Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin of Animals and Samples
2.2. DNA Extraction
2.3. PCR of L. infantum and Sequencing
2.4. DNA Sequencing and Alignments
2.5. Phylogenetic Trees
2.6. Maps
2.7. Statistical Analysis
3. Results
3.1. Ocurrence of Leishmania spp. in Different Animal Species
3.2. Geographic Origin of the Samples and Risk of Infection
3.3. Sensitivity of PCRs
3.4. Sequences
3.5. Phylogenetic Trees
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maxfield, L.; Corley, J.E.; Crane, J.S. Leishmaniasis; StatPearls Pulblishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Azami-Conesa, I.; Gómez-Muñoz, M.T.; Martínez-Díaz, R.A. A Systematic Review (1990–2021) of Wild Animals Infected with Zoonotic Leishmania. Microorganisms 2021, 9, 1101. [Google Scholar] [CrossRef]
- Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other than Dogs. Pathogens 2021, 10, 307. [Google Scholar] [CrossRef] [PubMed]
- Steverding, D. The History of Leishmaniasis. Parasites Vectors 2017, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.T.Z.; Linardi, P.M. Can Fleas from Dogs Infected with Canine Visceral Leishmaniasis Transfer the Infection to Other Mammals? Vet. Parasitol. 2007, 147, 320–325. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.V.G.; Alves, L.C.; da Silva, V.A. Vias de Transmissão Da Leishmaniose Visceral Em Mamíferos. Cienc. Rural 2015, 45, 1622–1628. [Google Scholar] [CrossRef]
- Alten, B.; Maia, C.; Afonso, M.O.; Campino, L.; Jiménez, M.; González, E.; Molina, R.; Bañuls, A.L.; Prudhomme, J.; Vergnes, B.; et al. Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum. PLoS Neglected Trop. Dis. 2016, 10, e0004458. [Google Scholar] [CrossRef]
- Sáez, V.D.; Morillas-Márquez, F.; Merino-Espinosa, G.; Corpas-López, V.; Morales-Yuste, M.; Pesson, B.; Barón-López, S.; Lucientes-Curdi, J.; Martín-Sánchez, J. Phlebotomus langeroni Nitzulescu (Diptera, Psychodidae) a New Vector for Leishmania infantum in Europe. Parasitol. Res. 2018, 117, 1105–1113. [Google Scholar] [CrossRef]
- Roque, A.L.R.; Jansen, A.M. Wild and Synanthropic Reservoirs of Leishmania Species in the Americas. Int. J. Parasitol. Parasites Wildl. 2014, 3, 251–262. [Google Scholar] [CrossRef]
- Molina, R.; Jiménez, M.I.; Cruz, I.; Iriso, A.; Martín-Martín, I.; Sevillano, O.; Melero, S.; Bernal, J. The Hare (Lepus granatensis) as Potential Sylvatic Reservoir of Leishmania infantum in Spain. Vet. Parasitol. 2012, 190, 268–271. [Google Scholar] [CrossRef]
- Azami-Conesa, I.; Sansano-Maestre, J.; Martínez-Díaz, R.A.; Gómez-Muñoz, M.T. Invasive Species as Hosts of Zoonotic Infections: The Case of American Mink (Neovison vison) and Leishmania infantum. Microorganisms 2021, 9, 1531. [Google Scholar] [CrossRef]
- Giner, J.; Villanueva-Saz, S.; Fernández, A.; Gómez, M.A.; Podra, M.; Lizarraga, P.; Lacasta, D.; Ruiz, H.; Aranda, M.D.C.; Jimenez, M.; et al. Detection of Anti–Leishmania infantum Antibodies in Wild European and American Mink (Mustela lutreola and Neovison vison) from Northern Spain, 2014–2020. J. Wildl. Dis. 2022, 58, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Alcover, M.M.; Ribas, A.; Guillén, M.C.; Berenguer, D.; Tomás-Pérez, M.; Riera, C.; Fisa, R. Wild Mammals as Potential Silent Reservoirs of Leishmania infantum in a Mediterranean Area. Prev. Vet. Med. 2020, 175, 104874. [Google Scholar] [CrossRef]
- Berriatua, E.; Jumakanova, Z.; Muñoz, C.; Ortuño, M.; Pérez-Cutillas, P. Surveillance, Prevention and Control of Leishmaniases in the European Union and Its Neighbouring Countries; ECDC: Stockholm, Sweden, 2022. [Google Scholar] [CrossRef]
- Del Río, L.; Chitimia, L.; Cubas, A.; Victoriano, I.; De la Rúa, P.; Gerrikagoitia, X.; Barral, M.; Muñoz-García, C.I.; Goyena, E.; García-Martínez, D.; et al. Evidence for Widespread Leishmania infantum Infection among Wild Carnivores in Periendemic Northern Spain. Prev. Vet. Med. 2014, 113, 430–435. [Google Scholar] [CrossRef] [PubMed]
- de Blas, I. Win Epi: Working in Epidemiology; Facultad de Veterinaria, Universidad de Zaragoza: Zaragoza, Spain, 2006; Available online: http://www.winepi.net/ (accessed on 30 July 2023).
- Leary, S.; Underwood, W.; Anthony, R.; Cartner, S.; Grandin, T.; Greenacre, C.; Gwaltney-Brant, S.; McCrackin, M.A.; Meyer, R.; Miller, D.; et al. AVMA Guidelines for the Euthanasia of Animals: 2020 Edition; AVMA: Schaumburg, IL, USA, 2020; pp. 97–99. [Google Scholar]
- Cruz, I.; Cañavate, C.; Rubio, J.M.; Morales, M.A.; Chicharro, C.; Laguna, F.; Jiménez-Mejías, M.; Sierra, G.; Videla, S.; Alvar, J. A Nested Polymerase Chain Reaction (Ln-PCR) for Diagnosing and Monitoring Leishmania infantum Infection in Patients Co-Infected with Human Immuno-Deficiency Virus. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, S185–S189. [Google Scholar] [CrossRef] [PubMed]
- Echchakery, M.; Chicharro, C.; Boussaa, S.; Nieto, J.; Carrillo, E.; Sheila, O.; Moreno, J.; Boumezzough, A. Molecular Detection of Leishmania infantum and Leishmania tropica in Rodent Species from Endemic Cutaneous Leishmaniasis Areas in Morocco. Parasites Vectors 2017, 10, 454. [Google Scholar] [CrossRef] [PubMed]
- Piarroux, R.; Fontes, M.; Perasso’, R.; Gambarelli, F.; Joblet, C.; Dumon, H.; Quilici, M. Phylogenetic Relationships between Old World Leishmania Strains Revealed by Analysis of a Repetitive DNA Sequence. Mol. Biochem. Parasitol. 1995, 73, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 20 May 2022).
- Tamura, K.; Nei, M. Estimation of the Number of Nucleotide Substitutions in the Control Region of Mitochondrial DNA in Humans and Chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Palomo, L.J. The IUCN Red List of Threatened Species. 2022. Available online: https://www.iucnredlist.org/ (accessed on 16 July 2023).
- Battisti, E.; Zanet, S.; Khalili, S.; Trisciuoglio, A.; Hertel, B.; Ferroglio, E. Molecular Survey on Vector-Borne Pathogens in Alpine Wild Carnivorans. Front. Vet. Sci. 2020, 7, 1. [Google Scholar] [CrossRef]
- Ortega, M.V.; Moreno, I.; Domínguez, M.; de la Cruz, M.L.; Martín, A.B.; Rodríguez-Bertos, A.; López, R.; Navarro, A.; González, S.; Mazariegos, M.; et al. Application of a Specific Quantitative Real-Time PCR (qPCR) to Identify Leishmania infantum DNA in Spleen, Skin and Hair Samples of Wild Leporidae. Vet. Parasitol. 2017, 243, 92–99. [Google Scholar] [CrossRef]
- Souguir-Omrani, H.; Chemkhi, J.; Fathallah-Mili, A.; Saadi-BenAoun, Y.; BelHadjAli, I.; Guizani, I.; Guerbouj, S. Paraechinus Aethiopicus (Ehrenberg 1832) and Atelerix Algirus (Lereboullet 1842) Hedgehogs: Possible Reservoirs of Endemic Leishmaniases in Tunisia. Infect. Genet. Evol. 2018, 63, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Pérez, M.; Khaldi, M.; Riera, C.; Mozo-León, D.; Ribas, A.; Hide, M.; Barech, G.; Benyettou, M.; Seghiri, K.; Doudou, S.; et al. First Report of Natural Infection in Hedgehogs with Leishmania major, a Possible Reservoir of Zoonotic Cutaneous Leishmaniasis in Algeria. Acta Trop. 2014, 135, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Chemkhi, J.; Souguir, H.; Bel, I.; Ali, H.; Driss, M.; Guizani, I.; Guerbouj, S. Natural Infection of Algerian Hedgehog, Atelerix algirus (Lereboullet 1842) with Leishmania Parasites in Tunisia. Acta Trop. 2015, 150, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Madrid, R.; Belinchón-Lorenzo, S.; Iniesta, V.; Fernández-Cotrina, J.; Parejo, J.C.; Serrano, F.J.; Monroy, I.; Baz, V.; Gómez-Luque, A.; Gómez-Nieto, L.C. First Detection of Leishmania infantum Kinetoplast DNA in Hair of Wild Mammals: Application of qPCR Method to Determine Potential Parasite Reservoirs. Acta Trop. 2013, 128, 706–709. [Google Scholar] [CrossRef]
- Ruiz-Fons, F.; Ferroglio, E.; Gortázar, C. Leishmania infantum in free-ranging hares, Spain, 2004–2010. Eurosurveillance 2013, 18, 20541. [Google Scholar] [CrossRef] [PubMed]
- Azami-Conesa, I.; Martínez-Díaz, R.A.; González, F.; Gómez-Muñoz, M.T. First Detection of Leishmania infantum in Common Urban Bats Pipistrellus pipistrellus in Europe. Res. Vet. Sci. 2020, 132, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Lachaud, L.; Marchergui-Hammami, S.; Chabbert, E.; Dereure, J.; Dedet, J.P.; Bastien, P. Comparison of Six PCR Methods Using Peripheral Blood for Detection of Canine Visceral Leishmaniasis. J. Clin. Microbiol. 2002, 40, 210–215. [Google Scholar] [CrossRef]
- Gomes, J.; Rocha, H.; Carvalho, C.; Bandeira, V.; Fonseca, C.; Rosalino, L.M.; Cunha, M.V. Molecular Detection and Characterization of Leishmania infantum in Free-Ranging Egyptian Mongoose (Herpestes ichneumon). Int. J. Parasitol. Parasites Wildl. 2020, 11, 158–162. [Google Scholar] [CrossRef]
- Kassahun, A.; Sadlova, J.; Benda, P.; Kostalova, T.; Warburg, A.; Hailu, A.; Baneth, G.; Volf, P.; Votypka, J. Natural Infection of Bats with Leishmania in Ethiopia. Acta Trop. 2015, 150, 166–170. [Google Scholar] [CrossRef]
- Sobrino, R.; Ferroglio, E.; Oleaga, A.; Romano, A.; Millan, J.; Revilla, M.; Arnal, M.C.; Trisciuoglio, A.; Gortázar, C. Characterization of Widespread Canine Leishmaniasis among Wild Carnivores from Spain. Vet. Parasitol. 2008, 155, 198–203. [Google Scholar] [CrossRef]
- Ramos, R.A.; Ramos, C.A.; Santos, E.M.; Araújo, F.R.; Carvalho, G.A.; Faustino, M.A.; Alves, L.C. Quantification of Leishmania infantum DNA in the Bone Marrow, Lymph Node and Spleen of Dogs. Rev. Bras. Parasitol. Vet. 2013, 22, 346–350. [Google Scholar] [CrossRef]
- Aschar, M.; de Oliveira, E.T.B.; Laurenti, M.D.; Marcondes, M.; Tolezano, J.E.; Hiramoto, R.M.; Corbett, C.E.P.; Da Matta, V.L.R. Value of the Oral Swab for the Molecular Diagnosis of Dogs in Different Stages of Infection with Leishmania infantum. Vet. Parasitol. 2016, 225, 108–113. [Google Scholar] [CrossRef]
- Pourmohammadi, B.; Mohammadi-Azni, S. Short Communication Molecular Detection of Leishmania major in Hemiechinus auritus: A Potential Reservoir of Zoonotic Cutaneous Leishmaniasis in Damghan, Iran. J. Arthropod-Borne Dis. 2019, 13, 334–343. [Google Scholar]
Scientific Name | Number of Animals (n) | Type and Number of Samples | |||
---|---|---|---|---|---|
Ear Skin | Spleen | Ocular Swab | Oral Swab | ||
Erinaceus europaeus | 83 | 64 | 75 | 8 | 8 |
Sciurus vulgaris | 26 | 25 | 24 * | - | - |
Meles meles | 14 | 14 | 14 * | - | - |
Atelerix algirus | 3 | 3 | 3 | - | - |
Martes foina | 2 | 2 | 2 | - | - |
Mustela nivalis | 2 | 2 | 2 | - | - |
Eliomys quercinus | 1 | 1 | 1 | - | - |
Mustela putorius | 1 | - | 1 | - | - |
Herpestes ichneumon | 2 | 2 | 2 | - | - |
TOTAL | 134 | 113 | 124 | 8 | 8 |
Species | Spleen (+/n) | Ear Skin (+/n) | TOTAL (% Value, 95% CI) | ||||
---|---|---|---|---|---|---|---|
Repeat Region | SSUrRNA | ITS1 | Repeat Region | SSUrRNA | ITS1 | ||
Erinaceus europaeus | 2/75 | 3/75 | 1/5 | 6/64 | 1/64 | 1/7 | 11/77 (14.29%, CI 6.5–22.07%) |
Sciurus vulgaris | 3/24 | 1/24 | 0/3 | 0/25 | 0/25 | N.A. | 3/26 (11.53%, CI 0–23.8%) |
Meles meles | 0/14 | 4/14 | 3/4 | 2/14 | 0/14 | 0/2 | 5/14 (35.71%, CI 10.63–60.8%) |
Atelerix algirus | 0/3 | 0/3 | N.A. | 0/3 | 0/3 | N.A. | 0/3 (0%, CI 0–63.16%) |
Mustela nivalis | 0/2 | 0/2 | N.A. | 0/2 | 0/2 | N.A. | 0/2 (0%, CI 0–77.64%) |
Martes foina | 0/2 | 0/2 | N.A. | 0/2 | 0/2 | N.A. | 0/2 (0%, CI 0–77.64%) |
Eliomys quercinus | 0/1 | 0/1 | N.A. | 0/1 | 0/1 | N.A. | 0/1 (0%, CI 0.0–95%) |
Mustela putorius | 0/1 | 0/1 | N.A. | N.A. | N.A. | N.A. | 0/1 (0%, CI 0.0–95%) |
Herpestes ichneumon | 0/2 | 0/2 | N.A. | 0/2 | 0/2 | N.A. | 0/2 (0%, CI 0.0–77.64%) |
TOTAL | 5/124 | 8/124 | 4/12 | 8/113 | 1/113 | 1/9 | 19/128 (14.84%, CI 8.68–21%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azami-Conesa, I.; Pérez-Moreno, P.; Matas Méndez, P.; Sansano-Maestre, J.; González, F.; Mateo Barrientos, M.; Gómez-Muñoz, M.T. Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain. Pathogens 2023, 12, 1048. https://doi.org/10.3390/pathogens12081048
Azami-Conesa I, Pérez-Moreno P, Matas Méndez P, Sansano-Maestre J, González F, Mateo Barrientos M, Gómez-Muñoz MT. Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain. Pathogens. 2023; 12(8):1048. https://doi.org/10.3390/pathogens12081048
Chicago/Turabian StyleAzami-Conesa, Iris, Paula Pérez-Moreno, Pablo Matas Méndez, Jose Sansano-Maestre, Fernando González, Marta Mateo Barrientos, and María Teresa Gómez-Muñoz. 2023. "Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain" Pathogens 12, no. 8: 1048. https://doi.org/10.3390/pathogens12081048
APA StyleAzami-Conesa, I., Pérez-Moreno, P., Matas Méndez, P., Sansano-Maestre, J., González, F., Mateo Barrientos, M., & Gómez-Muñoz, M. T. (2023). Occurrence of Leishmania infantum in Wild Mammals Admitted to Recovery Centers in Spain. Pathogens, 12(8), 1048. https://doi.org/10.3390/pathogens12081048