaei, M.; Shariatzadeh, S.A.; Daryani, A. Global Status of Toxoplasma gondii Seroprevalence in Rodents: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2020, 7, 461. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.; Aspöck, H.; Janitschke, K. Serological studies on the occurrence of Toxoplasma gondii among wild living mammalia in eastern Austria. Zentbl. Bakt. Orig. Ser. A 1973, 224, 257–263. [Google Scholar]
- Zanzani, S.A.; Cerbo, A.D.; Gazzonis, A.L.; Epis, S.; Invernizzi, A.; Tagliabue, S.; Manfredi, M.T. Parasitic and bacterial infections of Myocastor coypus in a metropolitan area of northwestern Italy. J. Wildl. Dis. 2016, 52, 126–130. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Z.-J.; Zhu, X.-Q.; Ren, Q.-S.; Nie, F.-F.; Gao, J.-M.; Gao, X.-J.; Yang, T.-B.; Zhou, W.-L.; Shen, J.-L.; et al. Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection. PLoS ONE 2012, 7, e35834. [Google Scholar] [CrossRef] [Green Version]
- Owen, M.R.; Trees, A.J. Vertical transmission of Toxoplasma gondii from chronically infected house (Mus musculus) and field (Apodemus sylvaticus) mice determined by polymerase chain reaction. Parasitology 1998, 116, 299–304. [Google Scholar] [CrossRef]
- Marshall, P.A.; Hughes, J.M.; Williams, R.H.; Smith, J.E.; Murphy, R.G.; Hide, G. Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus. Parasitology 2004, 128, 39–42. [Google Scholar] [CrossRef] [Green Version]
- Rejmanek, D.; Vanwormer, E.; Mazet, J.A.K.; Packham, A.E.; Aguilar, B.; Conrad, P.A. Congenital transmission of Toxoplasma gondii in deer mice (Peromyscus maniculatus) after oral oocyst infection. J. Parasitol. 2010, 96, 516–520. [Google Scholar] [CrossRef]
- Aramini, J.J.; Stephen, C.; Dubey, J.P.; Engelstoft, C.; Schwantje, H.; Ribble, C.S. Potential contamination of drinking water with Toxoplasma gondii oocysts. Epidemiol. Infect. 1999, 122, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Thomasson, D.; Wright, E.A.; Hughes, J.M.; Dodd, N.S.; Cox, A.P.; Boyce, K.; Gerwash, O.; Abushahma, M.; Lun, Z.R.; Murphy, R.G.; et al. Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats. Parasitology 2011, 138, 1117–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horta, M.C.; Guimarães, M.F.; Arraes-Santos, A.I.; Araujo, A.C.; Dubey, J.P.; Labruna, M.B.; Gennari, S.M.; Pena, H.F.J. Detection of anti-Toxoplasma gondii antibodies in small wild mammals from preserved and non-preserved areas in the Caatinga biome, a semi-arid region of Northeast Brazil. Vet. Parasitol. Reg. Stud. Rep. 2018, 14, 75–78. [Google Scholar] [CrossRef]
- Dubey, J.P. Toxoplasma gondii oocyst survival under defined temperatures. J. Parasitol. 1998, 84, 862–865. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.; Fritz, H.; Clifford, D.L.; Conrad, P.; Roy, A.; Glueckert, F.; Foley, J. Prevalence and potential impact of Toxoplasma gondii on the endangered Amargosa vole (Microtus californicus scirpensis), California, USA. J. Wildl. Dis. 2017, 53, 62–72. [Google Scholar] [CrossRef] [PubMed]
Locality | Geographical Coordinates | Altitude (m a.s.l.) | Locality Type | Description |
---|---|---|---|---|
Šebastovce | 48°39′18″ N 21°16′13″ E | 209 | R | Poplar windbreak with agrocenoses on both sides |
Kechnec | 48°32′57″ N 21°15′52″ E | 172 | R | Agrocenosis and the edge of poplar windbreak |
Rozhanovce | 48°45′00″ N 21°21’00″ E | 215 | R | Mixed forest, hunting ground with pheasants and fallow deer breeding |
Košice-suburban | 48°44′49″ N 21°14′89″ E | 208 | S | Hornbeam-oak park with shrubs |
Košice-alluvium | 48°45’67″ N 21°88’17″ E | 238 | ST | Suburban recreational locality with mixed forests and shrubs |
Pieniny | 49°24’11″ N 20°26’13″ E | 450 | RT | Sub-mountain alluvium of Dunajec River with shrubs |
Poiplie | 48°05’10″ N 19°27’45″ E | 600 | R | Lowland alluvium of Ipeľ River with shrubs; situated near fields |
Species | N/n | Prevalence (%) (95% CI) | Family (%) (95% CI) |
---|---|---|---|
Apodemus agrarius | 33/451 | 7.3 (5.1–10.1) | Muridae 7.0 (5.3–9.1) |
Apodemus flavicollis | 17/222 | 7.7 (4.5–12.0) | |
Apodemus sylvaticus | 0/1 | nc | |
Apodemus microps | 1/45 | 2.2 (0.0–11.8) | |
Micromys minutus | 0/17 | 0.0 (0.0–19.5) | |
Mus musculus | 1/5 | Nc | |
Myodes glareolus | 8/173 | 4.6 (2.0–8.9) | Cricetidae 6.0 (3.5–9.5) |
Microtus arvalis | 7/92 | 7.6 (3.1–15.1) | |
Microtus subterraneus | 1/3 | nc | |
Total | 68/1009 | 6.7 (5.3–8.5) | - |
Species | Adult | Subadult | ||
---|---|---|---|---|
N/n | Prevalence (%) (95% CI) | N/n | Prevalence (%) (95% CI) | |
Apodemus agrarius | 18/156 | 11.5 (7.0–17.6) | 14/288 | 4.8 (2.7–8.0) |
Apodemus flavicollis | 11/132 | 8.3 (4.2–14.4) | 5/84 | 5.9 (2.0–13.4) |
Apodemus sylvaticus | 0/1 | nc | 0/0 | nc |
Apodemus microps | 1/24 | 4.2 (0.1–21.1) | 0/21 | 0.0 (0.0–16.1) |
Micromys minutus | 0/2 | nc | 0/15 | 0.0 (0.0–21.8) |
Mus musculus | 1/2 | nc | 0/1 | nc |
Myodes glareolus | 2/61 | 3.2 (0.4–11.4) | 6/99 | 6.1 (2.3–12.7) |
Microtus arvalis | 5/37 | 13.5 (4.5–28.8) | 2/55 | 3.6 (0.4–12.5) |
Microtus subterraneus | 0/0 | nc | 1/3 | nc |
Total | 38/415 | 9.2 (6.6–12.4) | 28/566 | 4.9 (3.3–7.1) |
Species | Male | Female | Sexually Active | Sexually Inactive | ||||
---|---|---|---|---|---|---|---|---|
N/n | % (95% CI) | N/n | % (95% CI) | N/n | % (95% CI) | N/n | % (95% CI) | |
Apodemus agrarius | 10/231 | 4.3 (2.1–7.8) | 22/213 | 10.3 (6.6–15.2) | 10/97 | 10.3 (5.1–18.1) | 20/332 | 6.0 (3.9–9.2) |
Apodemus flavicollis | 5/121 | 4.1 (1.4–9.4) | 11/96 | 11.5 (5.9–19.6) | 3/53 | 5.7 (1.2–15.7) | 10/148 | 6.8 (3.3–12.1) |
Apodemus sylvaticus | 0/1 | nc | 0/0 | nc | 0/1 | nc | 0/0 | nc |
Apodemus microps | 0/24 | 0.0 (0.0–14.3) | 1/21 | 4.8 (0.1–23.8) | 1/12 | 8.3 (0.2–38.5) | 0/28 | 0.0 (0.0–10.2) |
Micromys minutus | 0/9 | nc | 0/8 | nc | 0/0 | nc | 0/16 | |
Mus musculus | 1/4 | nc | 0/1 | nc | 1/2 | nc | 0/1 | nc |
Myodes glareolus | 2/86 | 2.3 (0.3–8.2) | 6/87 | 6.9 (2.6–14.4) | 1/40 | 2.5 (0.0–13.2) | 6/116 | 5.2 (1.9–10.9) |
Microtus arvalis | 1/43 | 2.3 (0.0–12.3) | 6/49 | 12.2 (4.6–24.8) | 3/14 | 21.4 (4.7–50.8) | 2/61 | 3.3 (0.4–11.2) |
Microtus subterraneus | 1/2 | nc | 0/1 | nc | 0/0 | nc | 1/3 | nc |
Total | 20/521 | 3.8 (2.4–5.9) | 46/476 | 9.7 (7.2–12.9) | 19/219 | 8.7 (5.3–13.2) | 39/705 | 5.5 (4.0–7.5) |
Species | Year 2015 | Year 2019 | p | ||
---|---|---|---|---|---|
N/n | % (95% CI) | N/n | % (95% CI) | ||
Apodemus agrarius | 10/231 | 4.3 (2.1–7.8) | 23/220 | 10.5 (6.7–15.3) | 0.01 |
Apodemus flavicollis | 8/128 | 6.3 (2.7–11.9) | 9/94 | 9.6 (4.5–17.4) | 0.35 |
Apodemus sylvaticus | 0/0 | nc | 0/1 | nc | nc |
Apodemus microps | 0/27 | 0.0 (0.0–10.5) | 1/18 | 5.6 (0.1–27.3) | nc |
Micromys minutus | 0/9 | nc | 0/8 | 0.0 (0.0–25.9) | nc |
Mus musculus | 1/1 | nc | 0/4 | nc | nc |
Myodes glareolus | 2/80 | 2.5 (0.3–8.7) | 6/93 | 6.5 (2.4–13.5) | 0.21 |
Microtus arvalis | 4/52 | 7.7 (2.1–18.5) | 3/40 | 7.5 (1.6–20.4) | 0.97 |
Microtus subterraneus | 1/2 | nc | 0/1 | nc | nc |
Total | 26/530 | 4.9 (3.2–7.1) | 42/479 | 8.8 (6.4–11.7) | 0.01 |
Locality | Year 2015 | Year 2019 | Total | |||
---|---|---|---|---|---|---|
N/n | Prevalence (%) (95% CI) | N/n | Prevalence (%) (95% CI) | N/n | Prevalence (%) (95% CI) | |
Šebastovce | 4/108 | 3.7 (1.0–9.2) | 3/40 | 7.5 (1.2–20.4) | 7/148 | 4.7 (1.9–9.5) |
Kechnec | 1/69 | 1.4 (0.0–7.8) | 3/47 | 6.4 (1.3–17.5) | 4/116 | 3.4 (1.0–8.6) |
Rozhanovce | 7/231 | 3.0 (1.2–6.1) | 22/234 | 9.4 (6.0–13.9) | 29/477 | 6.1 (4.1–8.6) |
Košice-suburban zone | 3/36 | 8.3 (1.8–22.5) | 5/46 | 10.9 (3.6–23.6) | 8/82 | 9.8 (4.3–18.3) |
Košice-alluvium | 0/0 | nc | 5/46 | 10.9 (3.6–23.6) | 5/46 | 10.9 (3.6–23.6) |
Pieniny | 10/61 | 16.4 (8.2–28.1) | 0/0 | nc | 10/61 | 16.4 (8.2–28.1) |
Poiplie | 1/25 | 4.0 (0.1–20.4) | 4/54 | 7.4 (2.1–17.9) | 5/79 | 6.3 (2.1–14.2) |
Total | 26/530 | 4.9 (3.2–7.1) | 42/467 | 9.0 (6.6–12.0) | 68/1009 | 6.7 (5.3–8.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolová, D.; Stanko, M.; Jarošová, J.; Miklisová, D. Rodents as Sentinels for Toxoplasma gondii in Rural Ecosystems in Slovakia—Seroprevalence Study. Pathogens 2023, 12, 826. https://doi.org/10.3390/pathogens12060826
Antolová D, Stanko M, Jarošová J, Miklisová D. Rodents as Sentinels for Toxoplasma gondii in Rural Ecosystems in Slovakia—Seroprevalence Study. Pathogens. 2023; 12(6):826. https://doi.org/10.3390/pathogens12060826
Chicago/Turabian StyleAntolová, Daniela, Michal Stanko, Júlia Jarošová, and Dana Miklisová. 2023. "Rodents as Sentinels for Toxoplasma gondii in Rural Ecosystems in Slovakia—Seroprevalence Study" Pathogens 12, no. 6: 826. https://doi.org/10.3390/pathogens12060826
APA StyleAntolová, D., Stanko, M., Jarošová, J., & Miklisová, D. (2023). Rodents as Sentinels for Toxoplasma gondii in Rural Ecosystems in Slovakia—Seroprevalence Study. Pathogens, 12(6), 826. https://doi.org/10.3390/pathogens12060826