Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Parasites
2.2. Molecular Cloning and Sequence Analysis
2.3. Expression of Recombinant Opisthorchis viverrini Cystatins and Production of rOvCys1–6 Antisera
2.4. Parasite Antigen Preparation
2.5. SDS-PAGE and Western Blot Analysis
2.6. Reactivity of Sera from Opisthorchis Viverrini-Infected Hamsters with Recombinant OvCys1, 3 and 4
2.7. Protein Refolding, Inhibitory Activities of Recombinant OvCys1, 3 and 4 against Mammalian (Bovine) Cathepsin B and L, and Their pH and Temperature Stability
3. Results
3.1. Molecular Cloning and Sequence Analysis
3.2. Expression and Purification of Recombinant O. viverrini Cystatins and Antisera Production
3.3. SDS-PAGE and Western Blot Analysis
3.4. Reactivity of O. viverrini-Infected Hamster Antisera with Recombinant OvCys1, 3 and 4
3.5. Inhibition of Mammalian (Bovine) Cathepsin B and L by Recombinant OvCys1, 3 and 4, and pH and Temperature Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vatanasapt, V.; Tangvoraphonkchai, V.; Titapant, V.; Pipitgool, V.; Viriyapap, D.; Sriamporn, S. A high incidence of liver cancer in Khon Kaen Province, Thailand. Southeast Asian J. Trop. Med. Public. Health 1990, 21, 489–494. [Google Scholar]
- Green, A.; Uttaravichien, T.; Bhudhisawasdi, V.; Chartbanchachai, W.; Elkins, D.B.; Marieng, E.O.; Pairqjkul, C.; Dhiensiri, T.; Kanteekaew, N.; Haswell-Elkins, M.R. Cholangiocarcinoma in north east Thailand. A hospital-based study. Trop. Geogr. Med. 1991, 43, 193–198. [Google Scholar]
- Brindley, P.J.; da Costa, J.M.; Sripa, B. Why does infection with some helminths cause cancer? Trends. Cancer 2015, 1, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Sripa, B.; Brindley, P.J.; Mulvenna, J.; Laha, T.; Smout, M.J.; Mairiang, E.; Bethony, J.M.; Loukas, A. The tumorigenic liver fluke Opisthorchis viverrine—Multiple pathways to cancer. Trends Parasitol. 2012, 28, 395–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. 2006, 1, 497–536. [Google Scholar] [CrossRef] [PubMed]
- Knox, D.P. Proteinase inhibitors and helminth parasite infection. Parasite Immunol. 2007, 29, 57–71. [Google Scholar] [CrossRef]
- Williamson, A.L.; Brindley, P.J.; Knox, D.P.; Hotez, P.J.; Loukas, A. Digestive proteases of blood-feeding nematodes. Trends Parasitol. 2003, 19, 417–423. [Google Scholar] [CrossRef]
- He, B.; Cai, G.; Ni, Y.; Li, Y.; Zong, H.; He, L. Characterization and expression of a novel cystatin gene from Schistosoma japonicum. Mol. Cell Probes 2011, 25, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.C.; Furtado, D.R.; Rumjanek, F.D. The N-terminus moiety of the cystatin SmCys from Schistosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol. Biochem. Parasitol. 2004, 134, 65–73. [Google Scholar] [CrossRef]
- Geadkaew, A.; Kosa, N.; Siricoon, S.; Grams, S.V.; Grams, R. A 170kDa multi-domain cystatin of Fasciola gigantica is active in the male reproductive system. Mol. Biochem. Parasitol. 2014, 196, 100–107. [Google Scholar] [CrossRef]
- Tarasuk, M.; Vichasri Grams, S.; Viyanant, V.; Grams, R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol. Biochem. Parasitol. 2009, 167, 60–71. [Google Scholar] [CrossRef]
- Siricoon, S.; Grams, S.V.; Grams, R. Efficient inhibition of cathepsin B by a secreted type 1 cystatin of Fasciola gigantica. Mol. Biochem. Parasitol. 2012, 186, 126–133. [Google Scholar] [CrossRef]
- Kang, J.M.; Lee, K.H.; Sohn, W.M.; Na, B.K. Identification and functional characterization of CsStefin-1, a cysteine protease inhibitor of Clonorchis sinensis. Mol. Biochem. Parasitol. 2011, 177, 126–134. [Google Scholar] [CrossRef]
- Chantree, P.; Tarasuk, M.; Prathaphan, P.; Ruangtong, J.; Jamklang, M.; Chumkiew, S.; Martviset, P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023, 12, 395. [Google Scholar] [CrossRef]
- Sripa, J.; Laha, T.; To, J.; Brindley, P.J.; Sripa, B.; Kaewkes, S.; Dalton, J.P.; Robinson, M.W. Secreted cysteine proteases of the carcinogenic liver fluke, Opisthorchis viverrini: Regulation of cathepsin F activation by autocatalysis and trans-processing by cathepsin B. Cell. Microbiol. 2010, 12, 781–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulvenna, J.; Sripa, B.; Brindley, P.J.; Gorman, J.; Jones, M.K.; Colgrave, M.L.; Jones, A.; Nawaratna, S.; Laha, T.; Suttiprapa, S.; et al. The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis viverrini. Proteomics 2010, 10, 1063–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, N.D.; Campbell, B.E.; Hall, R.S.; Jex, A.R.; Cantacessi, C.; Laha, T.; Sohn, W.-M.; Sripa, B.; Loukas, A.; Brindley, P.J.; et al. Unlocking the Transcriptomes of Two Carcinogenic Parasites, Clonorchis sinensis and Opisthorchis viverrini. PLoS Neglected Trop. Dis. 2010, 4, e719. [Google Scholar] [CrossRef]
- Young, N.D.; Nagarajan, N.; Lin, S.J.; Korhonen, P.K.; Jex, A.R.; Hall, R.S.; Safavi-Hemami, H.; Kaewkong, W.; Bertrand, D.; Gao, S.; et al. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat. Commun. 2014, 5, 4378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martviset, P.; Chantree, P.; Chaimon, S.; Torungkitmangmi, N.; Prathaphan, P.; Ruangtong, J.; Sornchuer, P.; Thongsepee, N.; Sangpairoj, K.; Adisakwattana, P. Molecular Cloning and Characterization of a Fasciola gigantica Nuclear Receptor Subfamily 1 (FgNR1). Pathogens 2022, 11, 1458. [Google Scholar] [CrossRef] [PubMed]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef]
- Emmanoch, P.; Kosa, N.; Vichasri-Grams, S.; Tesana, S.; Grams, R.; Geadkaew-Krenc, A. Comparative Characterization of Four Calcium-Binding EF Hand Proteins from Opisthorchis viverrini. Korean J. Parasitol. 2018, 56, 81–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geadkaew-Krenc, A.; Grams, R.; Phadungsil, W.; Chaibangyang, W.; Kosa, N.; Adisakwattana, P.; Dekumyoy, P. Evaluation of Rhophilin Associated Tail Protein (ROPN1L) in the Human Liver Fluke Opisthorchis viverrini for Diagnostic Approach. Korean J. Parasitol. 2020, 58, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Turk, V.; Stoka, V.; Turk, D. Cystatins: Biochemical and structural properties, and medical relevance. Front. Biosci. 2008, 13, 5406–5420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaewpitoon, N.; Laha, T.; Kaewkes, S.; Yongvanit, P.; Brindley, P.J.; Loukas, A.; Sripa, B. Characterization of cysteine proteases from the carcinogenic liver fluke, Opisthorchis viverrini. Parasitol. Res. 2008, 102, 757–764. [Google Scholar] [CrossRef]
- Pinlaor, P.; Kaewpitoon, N.; Laha, T.; Sripa, B.; Kaewkes, S.; Morales, M.E.; Mann, V.H.; Parriott, S.K.; Suttiprapa, S.; Robinson, M.W.; et al. Cathepsin F cysteine protease of the human liver fluke, Opisthorchis viverrini. PLoS Neglected Trop. Dis. 2009, 3, e398. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, Y.; Zhang, G.; Wang, X.; Li, Z.; Shang, Y.; Ning, C.; Ji, C.; Cai, X.; Xia, X.; et al. Molecular Characteristics and Potent Immunomodulatory Activity of Fasciola hepatica Cystatin. Korean J. Parasitol. 2022, 60, 117–126. [Google Scholar] [CrossRef]
- Ruangsittichai, J.; Viyanant, V.; Vichasri-Grams, S.; Sobhon, P.; Tesana, S.; Upatham, E.S.; Hofmann, A.; Korge, G.; Grams, R. Opisthorchis viverrini: Identification of a glycine-tyrosine rich eggshell protein and its potential as a diagnostic tool for human opisthorchiasis. Int. J. Parasitol. 2006, 36, 1329–1339. [Google Scholar] [CrossRef]
- Rattanachan, S.; Grams, R.; Tesana, S.; Smooker, P.M.; Grams, S.V. Opisthorchis viverrini: Analysis of the sperm-specific rhophilin associated tail protein 1-like. Acta Trop. 2014, 140, 34–40. [Google Scholar] [CrossRef]
- Lalmanach, G.; Saidi, A.; Marchand-Adam, S.; Lecaille, F.; Kasabova, M. Cysteine cathepsins and cystatins: From ancillary tasks to prominent status in lung diseases. Biol. Chem. 2015, 396, 111–130. [Google Scholar] [CrossRef]
- Shamsi, A.; Bano, B. Journey of cystatins from being mere thiol protease inhibitors to at heart of many pathological conditions. Int. J. Biol. Macromol. 2017, 102, 674–693. [Google Scholar] [CrossRef] [PubMed]
- Breznik, B.; Mitrović, A.; Lah, T.T.; Kos, J. Cystatins in cancer progression: More than just cathepsin inhibitors. Biochimie 2019, 166, 233–250. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qiu, D.; Yuan, Y.; Wang, X.; Wu, F.; Yang, H.; Wang, S.; Ma, M.; Qian, Y.; Zhan, B.; et al. Trichinella spiralis cystatin alleviates polymicrobial sepsis through activating regulatory macrophages. Int. Immunopharmacol. 2022, 109, 108907. [Google Scholar] [CrossRef]
- Chmelař, J.; Kotál, J.; Langhansová, H.; Kotsyfakis, M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front. Cell. Infect. Microbiol. 2017, 7, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Isoforms | Primer Sequences | |
---|---|---|
Forward (5′-3′) | Reverse (5′-3′) | |
OvCys1 | GGATCCATGCCACTGTGCGGAGGT | CTGCAGTCAAAAATAGCCCAACGGGT |
OvCys2 | GGATCCATGCCAATATGCGGTGGCGT | CTGCAGTCAAAAATAATCCAACGGATC |
OvCys3 | GGATCCATGTGGGTCAGTTTGGTAG | CTGCAGTCAGCAGTCAATCTCTGGAC |
OvCys4 | GGATCCATTAAAGTCACCATGTGGA | CTGCAGTTAACATGTGATGGTTTGTTGAC |
OvCys5 | GGATCCATGTGGATTTTATTCCTG | CTGCAGTTAGCTTTTGAAGGGACAG |
OvCys6 | GGATCCATGCTGTCGAACTGCTTT | CTGCAGCTACGGACATTTTATGAGCT |
Isoform | GenBank Accession No. | cDNA Size (bp) | Amino Acids | Predicted MW (kDa) | Cystatin Core Motif (QVVAG) | Signal Sequence |
---|---|---|---|---|---|---|
OvCys1 | OR047397 | 303 | 100 | 10.9 | QVVSG | No |
OvCys2 | OR047398 | 303 | 100 | 11.1 | QLVAG | No |
OvCys3 | OR047399 | 378 | 125 | 13.8 | QIVQG | Yes |
OvCys4 | OR047400 | 366 | 121 | 13.4 | QAVMG | Yes |
OvCys5 | OR047401 | 411 | 136 | 15.1 | QVVAG | Yes |
OvCys6 | OR047402 | 354 | 117 | 12.9 | QVVSG | Yes |
OvCys1 | OvCys2 | OvCys3 | OvCys4 | OvCys5 | OvCys6 | FgStefin2 | |
---|---|---|---|---|---|---|---|
OvCys1 | 84 | 37.3 | 34.6 | 26.3 | 40 | 32.4 | |
OvCys2 | 38.9 | 32.4 | 29.3 | 39.5 | 29.1 | ||
OvCys3 | 65.1 | 44.9 | 48.5 | 41.9 | |||
OvCys4 | 35.9 | 41.5 | 45.5 | ||||
OvCys5 | 41.2 | 30 | |||||
OvCys6 | 40.4 | ||||||
FgStefin2 |
| Substrate: Z-Arg-Arg-AMC (10 μL) |
---|---|
Inhibitors: | IC50 (95% CI) (nM): |
OvCys1 | 772 (754–793) |
OvCys3 | 901 (869–957) |
OvCys4 | 1104 (1047–?) |
FgStefin2 | 246 (192–383) |
| Substrate: Z-Arg-Arg-AMC (10 μL) |
Inhibitors: | IC50 (95% CI) (nM): |
OvCys1 | 264 (247–288) |
OvCys3 | 258 (243–277) |
OvCys4 | 322 (288–404) |
FgStefin2 | 218 (212–224) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geadkaew-Krenc, A.; Grams, R.; Siricoon, S.; Kosa, N.; Krenc, D.; Phadungsil, W.; Martviset, P. Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens 2023, 12, 949. https://doi.org/10.3390/pathogens12070949
Geadkaew-Krenc A, Grams R, Siricoon S, Kosa N, Krenc D, Phadungsil W, Martviset P. Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens. 2023; 12(7):949. https://doi.org/10.3390/pathogens12070949
Chicago/Turabian StyleGeadkaew-Krenc, Amornrat, Rudi Grams, Sinee Siricoon, Nanthawat Kosa, Dawid Krenc, Wansika Phadungsil, and Pongsakorn Martviset. 2023. "Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis" Pathogens 12, no. 7: 949. https://doi.org/10.3390/pathogens12070949
APA StyleGeadkaew-Krenc, A., Grams, R., Siricoon, S., Kosa, N., Krenc, D., Phadungsil, W., & Martviset, P. (2023). Cystatins from the Human Liver Fluke Opisthorchis viverrini: Molecular Characterization and Functional Analysis. Pathogens, 12(7), 949. https://doi.org/10.3390/pathogens12070949