Evaluating Trends in Strangles Outbreaks Using Temperature and Precipitation Data in the United States of America for 2018–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outbreak Data Collection
2.2. Temperature and Precipitation Data and GIS Analysis
2.3. Statistical Analysis
3. Results
3.1. General Trends in Outbreak and Weather Data
3.2. Logistic Regressions
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pusterla, N.; Kass, P.H.; Mapes, S.; Johnson, C.; Barnett, D.C.; Vaala, W.; Gutierrez, C.; McDaniel, R.; Whitehead, B.; Manning, J. Surveillance Programme for Important Equine Infectious Respiratory Pathogens in the USA. Vet. Rec. 2011, 169, 12. [Google Scholar] [CrossRef] [PubMed]
- Duran, M.C.; Goehring, L.S.; Duran, M.C.; Goehring, L.S. Equine Strangles: An Update on Disease Control and Prevention. Austral J. Vet. Sci. 2021, 53, 23–31. [Google Scholar] [CrossRef]
- Boyle, A.G.; Timoney, J.F.; Newton, J.R.; Hines, M.T.; Waller, A.S.; Buchanan, B.R. Streptococcus Equi Infections in Horses: Guidelines for Treatment, Control, and Prevention of Strangles—Revised Consensus Statement. J. Vet. Intern. Med. 2018, 32, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Hamlen, H.J.; Timoney, J.F.; Bell, R.J. Epidemiologic and Immunologic Characteristics of Streptococcus Equi Infection in Foals. J. Am. Vet. Med. Assoc. 1994, 204, 768–775. [Google Scholar] [PubMed]
- Waller, A.S. New Perspectives for the Diagnosis, Control, Treatment, and Prevention of Strangles in Horses. Vet. Clin. North. Am. Equine Pract. 2014, 30, 591–607. [Google Scholar] [CrossRef] [PubMed]
- Durham, A.E.; Hall, Y.S.; Kulp, L.; Underwood, C. A Study of the Environmental Survival of Streptococcus Equi Subspecies Equi. Equine Vet. J. 2018, 50, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Jarlot, C.; Morley, P.S. Survival of Streptococcus Equi on Surfaces in an Outdoor Environment. Can. Vet. J. 2009, 50, 968–970. [Google Scholar] [PubMed]
- Martin, K.H.; Redding, L.E.; Boyle, A.G. Factors Influencing Veterinarian Opinion on Reporting of Equine Strangles in the United States. J. Equine Vet. Sci. 2022, 114, 103947. [Google Scholar] [CrossRef] [PubMed]
- McGlennon, A.; Waller, A.; Verheyen, K.; Slater, J.; Grewar, J.; Aanensen, D.; Newton, R. Surveillance of Strangles in UK Horses between 2015 and 2019 Based on Laboratory Detection of Streptococcus Equi. Vet. Rec. 2021, 189, e948. [Google Scholar] [CrossRef] [PubMed]
- Ivens, P.a.S.; Matthews, D.; Webb, K.; Newton, J.R.; Steward, K.; Waller, A.S.; Robinson, C.; Slater, J.D. Molecular Characterisation of ‘Strangles’ Outbreaks in the UK: The Use of M-Protein Typing of Streptococcus Equi Ssp. Equi. Equine Vet. J. 2011, 43, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, C.; Steward, K.F.; Charbonneau, A.R.L.; Walsh, S.; Wilson, H.; Timoney, J.F.; Wernery, U.; Joseph, M.; Craig, D.; van Maanen, K.; et al. Globetrotting Strangles: The Unbridled National and International Transmission of Streptococcus Equi between Horses. Microb. Genom. 2021, 7, mgen000528. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo-Morales, C.; James, K.; Barnum, S.; Vaala, W.; Chappell, D.E.; Schneider, C.; Craig, B.; Bain, F.; Barnett, D.C.; Gaughan, E.; et al. Voluntary Biosurveillance of Streptococcus Equi Subsp. Equi in Nasal Secretions of 9409 Equids with Upper Airway Infection in the USA. Vet. Sci. 2023, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Home|Equine Disease Communication Center. Available online: https://www.equinediseasecc.org/ (accessed on 14 August 2023).
- Equine Maps|University of Kentucky Veterinary Diagnostic Laboratory. Available online: https://vdl.uky.edu/epidemiology/equine-maps (accessed on 14 August 2023).
- Vose, R.S.; Applequist, S.; Squires, M.; Durre, I.; Menne, M.J.; Williams, C.N., Jr.; Fenimore, C.; Gleason, K.; Arndt, D.N. Monthly U.S. Climate Gridded Dataset (NClimGrid). 2014. Available online: https://www.ncei.noaa.gov/ (accessed on 14 August 2023).
- Taiyun Wei, T.; Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.92). Available online: https://github.com/taiyun/corrplot (accessed on 14 August 2023).
- R Core Team R: A Language and Environment for Statistical Computing. 2023. Available online: https://www.R-project.org/ (accessed on 10 August 2023).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2013; ISBN 0-387-95457-0. [Google Scholar]
- John, F.; Sanford, W. An R Companion to Applied Regression, 3rd ed.; Sage Publishing: Thousand Oaks, CA, USA, 2019; ISBN 978-1-5443-3647-3. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. JOSS 2019, 4, 1686. [Google Scholar] [CrossRef]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. ROCR: Visualizing Classifier Performance in R. Bioinformatics 2005, 21, 3940–3941. [Google Scholar] [CrossRef] [PubMed]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Canty, A. Ripley BD Boot: Bootstrap R (S-Plus) Functions 2022. R Package Version 1.3-28.1. Available online: https://rdrr.io/cran/boot/ (accessed on 26 July 2023).
- Florida Department of Agriculture and Consumer Services. Equine Movement Requirements/Horses/Equine/Agriculture Industry/Home-Florida Department of Agriculture & Consumer Services. Available online: https://www.fdacs.gov/Agriculture-Industry/Horses-Equine/Equine-Movement-Requirements (accessed on 26 July 2023).
- Miley, K.M.; Downs, J.; Beeman, S.P.; Unnasch, T.R. Impact of the Southern Oscillation Index, Temperature, and Precipitation on Eastern Equine Encephalitis Virus Activity in Florida. J. Med. Entomol. 2020, 57, 1604–1613. [Google Scholar] [CrossRef] [PubMed]
- Tirosh-Levy, S.; Gottlieb, Y.; Apanaskevich, D.A.; Mumcuoglu, K.Y.; Steinman, A. Species Distribution and Seasonal Dynamics of Equine Tick Infestation in Two Mediterranean Climate Niches in Israel. Parasites Vectors 2018, 11, 546. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, R.; Ruane, A.C.; Vautard, N.A.; Coppola, F.A.; Cruz, F.A.; Dessai, S.; Islam, A.S.; Rahimi, M.; Ruiz Carrascal, D.; Sillmann, J.; et al. Climate Change Information for Regional Impact and Risk Assessment. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group. I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1767–1926. [Google Scholar]
# | Model | Variable | Coeff | SE | OR | OR (95% CI) | p | AIC | |
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
1 | Monthly Data | (Intercept) | −0.174 | 0.383 | 0.840 | 0.396 | 1.780 | 0.649 | 1675.0 |
Precip_avg | 0.001 | 0.001 | 1.001 | 0.999 | 1.003 | 0.277 | |||
Temp_min | 1.475 | 7.123 | 4.372 | 3.759 × 10−6 | 5.125 × 106 | 0.836 | |||
Temp_max | 1.455 | 7.122 | 4.286 | 3.695 × 10−6 | 5.010 × 106 | 0.838 | |||
Temp_avg | −2.934 | 14.243 | 0.053 | 3.896 × 10−14 | 7.144 × 1010 | 0.837 | |||
2 | Rel to 5y_avg | (Intercept) | 0.023 | 0.124 | 1.023 | 0.802 | 1.307 | 0.852 | 1670.1 |
Precip_5yr | 0.002 | 0.002 | 1.002 | 0.999 | 1.006 | 0.119 | |||
Tmin_5yr | 0.000 | 0.006 | 1.000 | 0.988 | 1.011 | 0.960 | |||
Tmax_5yr | −0.015 | 0.121 | 0.985 | 0.777 | 1.248 | 0.899 | |||
Tavg_5yr | −0.060 | 0.122 | 0.941 | 0.741 | 1.195 | 0.619 | |||
3 | Mon to Mon ∆ | (Intercept) | 0.015 | 0.059 | 1.015 | 0.904 | 1.140 | 0.802 | 1667.8 |
Precip_m2m | 0.001 | 0.001 | 1.001 | 0.999 | 1.003 | 0.212 | |||
Tmax_m2m | 0.049 | 0.036 | 1.050 | 0.978 | 1.127 | 0.176 | |||
Tmin_m2m | −0.085 | 0.041 | 0.919 | 0.847 | 0.995 | 0.039 | |||
Tavg_m2m | 0.033 | 0.015 | 1.033 | 1.003 | 1.064 | 0.030 | |||
4 | Mon to Mon ∆s | (Intercept) | 0.011 | 0.059 | 1.011 | 0.901 | 1.136 | 0.849 | 1666.3 |
Tmin_m2m | −0.031 | 0.016 | 0.969 | 0.939 | 1.000 | 0.048 | |||
Tavg_m2m | 0.035 | 0.015 | 1.035 | 1.006 | 1.066 | 0.018 |
No | Variable | Coeff | OR | Lower | Upper | %A5 | %A10 | AUCA5 | AUCA10 |
---|---|---|---|---|---|---|---|---|---|
1 | (Intercept) | 0.011 | 1.012 | 0.889 | 1.152 | ns | ns | 0.515 | 0.526 |
Tmin_m2m | −0.036 | 0.965 | 0.931 | 0.999 | 39 | 68 | |||
Tavg_m2m | 0.040 | 1.041 | 1.008 | 1.075 | 58 | 78 | |||
2 | (Intercept) | 0.011 | 1.011 | 0.897 | 1.136 | --- | --- | --- | --- |
Tmin_m2m | −0.031 | 0.969 | 0.941 | 0.999 | --- | ||||
Tavg_m2m | 0.035 | 1.035 | 1.007 | 1.066 | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, B.A.; Saylor, R.K.; Taylor, Z.P.; Rhodes, D.V.L. Evaluating Trends in Strangles Outbreaks Using Temperature and Precipitation Data in the United States of America for 2018–2022. Pathogens 2023, 12, 1106. https://doi.org/10.3390/pathogens12091106
Thomas BA, Saylor RK, Taylor ZP, Rhodes DVL. Evaluating Trends in Strangles Outbreaks Using Temperature and Precipitation Data in the United States of America for 2018–2022. Pathogens. 2023; 12(9):1106. https://doi.org/10.3390/pathogens12091106
Chicago/Turabian StyleThomas, Bryce A., Ryan K. Saylor, Zachary P. Taylor, and DeLacy V. L. Rhodes. 2023. "Evaluating Trends in Strangles Outbreaks Using Temperature and Precipitation Data in the United States of America for 2018–2022" Pathogens 12, no. 9: 1106. https://doi.org/10.3390/pathogens12091106
APA StyleThomas, B. A., Saylor, R. K., Taylor, Z. P., & Rhodes, D. V. L. (2023). Evaluating Trends in Strangles Outbreaks Using Temperature and Precipitation Data in the United States of America for 2018–2022. Pathogens, 12(9), 1106. https://doi.org/10.3390/pathogens12091106