Influence of Integrated Management Strategies on Soybean Sudden Death Syndrome (SDS) Root Infection, Foliar Symptoms, Yield and Net Returns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments and Treatments
2.2. Disease and Yield Data Collection
2.3. Quantification of Fusarium virguliforme DNA in Roots
2.4. Partial Profit Analysis
2.5. Environmental Data
2.6. Data Analysis
3. Results and Discussion
3.1. Environment
3.2. Effect of Cultivar Selection, Seed Treatment, and Seeding Rate on Root Rot and F. virguliforme Pathogen Load in the Root
3.3. Effect of Cultivar Selection, Seed Treatment, and Seeding Rate on Foliar Symptoms
3.4. Effect of Cultivar Selection, Seed Treatment, and Seeding Rate on Grain Yield and Partial Profit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, T.W.; Bradley, C.A.; Sisson, A.J.; Byamukama, E.; Chilvers, M.I.; Coker, C.M.; Collins, A.A.; Damicone, J.P.; Dorrance, A.E.; Dufault, N.S.; et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog. 2017, 18, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Bradley, C.A.; Allen, T.W.; Sisson, A.J.; Bergstrom, G.C.; Bissonnette, K.M.; Bond, J.; Byamukama, E.; Chilvers, M.I.; Collins, A.A.; Damicone, J.P.; et al. Soybean yield loss estimates due to diseases in the United States and Ontario, Canada from 2015 to 2019. Plant Health Prog. 2021, 22, 483–495. [Google Scholar] [CrossRef]
- Estimates of Corn, Soybean, and Wheat Yield Losses Due to Diseases and Insect Pests. Crop Protection Network. 2021. Available online: https://loss.cropprotectionnetwork.org (accessed on 10 December 2021).
- Hartman, G.L.; Chang, H.-X.; Leandro, L.F. Research advances and management of soybean sudden death syndrome. Crop Prot. 2015, 73, 60–66. [Google Scholar] [CrossRef]
- Kandel, Y.R.; Bradley, C.A.; Wise, K.A.; Chilvers, M.I.; Tenuta, A.U.; Davis, V.M.; Esker, P.D.; Smith, D.L.; Licht, M.A.; Mueller, D.S. Effect of glyphosate application on sudden death syndrome of glyphosate-resistant soybean under field conditions. Plant Dis. 2015, 99, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.W.; Rupe, J.C.; Hershman, D.E.; Abney, T.S. Sudden death syndrome of soybean. Plant Dis. 1997, 81, 1100–1111. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; O’Donnell, K.; Homma, Y.; Lattanzi, A.R. Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the Fusarium solani species complex—F. virguliforme in North America and F. tucumaniae in South America. Mycologia 2003, 95, 660–684. [Google Scholar] [CrossRef]
- Hirrel, M.C. Sudden death syndrome of soybean—A disease of unknown etiology. Phytopathology 1983, 73, 501–502. [Google Scholar]
- Gongora-Canul, C.C.; Leandro, L.F.S. Effect of soil temperature and plant age at time of inoculation on progress of root rot and foliar symptoms of soybean sudden death syndrome. Plant Dis. 2011, 95, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Fehr, W.R.; Caviness, C.E.; Burmood, D.T.; Pennington, J.S. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. 1971, 11, 929. [Google Scholar] [CrossRef]
- Leandro, L.; Tatalovic, N.; Luckew, A. Soybean sudden death syndrome—Advances in knowledge and disease management. CABI Rev. 2012, 7, 1–14. [Google Scholar] [CrossRef]
- Roy, K.W. Fusarium solani on soybean roots: Nomenclature of the causal agent of sudden death syndrome and identity and relevance of F. solani form B. Plant Dis. 1997, 81, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, Y.R.; Haudenshield, J.S.; Srour, A.Y.; Tariqul Islam, K.; Fakhoury, A.M.; Santos, P.; Wang, J.; Chilvers, M.I.; Hartman, G.L.; Malvick, D.K.; et al. Multilaboratory comparison of quantitative PCR assays for detection and quantification of Fusarium virguliforme from soybean roots and soil. Phytopathology 2015, 105, 1601–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandel, Y.R.; Wise, K.A.; Bradley, C.A.; Tenuta, A.U.; Mueller, D.S. Effect of planting date, seed treatment, and cultivar on plant population, sudden death syndrome, and yield of soybean. Plant Dis. 2016, 100, 1735–1743. [Google Scholar] [CrossRef] [Green Version]
- Kandel, Y.R.; Wise, K.A.; Bradley, C.A.; Chilvers, M.I.; Tenuta, A.U.; Mueller, D.S. Fungicide and cultivar effects on sudden death syndrome and yield of soybean. Plant Dis. 2016, 100, 1339–1350. [Google Scholar] [CrossRef] [Green Version]
- Ngaki, M.N.; Wang, B.; Sahu, B.B.; Srivastava, S.K.; Farooqi, M.S.; Kambakam, S.; Swaminathan, S.; Bhattacharyya, M.K. Transcriptomic study of the soybean-Fusarium virguliforme interaction revealed a novel ankyrin-repeat containing defense gene, expression of whose during infection led to enhanced resistance to the fungal pathogen in transgenic soybean plants. PLoS ONE 2016, 11, e0163106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brar, H.K.; Bhattacharyya, M.K. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants. Mol. Plant-Microbe Interact. 2012, 25, 817–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Farias Neto, A.L.; Hashmi, R.; Schmidt, M.; Carlson, S.R.; Hartman, G.L.; Li, S.; Nelson, R.L.; Diers, B.W. Mapping and confirmation of a new sudden death syndrome resistance QTL on linkage group D2 from the soybean genotypes PI 567374 and ‘Ripley’. Mol. Breed. 2007, 20, 53–62. [Google Scholar] [CrossRef]
- Hartman, G.L.; Huang, Y.H.; Nelson, R.L.; Noel, G.R. Germplasm evaluation of Glycine max for resistance to Fusarium solani, the causal organism of sudden death syndrome. Plant Dis. 1997, 81, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.S.; Hartman, G.L.; Nelson, R.L.; Pedersen, W.L. Evaluation of Glycine max germ plasm for resistance to Fusarium solani f. sp. glycines. Plant Dis. 2002, 86, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.S.; Nelson, R.L.; Hartman, G.L.; Pedersen, W.L. Response of commercially developed soybean cultivars and the ancestral soybean lines to Fusarium solani f. sp. glycines. Plant Dis. 2003, 87, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Arruda, G.M.T.; Miller, R.N.G.; Ferreira, M.; Café-Filho, A.C. Morphological and molecular characterization of the sudden-death syndrome pathogen of soybean in Brazil. Plant Pathol. 2005, 54, 53–65. [Google Scholar] [CrossRef]
- Kandel, Y.R.; Bradley, C.A.; Chilvers, M.I.; Mathew, F.M.; Tenuta, A.U.; Smith, D.L.; Wise, K.A.; Mueller, D.S. Effect of seed treatment and foliar crop protection products on sudden death syndrome and yield of soybean. Plant Dis. 2019, 103, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Rupe, J.C.; Robbins, R.T.; Gbur, E.E. Effect of crop rotation on soil population densities of Fusarium solani and Heterodera glycines and on the development of sudden death syndrome of soybean. Crop Prot. 1997, 16, 575–580. [Google Scholar] [CrossRef]
- Scherm, H.; Yang, X.B.; Lundeen, P. Soil variables associated with sudden death syndrome in soybean fields in Iowa. Plant Dis. 1998, 82, 1152–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vosberg, S.K.; Marburger, D.A.; Smith, D.L.; Conley, S.P. Planting date and fluopyram seed treatment effect on soybean sudden death syndrome and seed yield. Agron. J. 2017, 109, 2570. [Google Scholar] [CrossRef]
- Von Qualen, R.H. Effects of rotation, tillage, and fumigation on premature dying of soybeans. Plant Dis. 1989, 73, 740–744. [Google Scholar] [CrossRef]
- Kolander, T.M.; Bienapfl, J.C.; Kurle, J.E.; Malvick, D.K. Symptomatic and asymptomatic host range of Fusarium virguliforme, the causal agent of soybean sudden death syndrome. Plant Dis. 2012, 96, 1148–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weems, J.D.; Haudenshield, J.S.; Bond, J.P.; Hartman, G.L.; Ames, K.A.; Bradley, C.A. Effect of fungicide seed treatments on Fusarium virguliforme infection of soybean and development of sudden death syndrome. Can. J. Plant Pathol. 2015, 37, 435–447. [Google Scholar] [CrossRef]
- Beatty, K.D.; Eldridge, I.L.; Simpson, A.M. Soybean response to different planting patterns and dates. Agron. J. 1982, 74, 859–862. [Google Scholar] [CrossRef]
- De Bruin, J.L.; Pedersen, P. Soybean seed yield response to planting date and seeding rate in the upper Midwest. Agron. J. 2008, 100, 696–703. [Google Scholar] [CrossRef]
- Egli, D.B.; Bruening, W. Planting date and soybean yield: Evaluation of environmental effects with a crop simulation model: SOYGRO. Agric. For. Meteorol. 1992, 62, 19–29. [Google Scholar] [CrossRef]
- Hershman, D.E.; Hendrix, J.W.; Stuckey, R.E.; Bachi, P.R.; Henson, G. Influence of planting date and cultivar on soybean sudden death syndrome in Kentucky. Plant Dis. 1990, 74, 761–766. [Google Scholar] [CrossRef]
- Marburger, D.A.; Smith, D.L.; Conley, S.P. Revisiting planting date and cultivar effects on soybean sudden death syndrome development and yield loss. Plant Dis. 2016, 100, 2152–2157. [Google Scholar] [CrossRef] [Green Version]
- Wrather, J.A.; Kendig, S.R.; Anand, S.C.; Niblack, T.L.; Smith, G.S. Effects of tillage, cultivar, and planting date on percentage of soybean leaves with symptoms of sudden death syndrome. Plant Dis. 1995, 79, 560–562. [Google Scholar] [CrossRef]
- Xing, L.; Westphal, A. Effects of crop rotation of soybean with corn on severity of sudden death syndrome and population densities of Heterodera glycines in naturally infested soil. Field Crops Res. 2009, 112, 107–117. [Google Scholar] [CrossRef]
- Fungal Control Agents Sorted by Cross Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). Fungicide Resistance Action Committee (FRAC). 2022. Available online: https://www.frac.info/knowledge-database/downloads (accessed on 16 September 2022).
- Sjarpe, D.A.; Kandel, Y.R.; Chilvers, M.I.; Giesler, L.J.; Malvick, D.K.; McCarville, M.T.; Tenuta, A.U.; Wise, K.A.; Mueller, D.S. Multi-location evaluation of fluopyram seed treatment and cultivar on root infection by Fusarium virguliforme, foliar symptom development, and yield of soybean. Can. J. Plant Pathol. 2019, 42, 192–202. [Google Scholar] [CrossRef]
- Augusto, J.; Brenneman, T.B.; Baldwin, J.A.; Smith, N.B. Maximizing economic returns and minimizing stem rot incidence with optimum plant stands of peanut in Nicaragua. Peanut Sci. 2010, 37, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, K.A.; Sisson, A.J.; Kandel, Y.R.; Ortiz, V.; Chilvers, M.I.; Smith, D.L.; Mueller, D.S. Effects of mowing, seeding rate, and foliar fungicide on soybean Sclerotinia stem rot and yield. Plant Health Prog. 2021, 22, 129–135. [Google Scholar] [CrossRef]
- Hagan, A.K.; Campbell, H.L.; Bowen, K.L.; Wells, L. Seeding rate and planting date impacts stand density, diseases, and yield of irrigated peanuts. Plant Health Prog. 2015, 16, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Webster, R.W.; Roth, M.G.; Mueller, B.D.; Mueller, D.S.; Chilvers, M.I.; Willbur, J.F.; Mourtzinis, S.; Conley, S.P.; Smith, D.L. Integration of row spacing, seeding rates, and fungicide applications for control of Sclerotinia stem rot in Glycine max. Plant Dis. 2022, 106, 1183–1191. [Google Scholar] [CrossRef]
- De Farias Neto, A.L.; Hartman, G.L.; Pedersen, W.L.; Li, S.; Bollero, G.A.; Diers, B.W. Irrigation and inoculation treatments that increase the severity of soybean sudden death syndrome in the field. Crop Sci. 2006, 46, 2547–2554. [Google Scholar] [CrossRef] [Green Version]
- Sjarpe, D.A. Effect of Seed Treatments and Soybean Cultivars on Root Rot Caused by Fusarium virguliforme. Master’s Thesis, Iowa State University, Ames, IA, USA, 2017. [Google Scholar] [CrossRef]
- Gibson, P.T.; Shenaut, M.A.; Njiti, V.N.; Suttner, R.J.; Myers, O., Jr. Soybean varietal response to sudden death syndrome. In Proceedings of the 24th Soybean Seed Research Conference, Chicago, IL, USA, 6 December 1994. [Google Scholar]
- Wang, J.; Jacobs, J.L.; Byrne, J.M.; Chilvers, M.I. Improved diagnoses and quantification of Fusarium virguliforme, causal agent of soybean sudden death syndrome. Phytopathology 2015, 105, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Agricultural Prices. USDA-NASS, United States Department of Agriculture-National Agricultural Statistics Service. 2021. Available online: http://www.nass.usda.gov/Publications/Todays_Reports/reports/agpr1121.pdf (accessed on 23 August 2022).
- Agricultural Prices. USDA-NASS, United States Department of Agriculture-National Agricultural Statistics Service. 2022. Available online: http://www.nass.usda.gov/Publications/Todays_Reports/reports/agpr0622.pdf (accessed on 23 August 2022).
- Piepho, H.P. A SAS macro for generating letter displays of pairwise mean comparisons. Commun. Biometery Crop Sci. 2012, 7, 4–13. [Google Scholar]
- Kandel, Y.R.; Lawson, M.N.; Brown, M.T.; Chilvers, M.I.; Kleczewski, N.M.; Telenko, D.E.; Tenuta, A.; Smith, D.L.; Mueller, D.S. Field and greenhouse assessment of seed treatment fungicides for management of sudden death syndrome and yield response of soybean. Plant Dis. 2023, 107, 1131–1138. [Google Scholar] [CrossRef]
- Luckew, A.S.; Leandro, L.F.; Bhattacharyya, M.K.; Nordman, D.J.; Lightfoot, D.A.; Cianzio, S.R. Usefulness of 10 genomic regions in soybean associated with sudden death syndrome resistance. Theor. Appl. Genet. 2013, 126, 2391–2403. [Google Scholar] [CrossRef]
- Wen, Z.; Tan, R.; Yuan, J.; Bales, C.; Du, W.; Zhang, S.; Chilvers, M.I.; Schmidt, C.; Song, Q.; Cregan, P.B.; et al. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genom. 2014, 15, 809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brar, H.K.; Swaminathan, S.; Bhattacharyya, M.K. The Fusarium virguliforme toxin FvTox1 causes foliar sudden death syndrome-like symptoms in soybean. Mol. Plant-Microbe Interact. 2011, 24, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.X.; Roth, M.G.; Wang, D.; Cianzio, S.R.; Lightfoot, D.A.; Hartman, G.L.; Chilvers, M.I. Integration of sudden death syndrome resistance loci in the soybean genome. Theor. Appl. Genet. 2018, 131, 757–773. [Google Scholar] [CrossRef]
- Wang, J.; Jacobs, J.L.; Roth, M.G.; Chilvers, M.I. Temporal dynamics of Fusarium virguliforme colonization of soybean root. Plant Dis. 2019, 103, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kandel, Y.R.; Leandro, L.F.S.; Mueller, D.S. Effect of tillage and cultivar on plant population, sudden death syndrome, and yield of soybean in Iowa. Plant Health Prog. 2019, 20, 29–34. [Google Scholar] [CrossRef]
- Geleta, B.; Atak, M.; Baenziger, P.S.; Nelson, L.A.; Baltenesperger, D.D.; Eskridge, K.M.; Shipman, M.J.; Shelton, D.R. Seeding rate and genotype effect on agronomic performance and end-use quality of winter wheat. Crop Sci. 2002, 42, 827–832. [Google Scholar] [CrossRef]
- Isidro-Sánchez, J.; Perry, B.; Singh, A.K.; Wang, H.; DePauw, R.M.; Pozniak, C.J.; Beres, B.L.; Johnson, E.N.; Cuthbert, R.D. Effects of seeding rate on durum crop production and physiological responses. Agron. J. 2017, 109, 1981–1990. [Google Scholar] [CrossRef] [Green Version]
- Nleya, T.; Rickertsen, J. Seeding rate effects on yield and yield components of chickpea in South Dakota. Crop Manag. 2013, 12, 1–6. [Google Scholar] [CrossRef]
- Rod, K.S.; Shockley, J.; Knott, C.A. Seed yield, seed quality, profitability, and risk analysis among double crop soybean maturity groups and seeding rates. Agron. J. 2021, 113, 1792–1802. [Google Scholar] [CrossRef]
- Schutte, M.; Nleya, T. Row spacing and seeding rate effects on soybean seed yield. In Soybean-Biomass, Yield and Productivity; Kasai, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Kandel, Y.R.; Phillips, X.A.; Gaska, J.M.; Conley, S.P.; Mueller, D.S. Effect of planting population on stem diseases of soybean in Iowa and Wisconsin. Plant Health Prog. 2021, 22, 108–112. [Google Scholar] [CrossRef]
- Sconyers, L.E.; Brenneman, T.B.; Stevenson, K.L.; Mullinix, B.G. Effects of row pattern, seeding rate, and inoculation date on fungicide efficacy and development of peanut stem rot. Plant Dis. 2007, 91, 273–278. [Google Scholar] [CrossRef] [Green Version]
Year | Location a | Cultivars b | Planting Date | Previous Crop | Inocu-lation c | Irrigated d | SDS Foliar Symptoms | Harvest Date |
---|---|---|---|---|---|---|---|---|
2019 | ||||||||
Wanatah, IN | P24A99X (MR) P22T24X (S) | 6/6 | Corn | Yes | Yes | Yes | 10/24 | |
2020 | ||||||||
Wanatah, IN | P25A27X (MR) P24T76E (S) | 6/6 | Corn | Yes | Yes | Yes | 11/02 | |
West Lafayette, IN | P25A27X (MR) P24T76E (S) | 5/13 | Soybean | Yes | No | No | 10/14 |
Monthly Minimum, Maximum, and Average Temperature (°C) and Rainfall Received (cm). Deviation from the 30-Year Normal in Parentheses a,b | ||||||||
---|---|---|---|---|---|---|---|---|
Wanatah, Indiana | West Lafayette, IN | |||||||
Tmin | Tmax | Tave | Rainfall | Tmin | Tmax | Tave | Rainfall | |
2019 | ||||||||
May | 9.0 (−0.4) | 19.9 (−1.6) | 14.4 (−1.1) | 18.9 (8.8) | - | - | - | - |
June | 14.2 (−0.8) | 25.4 (−1.4) | 19.8 (−1.1) | 12.8 (0.8) | - | - | - | - |
July | 17.9 (1.4) | 29.6 (1.2) | 23.8 (1.3) | 4.8 (−5.8) | - | - | - | - |
August | 14.6 (−0.6) | 27.1 (−0.3) | 20.8 (−0.4) | 6.7 (−4.5) | - | - | - | - |
September | 13.6 (2.8) | 25.4 (0.9) | 19.5 (1.9) | 17.5 (9.2) | - | - | - | - |
October | 4.8 (0.1) | 16.4 (−1.0) | 10.6 (−0.5) | 11.0 (1.4) | - | - | - | - |
2020 | ||||||||
May | 9.1 (−0.4) | 19.1 (−2.4) | 14.1 (−1.4) | 17.3 (7.1) | 9.7 (−0.8) | 20.2 (−2.2) | 14.9 (−1.4) | 8.4 (−3.5) |
June | 15.9 (0.8) | 28.5 (1.7) | 22.2 (1.3) | 10.7 (−1.3) | 16.1 (0.3) | 28.4 (1.3) | 22.2 (0.8) | 6.3 (−6.0) |
July | 17.8 (1.3) | 29.6 (1.2) | 23.7 (1.2) | 9.4 (−1.2) | 18.0 (1.1) | 29.6 (1.2) | 23.8 (1.1) | 10.2 (−0.6) |
August | 14.9 (−0.3) | 27.8 (0.5) | 21.4 (0.1) | 4.5 (−6.6) | 15.2 (−0.4) | 27.3 (−0.3) | 21.2 (−0.4) | 8.7 (−0.6) |
September | 10.3 (−0.4) | 23.9 (−0.6) | 17.1 (−0.5) | 5.5 (−2.8) | 10.9 (−0.3) | 24.4 (−0.6) | 17.7 (−0.4) | 5.6 (−2.3) |
October | 4.0 (−0.7) | 15.9 (−1.5) | 10.0 (−1.1) | 6.6 (−3.0) | 4.2 (−0.1) | 17.2 (−0.9) | 10.7 (−1.0) | 6.1 (−1.6) |
p Value | |||||
---|---|---|---|---|---|
Effect | Root Rot | FPL a | FDX a | Yield | Net Return |
Cultivar | 0.0021 | 0.0092 | 0.1188 | 0.0213 | 0.0213 |
Seed treatment | 0.0072 | 0.0001 | 0.9952 | 0.0435 | 0.1039 |
Seeding rate | 0.0563 | 0.8363 | 0.4682 | 0.0461 | 0.7175 |
Cultivar × seed treatment | 0.8000 | 0.8104 | 0.2868 | 0.2075 | 0.2074 |
Cultivar × seeding rate | 0.6145 | 0.9727 | 0.0378 | 0.0484 | 0.0484 |
Seed treatment × seeding rate | 0.4573 | 0.2945 | 0.4640 | 0.3668 | 0.5666 |
Cultivar × seed treatment × seeding rate | 0.6541 | 0.7545 | 0.4964 | 0.2565 | 0.2565 |
Effect | Root Rot (%) w | FPL (pg/20 ng DNA) x | FDX (%) y |
---|---|---|---|
Cultivars | |||
Moderately resistant | 28.2 a z | 1.0 b | 0.2 |
Susceptible | 26.0 b | 1.6 a | 0.3 |
p value | 0.0021 | 0.0092 | 0.1188 |
Seed treatments | |||
Control | 28.3 a | 2.8 a | 0.2 |
Fluopyram | 25.8 b | 0.7 b | 0.2 |
Pydiflumetofen | 27.2 ab | 1.0 b | 0.2 |
p value | 0.0072 | 0.0001 | 0.9952 |
Seeding rates | |||
272,277 seeds/ha | 26.0 | 1.2 | 0.2 |
346,535 seeds/ha | 27.2 | 1.2 | 0.3 |
420,792 seeds/ha | 28.1 | 1.4 | 0.3 |
p value | 0.0563 | 0.8363 | 0.4682 |
Effect | Yield (kg/ha) w | Net Return ($/ha) x | |
---|---|---|---|
Seed treatment y | |||
Control | 3879 b z | 1277 | |
Fluopyram | 3984 a | 1284 | |
Pydiflumetofen | 3882 ab | 1243 | |
p value | 0.0435 | 0.1039 | |
Cultivar resistance type | Seeding rates | ||
Moderately Resistant | 272,277 seeds/ha | 3864 bcd | 1288 ab |
Moderately Resistant | 346,535 seeds/ha | 4044 a | 1316 a |
Moderately Resistant | 420,792 seeds/ha | 3975 abc | 1252 b |
Susceptible | 272,277 seeds/ha | 3774 d | 1255 b |
Susceptible | 346,535 seeds/ha | 3829 cd | 1236 b |
Susceptible | 420,792 seeds/ha | 4002 ab | 1262 ab |
p value | 0.0484 | 0.0484 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, M.T.; Mueller, D.S.; Kandel, Y.R.; Telenko, D.E.P. Influence of Integrated Management Strategies on Soybean Sudden Death Syndrome (SDS) Root Infection, Foliar Symptoms, Yield and Net Returns. Pathogens 2023, 12, 913. https://doi.org/10.3390/pathogens12070913
Brown MT, Mueller DS, Kandel YR, Telenko DEP. Influence of Integrated Management Strategies on Soybean Sudden Death Syndrome (SDS) Root Infection, Foliar Symptoms, Yield and Net Returns. Pathogens. 2023; 12(7):913. https://doi.org/10.3390/pathogens12070913
Chicago/Turabian StyleBrown, Mariama T., Daren S. Mueller, Yuba R. Kandel, and Darcy E. P. Telenko. 2023. "Influence of Integrated Management Strategies on Soybean Sudden Death Syndrome (SDS) Root Infection, Foliar Symptoms, Yield and Net Returns" Pathogens 12, no. 7: 913. https://doi.org/10.3390/pathogens12070913
APA StyleBrown, M. T., Mueller, D. S., Kandel, Y. R., & Telenko, D. E. P. (2023). Influence of Integrated Management Strategies on Soybean Sudden Death Syndrome (SDS) Root Infection, Foliar Symptoms, Yield and Net Returns. Pathogens, 12(7), 913. https://doi.org/10.3390/pathogens12070913