Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Specimen Preparation
2.3. Development of Caries-like Dentin
2.4. Caries Lesion Removal
2.5. Cavity Decontamination Using aPDT
2.6. Dentin Remineralization Using Bioactive Glasses
2.7. Transversal Microradiography (TMR)
2.8. Cross-Sectional Hardness (CSH)
2.9. Fourier-Transform Raman Spectroscopy (FT-Raman)
2.10. Confocal Laser Scanning Microscopy (CLSM)
2.11. Statistical Analysis
3. Results
3.1. Transversal Microradiography (TMR)
3.2. Cross-Sectional Hardness (CSH)
3.3. FT-Raman
3.4. Confocal Laser Scanning Microscopy (CLSM)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Prim. 2017, 3, 17030. [Google Scholar] [CrossRef]
- MacHiulskiene, V.; Campus, G.; Carvalho, J.C.; Dige, I.; Ekstrand, K.R.; Jablonski-Momeni, A.; Maltz, M.; Manton, D.J.; Martignon, S.; Martinez-Mier, E.A.; et al. Terminology of dental caries and dental caries management: Consensus report of a workshop organized by ORCA and Cariology Research Group of IADR. Caries Res. 2020, 54, 7–14. [Google Scholar] [CrossRef]
- Frencken, J.E.; Sharma, P.; Stenhouse, L.; Green, D.; Laverty, D.; Dietrich, T. Global epidemiology of dental caries and severe periodontitis–a comprehensive review. J. Clin. Periodontol. 2017, 44, S94–S105. [Google Scholar] [CrossRef]
- Banerjee, A. Minimal intervention dentistry: Part 7. Minimally invasive operative caries management: Rationale and techniques. Br. Dent. J. 2013, 214, 107–111. [Google Scholar] [CrossRef]
- Al Deeb, L.; Bin-Shuwaish, M.S.; Abrar, E.; Naseem, M.; Al-Hamdan, R.S.; Maawadh, A.M.; Al Deeb, M.; Almohareb, T.; Al Ahdal, K.; Vohra, F.; et al. Efficacy of chlorhexidine, Er Cr YSGG laser and photodynamic therapy on the adhesive bond integrity of caries affected dentin. An in-vitro study. Photodiagnosis. Photodyn. Ther. 2020, 31, 101875. [Google Scholar] [CrossRef]
- Diniz, I.M.A.; Horta, I.D.; Azevedo, C.S.; Elmadjian, T.R.; Matos, A.B.; Simionato, M.R.L.; Marques, M.M. Antimicrobial photodynamic therapy: A promise candidate for caries lesions treatment. Photodiagnosis. Photodyn. Ther. 2015, 12, 511–518. [Google Scholar] [CrossRef]
- Banerjee, A.; Kidd, E.A.M.; Watson, T.F. In vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 2000, 34, 144–150. [Google Scholar] [CrossRef]
- Koubi, S.; Tassery, H. Minimally Invasive Dentistry Using Sonic and Ultra-sonic Devices in Ultraconservative Class 2 Restorations. J. Contemp. Dent. Pract. 2008, 9, 155–165. [Google Scholar]
- Cianetti, S.; Abraha, I.; Pagano, S.; Lupatelli, E.; Lombardo, G. Sonic and ultrasonic oscillating devices for the management of pain and dental fear in children or adolescents that require caries removal: A systematic review. BMJ Open 2018, 8, e020840. [Google Scholar] [CrossRef]
- Sheets, C.G.; Paquette, J.M. Ultrasonic tips for conservative restorative dentistry. Dent. Today 2002, 21, 102–104. [Google Scholar]
- Chen, Y.L.; Chang, H.H.; Chiang, Y.C.; Lin, C.P. Application and development of ultrasonics in dentistry. J. Formos. Med. Assoc. 2013, 112, 659–665. [Google Scholar] [CrossRef]
- Alrahlah, A.; Niaz, M.O.; Abrar, E.; Vohra, F.; Rashid, H. Treatment of caries affected dentin with different photosensitizers and its effect on adhesive bond integrity to resin composite. Photodiagnosis. Photodyn. Ther. 2020, 31, 101865. [Google Scholar] [CrossRef]
- Elkady, D.M.; Khater, A.G.A.; Schwendicke, F. Chlorhexidine to improve the survival of ART restorations: A systematic review and meta-analysis. J. Dent. 2020, 103, 103491. [Google Scholar] [CrossRef]
- Brookes, Z.L.S.; Bescos, R.; Belfield, L.A.; Ali, K.; Roberts, A. Current uses of chlorhexidine for management of oral disease: A narrative review. J. Dent. 2020, 103, 103497. [Google Scholar] [CrossRef]
- Tartaglia, G.M.; Tadakamadla, S.K.; Connelly, S.T.; Sforza, C.; Martín, C. Adverse events associated with home use of mouthrinses: A systematic review. Ther. Adv. Drug Saf. 2019, 10, 1–16. [Google Scholar] [CrossRef]
- Zanatta, F.B.; Antoniazzi, R.P.; Rösing, C.K. Staining and calculus formation after 0.12% chlorhexidine rinses in plaque-free and plaque covered surfaces: A randomized trial. J. Appl. Oral Sci. 2010, 18, 515–521. [Google Scholar] [CrossRef]
- Van Strydonck, D.A.C.; Slot, D.E.; Van Der Velden, U.; Van Der Weijden, F. Effect of a chlorhexidine mouthrinse on plaque, gingival inflammation and staining in gingivitis patients: A systematic review. J. Clin. Periodontol. 2012, 39, 1042–1055. [Google Scholar] [CrossRef]
- Zanin, I.C.J.; Gonçalves, R.B.; Junior, A.B.; Hope, C.K.; Pratten, J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: An in vitro study. J. Antimicrob. Chemother. 2005, 56, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Giusti, J.S.M.; Santos-Pinto, L.; Pizzolito, A.C.; Helmerson, K.; Carvalho-Filho, E.; Kurachi, C.; Bagnato, V.S. Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed. Laser Surg. 2008, 26, 281–287. [Google Scholar] [CrossRef]
- Araújo, N.C.; Fontana, C.R.; Bagnato, V.S.; Gerbi, M.E.M. Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med. Sci. 2014, 29, 629–635. [Google Scholar] [CrossRef]
- Di Poto, A.; Sbarra, M.S.; Provenza, G.; Visai, L.; Speziale, P. The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomater 2009, 30, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.W.; Dougherty, T.J. How does photodynamic therapy work? Photochem. Photobiol. 1992, 55, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G.P.; Hamblin, M.R. Photoantimicrobials—Are we afraid of the light? Lancet Infect. Dis. 2017, 17, e49–e55. [Google Scholar] [CrossRef] [PubMed]
- Santezi, C.; Reina, B.D.; Dovigo, L.N. Curcumin-mediated photodynamic therapy for the treatment of oral infections-a review. Photodiagnosis. Photodyn. Ther. 2018, 21, 409–415. [Google Scholar] [CrossRef]
- da Mota, A.C.C.; Leal, C.R.L.; Olivan, S.; Gonçalves, M.L.L.; de Oliveira, V.A.; Pinto, M.M.; Bussadori, S.K. Case report of photodynamic therapy in the treatment of dental caries on primary teeth. J. Lasers Med. Sci. 2016, 7, 131–133. [Google Scholar] [CrossRef]
- Konopka, K.; Goslinski, T. Photodynamic therapy in dentistry. J. Dent. Res. 2007, 86, 694–707. [Google Scholar] [CrossRef]
- Silva, T.C.; Pereira, A.F.F.; Exterkate, R.A.M.; Bagnato, V.S.; Buzalaf, M.A.R.; Machado, M.A.D.A.M.; Ten Cate, J.M.; Crielaard, W.; Deng, D.M. Application of an active attachment model as a high-throughput demineralization biofilm model. J. Dent. 2012, 40, 41–47. [Google Scholar] [CrossRef]
- Muehler, D.; Rupp, C.M.; Keceli, S.; Brochhausen, C.; Siegmund, H.; Maisch, T.; Hiller, K.A.; Buchalla, W.; Cieplik, F. Insights Into Mechanisms of Antimicrobial Photodynamic Action Toward Biofilms Using Phenalen-1-One Derivatives as Photosensitizers. Front. Microbiol. 2020, 11, 589364. [Google Scholar] [CrossRef]
- Paschoal, M.A.; Tonon, C.C.; Spolidório, D.M.P.; Bagnato, V.S.; Giusti, J.S.M.; Santos-Pinto, L. Photodynamic potential of curcumin and blue LED against streptococcus mutans in a planktonic culture. Photodiagnosis. Photodyn. Ther. 2013, 10, 313–319. [Google Scholar] [CrossRef]
- Moghaddas, M.J.; Moosavi, H.; Yaghoubirad, S.; Chiniforush, N. The Effect of the Bioactive Glass and the Er:YAG Laser on the Remineralization of the Affected Dentin: A Comparative In Vitro Study. J. Lasers Med. Sci. 2020, 11, 160–166. [Google Scholar] [CrossRef]
- Ferreira, A.C.; de Lima Oliveira, R.F.; Amorim, A.A.; Geng-Vivanco, R.; de Carvalho Panzeri Pires-de-Souza, F. Remineralization of caries-affected dentin and color stability of teeth restored after treatment with silver diamine fluoride and bioactive glass-ceramic. Clin. Oral Investig. 2022, 26, 4805–4816. [Google Scholar] [CrossRef]
- Tirapelli, C.; Panzeri, H.; Soares, R.G.; Peitl, O.; Zanotto, E.D. A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz. Oral Res. 2010, 24, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Tirapelli, C.; Panzeri, H.; Lara, E.; Soares, R.; Peitl, O.; Zanotto, E. The effect of a novel crystallised bioactive glass-ceramic powder on dentine hypersensitivity: A long-term clinical study. J. Oral Rehabil. 2011, 38, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.; Attik, N.; Pradelle-Plasse, N.; Jackson, P.; Grosgogeat, B.; Colon, P. Bioactive glass for dentin remineralization: A systematic review. Mater Sci. Eng. C 2017, 76, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Scaffa, P.; Giacomini, M.; Vidal, C.; Honório, H.; Wang, L. Sodium trimetaphosphate as a novel strategy for matrix metalloproteinase inhibition and dentin remineralization. Caries Res. 2018, 52, 189–198. [Google Scholar] [CrossRef]
- Besegato, J.F.; Melo, P.B.G.; de Abreu Bernardi, A.C.; Bagnato, V.S.; Rastelli, A.N.S. Ultrasound device as a minimally invasive approach for caries dentin removal. Braz. Dent. J. 2022, 33, 57–67. [Google Scholar] [CrossRef]
- Barbosa-Martins, L.F.; de Sousa, J.P.; Alves, L.A.; Davies, R.P.W.; Puppin-Rontanti, R.M. Biomimetic mineralizing agents recover the micro tensile bond strength of demineralized dentin. Materials 2018, 11, 1733. [Google Scholar] [CrossRef]
- Momoi, Y.; Hayashi, M.; Fujitani, M.; Fukushima, M.; Imazato, S.; Kubo, S.; Nikaido, T.; Shimizu, A.; Unemori, M.; Yamaki, C. Clinical guidelines for treating caries in adults following a minimal intervention policy-evidence and consensus based report. J. Dent. 2012, 40, 95–105. [Google Scholar] [CrossRef]
- Carmona-Vargas, C.C.; De Alves, L.C.; Brocksom, T.J.; De Oliveira, K.T. Combining batch and continuous flow setups in the end-to-end synthesis of naturally occurring curcuminoids. React. Chem. Eng. 2017, 2, 366–374. [Google Scholar] [CrossRef]
- Dantas Lopes dos Santos, D.; Besegato, J.F.; de Melo, P.B.G.; Oshiro Junior, J.A.; Chorilli, M.; Deng, D.; Bagnato, V.S.; de Souza Rastelli, A.N. Curcumin-loaded Pluronic® F-127 micelles as a drug delivery system for curcumin-mediated photodynamic therapy for oral application. Photochem. Photobiol. 2021, 97, 1072–1088. [Google Scholar] [CrossRef]
- Wierichs, R.J.; Stausberg, S.; Lausch, J.; Meyer-Lueckel, H.; Esteves-Oliveira, M. Caries-preventive effect of NaF, NaF plus TCP, NaF plus CPP-ACP, and SDF varnishes on sound dentin and artificial dentin caries in vitro. Caries Res. 2018, 52, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Chinelatti, M.A.; Tirapelli, C.; Milori, S.A.; Jasinevicius, R.G.; Peitl, O.; Zanotto, E.D. Effect of a bioactive glass ceramic on the control of enamel and dentin erosion lesions. Braz. Dent. J. 2017, 28, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Buchalla, W.; Attin, T.; Roth, P.; Hellwig, E. Influence of olive oil emulsions on dentin demineralization in vitro. Caries Res. 2003, 37, 100–107. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, D.M.S.; Pires, J.G.; Braga, A.S.; Salomão, P.M.A.; Magalhães, A.C. Comparison between static and semidynamic models for microcosm biofilm formation on dentin. J. Appl. Oral Sci. 2019, 27, e20180163. [Google Scholar] [CrossRef]
- Angmar, B.; Carlström, D.; Glas, J.E. Studies on the ultrastructure of dental enamel. IV. The mineralization of normal human enamel. J. Ultrasructure Res. 1963, 8, 12–23. [Google Scholar] [CrossRef]
- Arends, J.; ten Bosch, J.J. Demineralization and remineralization evaluation techniques. J. Dent. Res. 1992, 71, 924–928. [Google Scholar] [CrossRef]
- Pacheco, L.F.; de Freitas, É.C.B.; Rodrigues, E.; Soares, L.E.S.; Pascon, F.M.; Correr-Sobrinho, L.; Puppin-Rontani, R.M. Molecular and structural evaluation of dentin caries-like lesions produced by different artificial models. Braz. Dent. J. 2013, 24, 610–618. [Google Scholar] [CrossRef]
- Paris, S.; Bitter, K.; Renz, H.; Hopfenmuller, W.; Meyer-Lueckel, H. Validation of two dual fluorescence techniques for confocal microscopic visualization of resin penetration into enamel caries lesions. Microsc. Res. Tech. 2009, 72, 489–494. [Google Scholar] [CrossRef]
- Tang, G.; Yip, H.K.; Cutress, T.W.; Samaranayake, L.P. Artificial mouth model systems and their contribution to caries research: A review. J. Dent. 2003, 31, 161–171. [Google Scholar] [CrossRef]
- Sim, C.P.C.; Dashper, S.G.; Reynolds, E.C. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J. Dent. 2016, 50, 1–11. [Google Scholar] [CrossRef]
- De Campos, P.H.; Sanabe, M.E.; Rodrigues, J.A.; Duarte, D.A.; Santos, M.T.B.R.; Guaré, R.O.; Duque, C.; Lussi, A.; Diniz, M.B. Different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions: Microhardness and polarized light miscroscopy analyses. Microsc. Res. Tech. 2015, 78, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Maske, T.T.; van de Sande, F.H.; Arthur, R.A.; Huysmans, M.C.D.N.J.M.; Cenci, M.S. In vitro biofilm models to study dental caries: A systematic review. Biofouling 2017, 33, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Marquezan, M.; Corrêa, F.N.P.; Sanabe, M.E.; Rodrigues Filho, L.E.; Hebling, J.; Guedes-Pinto, A.C.; Mendes, F.M. Artificial methods of dentine caries induction: A hardness and morphological comparative study. Arch. Oral Biol. 2009, 54, 1111–1117. [Google Scholar] [CrossRef]
- Exterkate, R.A.M.; Crielaard, W.; Ten Cate, J.M. Different response to amine fluoride by Streptococcus mutans and polymicrobial biofilms in a novel high-throughput active attachment model. Caries Res. 2010, 44, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Bowen, W.H. Candida albicans and Streptococcus mutans: A potential synergistic alliance to cause virulent tooth decay in children. Future Microbiol. 2014, 9, 1295–1297. [Google Scholar] [CrossRef]
- Colombo, A.P.V.; Tanner, A.C.R. The role of bacterial biofilms in dental caries and periodontal and peri-implant diseases: A historical perspective. J. Dent. Res. 2019, 98, 373–385. [Google Scholar] [CrossRef]
- Laird, W.R.E.; Walmsley, A.D. Ultrasound in dentistry. Part 1-biophysical interactions. J. Dent. 1991, 19, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Cusicanqui Méndez, D.A.; Gutierres, E.; José Dionisio, E.; Afonso Rabelo Buzalaf, M.; Cardoso Oliveira, R.; Andrade Moreira Machado, M.A.; Cruvinel, T. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagnosis. Photodyn. Ther. 2018, 24, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Etemadi, A.; Hamidain, M.; Parker, S.; Chiniforush, N. Blue Light Photodynamic Therapy With Curcumin and Riboflavin in the Management of Periodontitis: A Systematic Review. J. Lasers Med. Sci. 2021, 21, e15. [Google Scholar] [CrossRef]
- de Melo, P.B.G.; Besegato, J.F.; de Abreu Bernardi, A.C.; Bagnato, V.S.; de Souza Rastelli, A.N. Antimicrobial photodynamic therapy as an adjunctive treatment to ultrasound for the dentin caries-like lesion removal. Photodiagnosis. Photodyn. Ther. 2022, 40, 103148. [Google Scholar] [CrossRef]
- Dos Santos, D.D.L.; Besegato, J.F.; de Melo, P.B.G.; Oshiro Junior, J.A.; Chorilli, M.; Deng, D.; Bagnato, V.S.; de Souza Rastelli, A.N. Effect of curcumin-encapsulated Pluronic® F-127 over duo-species biofilm of Streptococcus mutans and Candida albicans. Lasers Med. Sci. 2022, 37, 1775–1786. [Google Scholar] [CrossRef]
- Hosseinpour-Nader, A.; Karimi, N.; Ghafari, H.A.; Ghorbanzadeh, R. Effect of nanomicelle curcumin-based photodynamic therapy on the dynamics of white spot lesions and virulence of Streptococcus mutans in patients undergoing fixed orthodontic treatment: A randomized double-blind clinical trial. Photodiagnosis. Photodyn. Ther. 2022, 40, 103183. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, A.; Tjäderhane, L.; Checchi, V.; Di Lenarda, R.; Salo, T.; Tay, F.R.; Pashley, D.H.; Breschi, L. Role of dentin MMPs in caries progression and bond stability. J. Dent. Res. 2015, 94, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Reis, B.; Maluly-Proni, A.; Fagundes, T.; Vasconcelos, G.; Bresciani, E.; Prakki, A.; Dos Santos, P. Influence of protease inhibitors on the degradation of sound, sclerotic and caries-affected demineralized dentin. J. Mech. Behav. Biomed. Mater. 2019, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Cook, R.; Kellow, S.; Shah, K.; Festy, F.; Sherriff, M.; Watson, T. A confocal micro-endoscopic investigation of the relationship between the microhardness of carious dentine and its autofluorescence. Eur. J. Oral Sci. 2010, 118, 75–79. [Google Scholar] [CrossRef]
- Torres, C.P.; Miranda Gomes-Silva, J.; Menezes-Oliveira, M.A.H.; Silva Soares, L.E.; Palma-Dibb, R.G.; Borsatto, M.C. FT-Raman spectroscopy, µ-EDXRF spectrometry, and microhardness analysis of the dentin of primary and permanent teeth. Microsc. Res. Tech. 2018, 81, 509–514. [Google Scholar] [CrossRef]
- Alturki, M.; Koller, G.; Warburton, F.; Almhöjd, U.; Banerjee, A. Biochemical characterisation of carious dentine zones using Raman spectroscopy. J. Dent. 2021, 105, 103558. [Google Scholar] [CrossRef]
- Soares, L.; do Espírito Santo, A.M.; Brugnera Júnior, A.; Zanin, F.; da Silva Carvalho, C.; de Oliveira, R.; Martin, A. Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 1: Fourier transform-Raman study. J Biomed. Opt. 2009, 14, 024001. [Google Scholar] [CrossRef]
- Ericson, D.; Zimmerman, M.; Raber, H.; Götrick, B.; Bornstein, R.; Thorell, J. Clinical evaluation of efficacy and safety of a new method for chemo-mechanical removal of aaries: A multi-centre Study. Caries Res. 1999, 33, 171–177. [Google Scholar] [CrossRef]
Group | Removal Method | Cavity Decontamination Method | Dentin Remineralization Method |
---|---|---|---|
Caries lesion | − | − | − |
Sound dentin | − | − | − |
BUR | Carbide bur | − | − |
BUR + aPDT | Carbide bur | Curcumin-mediated aPDT | − |
BUR + 45S5 | Carbide bur | − | Application of 45S5 bioactive glass for 5 min |
BUR + aPDT + 45S5 | Carbide bur | Curcumin-mediated aPDT | Application of 45S5 bioactive glass for 5 min |
BUR + F-18 | Carbide bur | − | Application of F-18 Bioglass for 5 min |
BUR + aPDT + F-18 | Carbide bur | Curcumin-mediated aPDT | Application of F-18 Bioglass for 5 min |
ULT | Ultrasound device | − | − |
ULT + aPDT | Ultrasound device | Curcumin-mediated aPDT | − |
ULT + 45S5 | Ultrasound device | − | Application of 45S5 bioactive glass for 5 min |
ULT + aPDT + 45S5 | Ultrasound device | Curcumin-mediated aPDT | Application of 45S5 bioactive glass for 5 min |
Mineral Loss ∆Z (%vol.µm) | Depth (µm) | R (∆Z/µm) | |
---|---|---|---|
Mean value | 4929.3 | 213.9 | 23.3 |
Standard deviation | 1049.3 | 49.5 | 3.7 |
Groups | Depth (µm) | ||||
---|---|---|---|---|---|
40 | 80 | 120 | 160 | 200 | |
Caries lesion | 8.49 ± 1.26 E,f | 10.97 ± 2.00 D,g | 11.98 ± 1,64 CD,h | 13.78 ± 1.15 BC,h | 15.93 ± 1.74 A,g |
Sound dentin | 37.58 ± 3.96 D,a | 44.98 ± 1.40 C,a | 47.70 ± 2.73 B,a | 49.60 ± 2.32 AB,bc | 53.67 ± 4.38 A,cde |
BUR | 24.40 ± 2.67 A,bc | 38.92 ± 3.50 B,b | 49.61 ± 6.29 C,ab | 57.12 ± 5.06 D,a | 63.03 ± 4.63 E,a |
BUR + aPDT | 26.13 ± 2.64 A,b | 39.50 ± 4.49 B,b | 51.65 ± 3.94 C,a | 58.46 ± 5.27 D,a | 64.77 ± 6.16 E,a |
ULT | 20.01 ± 4.00 A,d | 30.51 ± 7.12 B,cde | 35.17 ± 4.43 C,ef | 40.67 ± 4.28 D,efg | 47.53 ± 4.83 E,ef |
ULT + aPDT | 20.38 ± 2.13 A,cd | 28.76 ± 3.07 B,de | 36.32 ± 1.87 C,e | 44.105 ± 2.75 D,de | 53.31 ± 2.47 E,cd |
BUR + F-18 | 24.69 ± 2.11 A,b | 32.70 ± 1.37 B,c | 40.73 ± 1.35 C,c | 49.07 ± 1.71 D,bc | 55.41 ± 1.79 E,cd |
BUR + aPDT + F-18 | 27.78 ± 1.95 A,b | 37.65 ± 1.54 B,b | 43.62 ± 1.50 C,b | 50.03 ± 1.87 D,b | 58.40 ± 2.11 E,ab |
BUR + 45S5 | 24.48 ± 1.63 A,b | 32.63 ± 1.63 B,cd | 39.05 ± 1.60 C,cd | 47.39 ± 1.00 D,cd | 56.61 ± 1.02 E,bc |
BUR + aPDT + 45S5 | 26.41 ± 1.27 A,b | 33.58 ± 1.55 B,c | 39.02 ± 1.15 C,cd | 43.26 ± 1.17 D,e | 52.40 ± 1.77 E,d |
ULT + F-18 | 17.34 ± 1.65 A,d | 23.68 ± 2.34 B,f | 35.1 ± 1.30 C,ef | 37.59 ± 1.95 D,g | 43.63 ± 3.88 E,f |
ULT + aPDT + F-18 | 17.75 ± 1.90 A,d | 25.41 ± 2.11 B,ef | 36.41 ± 2.16 C,de | 42.39 ± 1.58 D,ef | 49.04 ± 1.34 E,e |
ULT + 45S5 | 13.64 ± 0.92 A,e | 23.44 ± 2.44 B,f | 30.87 ± 2.11 C,g | 37.07 ± 1.58 D,g | 45.97 ± 2.95 E,f |
ULT + aPDT + 45S5 | 14.78 ± 2.17 A,e | 23.32 ± 2.21 B,f | 32.51 ± 2.13 C,fg | 39.49 ± 2.93 D,fg | 45.76 ± 3.35 E,f |
Groups | Raman Shifts | |||||
---|---|---|---|---|---|---|
Phosphate (350–542 cm−1) | Carbonate (870–1125 cm−1) | C-H Bonds (2750–3100 cm−1) | ||||
40 µm | 200 µm | 40 µm | 200 µm | 40 µm | 200 µm | |
Caries lesion | 0.0079 ± 0.0108 A,a | 0.0032 ± 0.0220 A,a | 0.0108 ± 0.0152 A,a | 0.0046 ± 0.0068 AB,a | 0.0178 ± 0.0242 AB,a | 0.0035 ± 0.0338 A,a |
Sound dentin | 0.0136 ± 0.0083 A,a | 0.0186 ± 0.0141 A,a | 0.0303 ± 0.0187 A,a | 0.0150 ± 0.0175 AB,a | 0.0389 ± 0.0160 AB,a | 0.0283 ± 0.0278 A,a |
BUR | 0.0275 ± 0.0249 A,a | 0.0574 ± 0.0331 A,a | 0.2472 ± 0.1242 A,a | 0.2516 ± 0.1343 AB,a | 0.1869 ± 0.0841 A,a | 0.2154 ± 0.1143 A,a |
BUR + aPDT | 0.0096 ± 0.0527 A,a | 0.0106 ± 0.0301 A,a | 0.0148 ± 0.0312 A,a | 0.0355 ± 0.0541 A,a | 0.2163 ± 0.4294 AB,a | 0.4988 ± 0.9863 A,a |
ULT | 0.0373 ± 0.0254 A,a | 0.0128 ± 0.0088 A,a | 0.0284 ± 0.0282 A,a | 0.0480 ± 0.0350 AB,a | 0.0399 ± 0.0431 AB,a | 0.0365 ± 0.0187 A,a |
ULT + aPDT | 0.0242 ± 0.0163 A,a | 0.0284 ± 0.0077 A,a | 0.0271 ± 0.0069 A,a | 0.0341 ± 0.0185 AB,a | 0.0457 ± 0.0064 B,a | 0.0660 ± 0.0971 A,a |
BUR + F18 | 0.0063 ± 0.0190 A,a | 0.0095 ± 0.0195 A,a | 0.0062 ± 0.0220 A,a | 0.0215 ± 0.0213 AB,a | 0.0102 ± 0.0416 AB,a | 0.0081 ± 0.0471 A,a |
BUR + aPDT + F18 | 0.0128 ± 0.0156 A,a | 0.0029 ± 0.0202 A,a | 0.0158 ± 0.0210 A,a | 0.0049 ± 0.0432 AB,a | 0.0035 ± 0.0384 AB,a | 0.0089 ± 0.0096 A,a |
BUR + 45S5 | 0.0097 ± 0.0199 A,a | 0.0046 ± 0.0148 A,a | 0.0066 ± 0.0257 A,a | 0.0004 ± 0.0303 AB,a | 0.0091 ± 0.0518 AB,a | 0.0045 ± 0.0453 A,a |
BUR+ aPDT + 45S5 | 0.0286 ± 0.0186 A,a | 0.0118 ± 0.0199 A,a | 0.0118 ± 0.0139 A,a | 0.0102 ± 0.0154 AB,a | 0.0043 ± 0.0207 AB,a | 0.0343 ± 0.0514 A,a |
ULT + F18 | 0.0034 ± 0.0329 A,a | 0.0111 ± 0.0139 A,a | 0.0123 ± 0.0174 A,a | 0.0248 ± 0.0360 AB,a | 0.0205 ± 0.0400 AB,a | 0.0196 ± 0.0278 A,a |
ULT + aPDT + F18 | 0.0036 ± 0.0173 A,a | 0.0030 ± 0.0260 A,a | 0.0147 ± 0.0339 A,a | 0.0008 ± 0.0327 AB,a | 0.0123 ± 0.0520 AB,a | 0.0078 ± 0.0040 A,a |
ULT + 45S5 | 0.0138 ± 0.0150 A,a | 0.0097 ± 0.0100 A,a | 0.0126 ± 0.0376 A,a | 0.0125 ± 0.0207 AB,a | 0.0022 ± 0.0694 AB,a | 0.0319 ± 0.0401 A,a |
ULT + aPDT + 45S5 | 0.0077 ± 0.0312 A,a | 0.0105 ± 0.0196 A,a | 0.0068 ± 0.0296 A,a | 0.0003 ± 0.0160 B,a | 0.0233 ± 0.0243 AB,a | 0.2790 ± 0.754 A,a |
Groups | Fluorescence Intensity (%) | |
---|---|---|
Green (Live Cells) | Red (Dead Cells) | |
Caries lesion | 34.62 | 02.50 |
CHX | 23.26 | 26.05 |
BUR | 12.92 | 02.21 |
BUR + aPDT | 11.36 | 04.04 |
ULT | 23.22 | 02.48 |
ULT + aPDT | 02.69 | 04.13 |
Groups | Fluorescence Intensity (%) | ||
---|---|---|---|
Blue (Dentin) | Green (Live Cells) | Red (Dead Cells) | |
Caries lesion | 128.89 | 65.10 | 08.06 |
CHX | 70.83 | 42.97 | 32.68 |
BUR | 55.60 | 07.92 | 05.56 |
BUR + aPDT | 80.16 | 10.56 | 20.34 |
BUR + 45S5 | 57.82 | 34.50 | 24.49 |
BUR + F-18 | 86.10 | 30.37 | 04.05 |
BUR + aPDT + 45S5 | 46.57 | 20.19 | 07.37 |
BUR + aPDT + F-18 | 82.89 | 12.10 | 10.43 |
ULT | 101.45 | 21.05 | 13.96 |
ULT + aPDT | 62.88 | 42.32 | 28.07 |
ULT + 45S5 | 70.80 | 12.43 | 10.74 |
ULT + F-18 | 92.45 | 38.87 | 45.56 |
ULT + aPDT + 45S5 | 40.34 | 51.98 | 32.03 |
ULT + aPDT + F-18 | 69.73 | 20.76 | 31.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besegato, J.F.; Melo, P.B.G.d.; Abreu Bernardi, A.C.; Souza, M.T.; Zanotto, E.D.; Bagnato, V.S.; de Souza Rastelli, A.N. Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions. Pathogens 2023, 12, 1052. https://doi.org/10.3390/pathogens12081052
Besegato JF, Melo PBGd, Abreu Bernardi AC, Souza MT, Zanotto ED, Bagnato VS, de Souza Rastelli AN. Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions. Pathogens. 2023; 12(8):1052. https://doi.org/10.3390/pathogens12081052
Chicago/Turabian StyleBesegato, João Felipe, Priscila Borges Gobbo de Melo, Adilson César Abreu Bernardi, Marina Trevelin Souza, Edgar Dutra Zanotto, Vanderlei Salvador Bagnato, and Alessandra Nara de Souza Rastelli. 2023. "Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions" Pathogens 12, no. 8: 1052. https://doi.org/10.3390/pathogens12081052
APA StyleBesegato, J. F., Melo, P. B. G. d., Abreu Bernardi, A. C., Souza, M. T., Zanotto, E. D., Bagnato, V. S., & de Souza Rastelli, A. N. (2023). Using Antimicrobial Photodynamic Therapy with Ultrasound Devices and Bioactive Glasses as a Combined Approach for Treating Dentin Caries Lesions. Pathogens, 12(8), 1052. https://doi.org/10.3390/pathogens12081052