Rapid Diagnosis of Drug-Resistant Tuberculosis–Opportunities and Challenges
Abstract
:1. Introduction
2. Search Strategy
3. Principles of Drug Susceptibility Testing
4. Phenotypic Drug Susceptibility Testing (pDST) Assays
5. The Microscopic Observation Drug Susceptibility Assay (MODS)
6. The Nitrate Reductase Assay (NRA)
7. The Resazurin Microtiter Assay (REMA)
8. Phage Assays
9. Genotypic Drug Susceptibility Testing (gDST) Assays
10. Probe-Based Assays
10.1. GenoType MTBDRplus and GenoType MTBDRsl (Bruker/Hain Lifescience, Nehren, Germany)
10.2. Genoscholar Assays (NIPRO Corporation, Osaka, Japan)
10.3. GeneXpert Assays (Cepheid Inc., Sunnyvale, CA, USA)
10.4. Abbott RealTime MTB and MTB RIF/INH (Abbott Molecular, Des Plaines, IL, USA)
10.5. FluoroType MTBDR (RIF, INH) (Bruker/Hain Lifescience, Nehren, Germany)
10.6. BD MAX Multi-Drug Resistant Tuberculosis (Max MDR-TB) Assay (Becton Dickinson)
10.7. Cobas MTB and MTB RIF/INH (Roche Molecular Diagnostics, Pleasanton, CA, USA)
10.8. Loop-Mediated Isothermal Amplification (LAMP)
11. Chip-Based Real-Time Micro PCR Assays
Truenat MTB-RIF-Dx (Molbio Diagnostics, Goa, India)
12. Sequence-Based Assays
Deeplex MYC-TB Assay (Genoscreen, France)
13. Next-Generation Sequencing (NGS)
14. Mass Spectrometry-Based DST
15. Comparison of Phenotypic, Genotypic-, and Sequencing-Based Dst Assays
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alsayed, S.S.R.; Gunosewoyo, H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. Int. J. Mol. Sci. 2023, 24, 5202. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Annual Report of Tuberculosis; World Health Organization: Geneva, Switzerland, 2022; Volume 8, ISBN 978-92-4-006172-9. [Google Scholar]
- Dookie, N.; Ngema, S.L.; Perumal, R.; Naicker, N.; Padayatchi, N.; Naidoo, K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin. Microbiol. Rev. 2022, 35, 4. [Google Scholar] [CrossRef] [PubMed]
- Viney, K.; Linh, N.N.; Gegia, M.; Zignol, M.; Glaziou, P.; Ismail, N.; Kasaeva, T.; Mirzayev, F. New definitions of pre-extensively and extensively drug-resistant tuberculosis: Update from the World Health Organization. Eur. Respir. J. 2021, 57, 2100361. [Google Scholar] [CrossRef] [PubMed]
- Kherabi, Y.; Fréchet-Jachym, M.; Rioux, C.; Yazdanpanah, Y.; Méchaï, F.; Pourcher, V.; Robert, J.; Guglielmetti, L. Revised Definitions of Tuberculosis Resistance and Treatment Outcomes, France, 2006–2019. Emerg. Infect. Dis. 2022, 28, 1796. [Google Scholar] [CrossRef]
- Ambaye, G.Y.; Tsegaye, G.W. Factors Associated with Multi-Drug Resistant Tuberculosis among TB Patients in Selected Treatment Centers of Amhara Region: A Case-Control Study. Ethiop. J. Health Sci. 2021, 31, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, I.S.; Forsman, L.D.; Bruchfeld, J.; Hak, E.; Alffenaar, J.W. Risk factors of multidrug-resistant tuberculosis: A global systematic review and meta-analysis. J. Infect. 2018, 77, 469–478. [Google Scholar] [CrossRef]
- The Costly Burden of Drug-Resistant TB Disease in the U.S Fact Sheets. Newsroom. NCHHSTP. CDC. Available online: https://www.cdc.gov/nchhstp/newsroom/fact-sheets/tb/costly-burden-drug-resistant.html (accessed on 30 August 2023).
- WHO Consolidated Guidelines on Tuberculosis: Module 3: Diagnosis—Rapid Diagnostics for Tuberculosis Detection. Available online: https://pubmed.ncbi.nlm.nih.gov/33999549/ (accessed on 28 August 2023).
- Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5, a017863. [Google Scholar] [CrossRef]
- Moreira, A.D.S.R.; Huf, G.; Vieira, M.A.M.D.S.; Da Costa, P.A.; Aguiar, F.; Marsico, A.G.; Fonseca, L.D.S.; Ricks, M.; Oliveira, M.M.; Detjen, A.; et al. Liquid vs Solid Culture Medium to Evaluate Proportion and Time to Change in Management of Suspects of Tuberculosis-A Pragmatic Randomized Trial in Secondary and Tertiary Health Care Units in Brazil. PLoS ONE 2015, 10, e0127588. [Google Scholar] [CrossRef]
- WHO Consolidated Guidelines on Tuberculosis: Module 2: Screening: Systematic Screening for Tuberculosis Disease. Available online: https://www.who.int/publications/i/item/9789240022676 (accessed on 25 August 2023).
- Technical Report on Critical Concentrations for Drug Susceptibility Testing of Medicines Used in the Treatment of Drug-Resistant Tuberculosis. Available online: https://apps.who.int/iris/handle/10665/260470 (accessed on 13 September 2023).
- Technical Report on Critical Concentrations for Drug Susceptibility Testing of Isoniazid and the Rifamycins (Rifampicin, Rifabutin and Rifapentine). Available online: https://iris.who.int/handle/10665/339275 (accessed on 9 October 2023).
- Gumbo, T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob. Agents Chemother. 2010, 54, 1484–1491. [Google Scholar] [CrossRef]
- Joloba, M.L.; Johnson, J.L.; Feng, P.J.I.; Bozeman, L.; Goldberg, S.V.; Morgan, K.; Gitta, P.; Boom, H.W.; Heilig, C.M.; Mayanja-Kizza, H.; et al. What is the most reliable solid culture medium for tuberculosis treatment trials? Tuberculosis 2014, 94, 311–316. [Google Scholar] [CrossRef]
- Kim, S.J. Drug-susceptibility testing in tuberculosis: Methods and reliability of results. Eur. Respir. J. 2005, 25, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Dorbniewski, F. Antimicrobial susceptibility testing of Mycobacterium tuberculosis. Clin. Microbiol. Infect. 2002, 8, 1–10. [Google Scholar] [CrossRef]
- Canetti, G.; Froman, S.; Grosset, J.; Hauduroy, P.; Langerova, M.; Mahler, H.T.; Meissner, G.; Mitchison, D.A.; Sula, L. Mycobacteria: Laboratory methods for testing drug sensitivity and resistance. Bull. World Health Organ. 1963, 29, 565–578. [Google Scholar] [PubMed]
- Technical Manual for Drug Susceptibility Testing of Medicines Used in the Treatment of Tuberculosis. Available online: https://www.who.int/publications/i/item/9789241514842 (accessed on 12 September 2023).
- Adam, M.A.M.; Ali, H.M.H.; Khalil, E.A.G. Initial second-line drug resistance of Mycobacterium tuberculosis isolates from Sudanese retreatment-patients. J. Clin. Tuberc. Mycobact. Dis. 2017, 9, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Woods, G.L.; Brown-Elliott, B.A.; Conville, P.S.; Desmond, E.P.; Hall, G.S.; Lin, G.; Pfyffer, G.E.; Ridderhof, J.C.; Siddiqi, S.H.; Richard, J.; et al. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Amini, S.; Hoffner, S.; Allahyar Torkaman, M.R.; Hamzehloo, G.; Nasiri, M.J.; Salehi, M.; Sami Kashkooli, G.; Shahraki, M.S.; Mohsenpoor, M.; Soleimanpour, S.; et al. Direct drug susceptibility testing of Mycobacterium tuberculosis using the proportional method: A multicenter study. J. Glob. Antimicrob. Resist. 2019, 17, 242–244. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. Module 4, Treatment: Drug-Resistant Tuberculosis Treatment. 98; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Tansuphasiri, U.; Subpaiboon, S.; Rienthong, S. Comparison of the Resistance Ratio and Proportion Methods for Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis. J. Med. Assoc. Thai. 2001, 84, 1467–1476. [Google Scholar] [PubMed]
- Migliori, G.B.; Matteelli, A.; Cirillo, D.; Pai, M. Diagnosis of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: Current standards and challenges. Can. J. Infect. Dis. Med. Microbiol. 2008, 19, 169. [Google Scholar] [CrossRef]
- Yadav, R.N.; Verma, A.K.; Kaushik, G. Laboratory Cost Analysis of Conventional and Newer Molecular Tests for Diagnosis of Presumptive Multidrug-Resistant Tuberculosis Patients. J. Glob. Infect. Dis. 2022, 14, 93–98. [Google Scholar] [CrossRef]
- Chihota, V.N.; Grant, A.D.; Fielding, K.; Ndibongo, B.; van Zyl, A.; Muirhead, D.; Churchyard, G.J. Liquid vs. solid culture for tuberculosis: Performance and cost in a resource-constrained setting. Int. J. Tuberc. Lung Dis. 2010, 14, 1024–1031. [Google Scholar]
- Mtafya, B.; Sabiiti, W.; Sabi, I.; John, J.; Sichone, E.; Ntinginya, N.E.; Gillespie, S.H. Molecular Bacterial Load Assay Concurs with Culture on NaOH-Induced Loss of Mycobacterium tuberculosis Viability. J. Clin. Microbiol. 2019, 57, e01992-18. [Google Scholar] [CrossRef]
- Yusoof, K.A.; García, J.I.; Schami, A.; Garcia-Vilanova, A.; Kelley, H.V.; Wang, S.H.; Rendon, A.; Restrepo, B.I.; Yotebieng, M.; Torrelles, J.B. Tuberculosis Phenotypic and Genotypic Drug Susceptibility Testing and Immunodiagnostics: A Review. Front. Immunol. 2022, 13, 870768. [Google Scholar] [CrossRef] [PubMed]
- Kargupta, R.; Puttaswamy, S.; Lee, A.J.; Butler, T.E.; Li, Z.; Chakraborty, S.; Sengupta, S. Rapid culture-based detection of living mycobacteria using microchannel electrical impedance spectroscopy (m-EIS). Biol. Res. 2017, 50, 21. [Google Scholar] [CrossRef] [PubMed]
- Tortoli, E.; Cichero, P.; Piersimoni, C.; Simonetti, M.T.; Gesu, G.; Nista, D. Use of BACTEC MGIT 960 for Recovery of Mycobacteria from Clinical Specimens: Multicenter Study. J. Clin. Microbiol. 1999, 37, 3578. [Google Scholar] [CrossRef] [PubMed]
- Sivaramakrishnan, G.; Subramanyam, B.; Kumar, M.P.; Golla, R.; Tripathy, S.P.; Mondal, R. Validation of bedaquiline drug-susceptibility testing by BACTEC MGIT 960 system for Mycobacterium tuberculosis. Int. J. Mycobacteriol. 2019, 8, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Torrea, G.; Coeck, N.; Desmaretz, C.; Van De Parre, T.; Van Poucke, T.; Lounis, N.; de Jong, B.C.; Rigouts, L. Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an automated liquid culture system. J. Antimicrob. Chemother. 2015, 70, 2300–2305. [Google Scholar] [CrossRef] [PubMed]
- Demers, A.M.; Venter, A.; Friedrich, S.O.; Rojas-Ponce, G.; Mapamba, D.; Jugheli, L.; Sasamalo, M.; Almeida, D.; Dorasamy, A.; Jentsch, U.; et al. Direct Susceptibility Testing of Mycobacterium tuberculosis for Pyrazinamide by Use of the Bactec MGIT 960 System. J. Clin. Microbiol. 2016, 54, 1276. [Google Scholar] [CrossRef]
- Siddiqi, S.; Ahmed, A.; Asif, S.; Behera, D.; Javaid, M.; Jani, J.; Jyoti, A.; Mahatre, R.; Mahto, D.; Richter, E.; et al. Direct drug susceptibility testing of Mycobacterium tuberculosis for rapid detection of multidrug resistance using the Bactec MGIT 960 system: A multicenter study. J. Clin. Microbiol. 2012, 50, 435–440. [Google Scholar] [CrossRef]
- World Health Organization. Use of liquid TB culture and drug susceptibility testing (DST) in low and medium income settings. In Summary Report of the Expert Group Meeting on the Use of Liquid Culture Media; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Brady, M.F.; Coronel, J.; Gilman, R.H.; Moore, D.A.J. The MODS method for diagnosis of tuberculosis and multidrug resistant tuberculosis. J. Vis. Exp. JoVE 2008, 18, e845. [Google Scholar] [CrossRef]
- Agarwal, A.; Katoch, C.D.S.; Kumar, M.; Dhole, T.N.; Sharma, Y.K. Evaluation of Microscopic observation drug susceptibility (MODS) assay as a rapid, sensitive and inexpensive test for detection of tuberculosis and multidrug resistant tuberculosis. Med. J. Armed Forces India 2019, 75, 58–64. [Google Scholar] [CrossRef]
- Sanogo, M.; Kone, B.; Diarra, B.; Maiga, M.; Baya, B.; Somboro, A.M.; Sarro, Y.S.; Togo, A.C.G.; Dembele, B.P.P.; Goita, D.; et al. Performance of microscopic observation drug susceptibility for the rapid diagnosis of tuberculosis and detection of drug resistance in Bamako, Mali. Clin. Microbiol. Infect. 2017, 23, 408.e1–408.e6. [Google Scholar] [CrossRef]
- Coban, A.Y.; Deveci, A.; Sunter, A.T.; Martin, A. Nitrate reductase assay for rapid detection of isoniazid, rifampin, ethambutol, and streptomycin resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. J. Clin. Microbiol. 2014, 52, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Griess, P. Bemerkungen zu der Abhandlung der HH. Weselsky und Benedikt „Ueber einige Azoverbindungen”. Berichte Dtsch. Chem. Ges. 1879, 12, 426–428. [Google Scholar] [CrossRef]
- Ängeby, K.A.K.; Klintz, L.; Hoffner, S.E. Rapid and Inexpensive Drug Susceptibility Testing of Mycobacterium tuberculosis with a Nitrate Reductase Assay. J. Clin. Microbiol. 2002, 40, 553. [Google Scholar] [CrossRef] [PubMed]
- Coban, A.Y.; Birinci, A.; Ekinci, B.; Durupinar, B. Drug susceptibility testing of Mycobacterium tuberculosis with nitrate reductase assay. Int. J. Antimicrob. Agents 2004, 24, 304–306. [Google Scholar] [CrossRef]
- Gupta, A.; Sen, M.R.; Mohapatra, T.M.; Anupurba, S. Evaluation of the Performance of Nitrate Reductase Assay for Rapid Drug-susceptibility Testing of Mycobacterium tuberculosis in North India. J. Health Popul. Nutr. 2011, 29, 20. [Google Scholar] [CrossRef]
- Martin, A.; Panaiotov, S.; Portaels, F.; Hoffner, S.; Palomino, J.C.; Angeby, K. The nitrate reductase assay for the rapid detection of isoniazid and rifampicin resistance in Mycobacterium tuberculosis: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2008, 62, 56–64. [Google Scholar] [CrossRef]
- Huang, Z.; Du, J.; Deng, Z.; Luo, Q.; Xiong, G.; Wang, Y.; Zhang, X.; Li, J. Multicentre laboratory validation of the nitrate reductase assay using liquid medium for the rapid detection of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis. Tuberc. Edinb. Scotl. 2018, 113, 242–248. [Google Scholar] [CrossRef]
- Khalifa, R.A.; Nasser, M.S.; Gomaa, A.A.; Osman, N.M.; Salem, H.M. Resazurin Microtiter Assay Plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt. J. Chest Dis. Tuberc. 2013, 62, 241–247. [Google Scholar] [CrossRef]
- Martin, A.; Camacho, M.; Portaels, F.; Palomino, J.C. Resazurin Microtiter Assay Plate Testing of Mycobacterium tuberculosis Susceptibilities to Second-Line Drugs: Rapid, Simple, and Inexpensive Method. Antimicrob. Agents Chemother. 2003, 47, 3616. [Google Scholar] [CrossRef]
- Patil, S.S.; Mohite, S.T.; Kulkarni, S.A.; Udgaonkar, U.S. Resazurin Tube Method: Rapid, Simple, and Inexpensive Method for Detection of Drug Resistance in the Clinical Isolates of Mycobacterium tuberculosis. J. Glob. Infect. Dis. 2014, 6, 151. [Google Scholar] [CrossRef]
- Martin, A.; Palomino, J.C.; Portaels, F. Rapid detection of ofloxacin resistance in Mycobacterium tuberculosis by two low-cost colorimetric methods: Resazurin and nitrate reductase assays. J. Clin. Microbiol. 2005, 43, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Dixit, P.; Singh, U.; Sharma, P.; Jain, A. Evaluation of nitrate reduction assay, resazurin microtiter assay and microscopic observation drug susceptibility assay for first line antitubercular drug susceptibility testing of clinical isolates of M. tuberculosis. J. Microbiol. Methods 2012, 88, 122–126. [Google Scholar] [CrossRef]
- Galí, N.; Domínguez, J.; Blanco, S.; Prat, C.; Alcaide, F.; Coll, P.; Ausina, V. Use of a Mycobacteriophage-Based Assay for Rapid Assessment of Susceptibilities of Mycobacterium tuberculosis Isolates to Isoniazid and Influence of Resistance Level on Assay Performance. J. Clin. Microbiol. 2006, 44, 201. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, W.R.; Barletta, R.G.; Udani, R.; Chan, J.; Kalkut, G.; Sosne, G.; Kieser, T.; Sarkis, G.J.; Hatfull, G.F.; Bloom, B.R. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993, 260, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Hobby, G.L.; Holman, A.P.; Iseman, M.D.; Jones, J.M. Enumeration of tubercle bacilli in sputum of patients with pulmonary tuberculosis. Antimicrob. Agents Chemother. 1973, 4, 94–104. [Google Scholar] [CrossRef]
- Bardarov, S.; Dou, H.; Eisenach, K.; Banaiee, N.; Ya, S.; Chan, J.; Jacobs, W.R.; Riska, P.F. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: Comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn. Microbiol. Infect. Dis. 2003, 45, 53–61. [Google Scholar] [CrossRef]
- O’Donnell, M.R.; Pym, A.; Jain, P.; Munsamy, V.; Wolf, A.; Karim, F.; Jacobs, W.R.; Larsen, M.H. A Novel Reporter Phage To Detect Tuberculosis and Rifampin Resistance in a High-HIV-Burden Population. J. Clin. Microbiol. 2015, 53, 2188–2194. [Google Scholar] [CrossRef]
- Banaiee, N.; Bobadilla-del-Valle, M.; Riska, P.F.; Bardarov, S.; Small, P.M.; Ponce-de-Leon, A.; Jacobs, W.R.; Hatfull, G.F.; Sifuentes-Osornio, J. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 2003, 52, 557–561. [Google Scholar] [CrossRef]
- Shield, C.G.; Swift, B.M.C.; McHugh, T.D.; Dedrick, R.M.; Hatfull, G.F.; Sattag, G. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms 2021, 9, 2366. [Google Scholar] [CrossRef]
- Yzquierdo, S.L.; Lemus, D.; Echemendia, M.; Montoro, E.; McNerney, R.; Martin, A.; Palomino, J.C. Evaluation of phage assay for rapid phenotypic detection of rifampicin resistance in Mycobacterium tuberculosis. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 11. [Google Scholar] [CrossRef]
- Lacoma, A.; García-Sierra, N.; Prat, C.; Maldonado, J.; Ruiz-Manzano, J.; Haba, L.; Gavin, P.; Samper, S.; Ausina, V.; Domínguez, J. GenoType MTBDRsl for Molecular Detection of Second-Line-Drug and Ethambutol Resistance in Mycobacterium tuberculosis Strains and Clinical Samples. J. Clin. Microbiol. 2012, 50, 30. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wang, Y.; Shao, C.; Hao, Y.; Jin, Y. GenoType MTBDRplus Assay for Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Meta-Analysis. PLoS ONE 2016, 11, e0150321. [Google Scholar] [CrossRef] [PubMed]
- Theron, G.; Peter, J.; Richardson, M.; Warren, R.; Dheda, K.; Steingart, K.R. GenoType® MTBDRsl assay for resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst. Rev. 2016, 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Javed, H.; Bakuła, Z.; Pleń, M.; Hashmi, H.J.; Tahir, Z.; Jamil, N.; Jagielski, T. Evaluation of Genotype MTBDRplus and MTBDRsl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front. Microbiol. 2018, 9, 367771. [Google Scholar] [CrossRef] [PubMed]
- Tomasicchio, M.; Theron, G.; Pietersen, E.; Streicher, E.; Stanley-Josephs, D.; Van Helden, P.; Warren, R.; Dheda, K. The diagnostic accuracy of the MTBDRplus and MTBDRsl assays for drug-resistant TB detection when performed on sputum and culture isolates. Sci. Rep. 2016, 6, 17850. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, S.; Wang, Q.; Wang, L.; Tang, S.; Wang, J.; Lu, W. Rapid Diagnosis of Drug Resistance to Fluoroquinolones, Amikacin, Capreomycin, Kanamycin and Ethambutol Using Genotype MTBDRsl Assay: A Meta-Analysis. PLoS ONE 2013, 8, e55292. [Google Scholar] [CrossRef]
- Barnard, M.; Gey Van Pittius, N.C.; Van Helden, P.D.; Bosman, M.; Coetzee, G.; Warren, R.M. The Diagnostic Performance of the GenoType MTBDRplus Version 2 Line Probe Assay Is Equivalent to That of the Xpert MTB/RIF Assay. J. Clin. Microbiol. 2012, 50, 3712. [Google Scholar] [CrossRef]
- Cegielski, J.P.; Tudor, C.; Volchenkov, G.V.; Jensen, P.A. Antimicrobial drug resistance and infection prevention/control: Lessons from tuberculosis. Int. J. Infect. Control 2021, 17, 20840. [Google Scholar] [CrossRef]
- Dicks, K.V.; Stout, J.E. Molecular Diagnostics for Mycobacterium tuberculosis Infection. Annu. Rev. Med. 2019, 70, 77–90. [Google Scholar] [CrossRef]
- Nathavitharana, R.R.; Hillemann, D.; Schumacher, S.G.; Schlueter, B.; Ismail, N.; Omar, S.V.; Sikhondze, W.; Havumaki, J.; Valli, E.; Boehme, C.; et al. Multicenter Noninferiority Evaluation of Hain GenoType MTBDRplus Version 2 and Nipro NTM+MDRTB Line Probe Assays for Detection of Rifampin and Isoniazid Resistance. J. Clin. Microbiol. 2016, 54, 1624–1630. [Google Scholar] [CrossRef]
- Mitarai, S.; Kato, S.; Ogata, H.; Aono, A.; Chikamatsu, K.; Mizuno, K.; Toyota, E.; Sejimo, A.; Suzuki, K.; Yoshida, S.; et al. Comprehensive multicenter evaluation of a new line probe assay kit for identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis. J. Clin. Microbiol. 2012, 50, 884–890. [Google Scholar] [CrossRef] [PubMed]
- Willby, M.J.; Wijkander, M.; Havumaki, J.; Johnson, K.; Werngren, J.; Hoffner, S.; Denkinger, C.M.; Posey, J.E. Detection of Mycobacterium tuberculosis pncA Mutations by the Nipro Genoscholar PZA-TB II Assay Compared to Conventional Sequencing. Antimicrob. Agents Chemother. 2017, 62, 1. [Google Scholar] [CrossRef] [PubMed]
- Rigouts, L.; Miotto, P.; Schats, M.; Lempens, P.; Cabibbe, A.M.; Galbiati, S.; Lampasona, V.; de Rijk, P.; Cirillo, D.M.; de Jong, B.C. Fluoroquinolone heteroresistance in Mycobacterium tuberculosis: Detection by genotypic and phenotypic assays in experimentally mixed populations. Sci. Rep. 2019, 9, 11760. [Google Scholar] [CrossRef] [PubMed]
- Branigan, D.; Deborggraeve, S.; Georghiou, S.; Kohli, M.; Maclean, E.; Mckenna, L.; Ruhwald, M.; Suresh, A. Pipeline Report » 2022 Tuberculosis Diagnostics Tuberculosis Diagnostics. 2022. Available online: https://www.treatmentactiongroup.org/wp-content/uploads/2022/11/pipeline_TB_diagnostics_2022.pdf (accessed on 1 October 2023).
- Zignol, M.; Cabibbe, A.M.; Dean, A.S.; Glaziou, P.; Alikhanova, N.; Ama, C.; Andres, S.; Barbova, A.; Borbe-Reyes, A.; Chin, D.P.; et al. Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: A multi-country population-based surveillance study. Lancet Infect. Dis. 2018, 18, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Alagna, R.; Cabibbe, A.M.; Miotto, P.; Saluzzo, F.; Köser, C.U.; Niemann, S.; Gagneux, S.; Rodrigues, C.; Rancoita, P.V.M.; Cirillo, D.M. Is the new WHO definition of extensively drug-resistant tuberculosis easy to apply in practice? Eur. Respir. J. 2021, 58, 2100959. [Google Scholar] [CrossRef] [PubMed]
- Steingart, K.R.; Schiller, I.; Horne, D.J.; Pai, M.; Boehme, C.C.; Dendukuri, N. Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev. 2014, 1, CD009593. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kohli, M.; Yadav, R.N.; Chaubey, J.; Bhasin, D.; Sreenivas, V.; Sharma, R.; Singh, B.K. Evaluating the Diagnostic Accuracy of Xpert MTB/RIF Assay in Pulmonary Tuberculosis. PLoS ONE 2015, 10, e0141011. [Google Scholar] [CrossRef]
- Zong, K.; Luo, C.; Zhou, H.; Jiang, Y.; Li, S. Xpert MTB/RIF assay for the diagnosis of rifampicin resistance in different regions: A meta-analysis. BMC Microbiol. 2019, 19, 177. [Google Scholar] [CrossRef]
- Wang, S.Q.; Inci, F.; De Libero, G.; Singhal, A.; Demirci, U. Point-of-care assays for tuberculosis: Role of nanotechnology/microfluidics. Biotechnol. Adv. 2013, 31, 438–449. [Google Scholar] [CrossRef]
- WHO Treatment Guidelines for Isoniazid-Resistant Tuberculosis: Supplement to the WHO Treatment Guidelines for Drug-Resistant Tuberculosis; World Health Organization: Geneva, Switzerland, 2018.
- Habous, M.; Elimam, M.E.; Kumar, R.; Deesi, Z.L. Evaluation of GeneXpert Mycobacterium tuberculosis/Rifampin for the detection of Mycobacterium tuberculosis complex and rifampicin resistance in nonrespiratory clinical specimens. Int. J. Mycobacteriol. 2019, 8, 132–137. [Google Scholar] [CrossRef]
- Sanchez-Padilla, E.; Merker, M.; Beckert, P.; Jochims, F.; Dlamini, T.; Kahn, P.; Bonnet, M.; Niemann, S. Detection of Drug-Resistant Tuberculosis by Xpert MTB/RIF in Swaziland. N. Engl. J. Med. 2015, 372, 1181–1182. [Google Scholar] [CrossRef] [PubMed]
- Hopmeier, D.; Lampejo, T.; Rycroft, J.; Tiberi, S.; Melzer, M. The limitations of the Cepheid GeneXpert® Mtb/Rif assay for the diagnosis and management of polyresistant pulmonary tuberculosis. Clin. Infect. Pract. 2020, 7–8, 100038. [Google Scholar] [CrossRef]
- Kaswala, C.; Schmiedel, Y.; Kundu, D.; George, M.M.; Dayanand, D.; Devasagayam, E.; Manesh, A.S.; Kumar, S.S.; Michael, J.S.; Ninan, M.M.; et al. Accuracy of Xpert MTB/RIF Ultra for the diagnosis of tuberculosis in adult patients: A retrospective cohort study. Int. J. Infect. Dis. 2022, 122, 566–568. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Parmar, H.; Gaur, R.L.; Lieu, D.; Raghunath, S.; Via, N.; Battaglia, S.; Cirillo, D.M.; Denkinger, C.; Georghiou, S.; et al. Xpert MTB/XDR: A 10-Color Reflex Assay Suitable for Point-of-Care Settings To Detect Isoniazid, Fluoroquinolone, and Second-Line-Injectable-Drug Resistance Directly from Mycobacterium tuberculosis-Positive Sputum. J. Clin. Microbiol. 2021, 59, e02314-20. [Google Scholar] [CrossRef] [PubMed]
- Pillay, S.; Steingart, K.R.; Davies, G.R.; Chaplin, M.; De Vos, M.; Schumacher, S.G.; Warren, R.; Theron, G. Xpert MTB/XDR for detection of pulmonary tuberculosis and resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. Cochrane Database Syst. Rev. 2022, 5, CD014841. [Google Scholar] [CrossRef] [PubMed]
- Katamba, A.; Ssengooba, W.; Sserubiri, J.; Semugenze, D.; William, K.G.; Abdunoor, N.; Byaruhanga, R.; Turyahabwe, S.; Joloba, M.L. Evaluation of Xpert ® MTB/XDR test for susceptibility testing of Mycobacterium tuberculosis to first and second-line drugs in Uganda. PLoS ONE 2023, 18, e0284545. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, K.; Dookie, N. Can the GeneXpert MTB/XDR deliver on the promise of expanded, near-patient tuberculosis drug-susceptibility testing? Lancet Infect. Dis. 2022, 22, e121–e127. [Google Scholar] [CrossRef] [PubMed]
- Araya, B.T.; Ali, K.E.; Geleta, D.A.; Tekele, S.G.; Tulu, K.D. Performance of the Abbott RealTime MTB and RIF/INH resistance assays for the detection of Mycobacterium tuberculosis and resistance markers in sputum specimens. PLoS ONE 2021, 16, e0251602. [Google Scholar] [CrossRef]
- Nandlal, L.; Perumal, R.; Naidoo, K. Rapid Molecular Assays for the Diagnosis of Drug-Resistant Tuberculosis. Infect. Drug Resist. 2022, 15, 4971–4984. [Google Scholar] [CrossRef]
- Kostera, J.; Leckie, G.; Tang, N.; Lampinen, J.; Szostak, M.; Abravaya, K.; Wang, H. Analytical and clinical performance characteristics of the Abbott RealTime MTB RIF/INH Resistance, an assay for the detection of rifampicin and isoniazid resistant Mycobacterium tuberculosis in pulmonary specimens. Tuberculosis 2016, 101, 137–143. [Google Scholar] [CrossRef]
- Wang, M.G.; Xue, M.; Wu, S.Q.; Zhang, M.M.; Wang, Y.; Liu, Q.; Sandford, A.J.; He, J.Q. Abbott RealTime MTB and MTB RIF/INH assays for the diagnosis of tuberculosis and rifampicin/isoniazid resistance. Infect. Genet. Evol. 2019, 71, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kohli, M.; MacLean, E.; Pai, M.; Schumacher, S.G.; Denkinger, C.M. Diagnostic accuracy of centralised assays for TB detection and detection of resistance to rifampicin and isoniazid: A systematic review and meta-analysis. Eur. Respir. J. 2021, 57, 2000747. [Google Scholar] [CrossRef]
- David, A.; Singh, L.; da Silva, P.; Scott, L.; Stevens, W. The Performance of the Abbott Real Time MTB RIF/INH Compared to the MTBDRplus V2 for the Identification of MDR-TB Among Isolates. Infect. Drug Resist. 2020, 13, 3301. [Google Scholar] [CrossRef] [PubMed]
- Hillemann, D.; Haasis, C.; Andres, S.; Behn, T.; Kranzer, K. Validation of the FluoroType MTBDR assay for detection of rifampin and isoniazid resistance in mycobacterium tuberculosis complex isolates. J. Clin. Microbiol. 2018, 56, e00072-18. [Google Scholar] [CrossRef] [PubMed]
- A2.4 Information Sheet: Practical Considerations for Implementation of the Bruker-Hain Lifesciences FluoroType MTB and FluoroType MTBDR. TB Knowledge Sharing. Available online: https://tbksp.org/en/node/1709#:~:text=Thelimitofdetectionreported,%3D14CFU%2FmL (accessed on 28 August 2023).
- Haasis, C.; Rupp, J.; Andres, S.; Schlüter, B.; Kernbach, M.; Hillemann, D.; Kranzer, K. Validation of the FluoroType® MTBDR assay using respiratory and lymph node samples. Tuberc. Edinb. Scotl. 2018, 113, 76–80. [Google Scholar] [CrossRef] [PubMed]
- BD MAX™ MDR-TB [IFU 443878], Becton, Dickinson and Company: Franklin Lakes, NJ, USA, 2020.
- Sağıroğlu, P.; Atalay, M.A. Evaluation of the performance of the BD MAX MDR-TB test in the diagnosis of Mycobacterium tuberculosis complex in extrapulmonary and pulmonary samples. Expert Rev. Mol. Diagn. 2021, 21, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Paradis, S.; Betz, J.; Beylis, N.; Bharadwaj, R.; Caceres, T.; Gotuzzo, E.; Joloba, M.; Mave, V.; Nakiyingi, L.; et al. Multicenter Study of the Accuracy of the BD MAX Multidrug-resistant Tuberculosis Assay for Detection of Mycobacterium tuberculosis Complex and Mutations Associated With Resistance to Rifampin and Isoniazid. Clin. Infect. Dis. 2020, 71, 1161–1167. [Google Scholar] [CrossRef]
- Ciesielczuk, H.; Kouvas, N.; North, N.; Buchanan, R.; Tiberi, S. Evaluation of the BD MAXTM MDR-TB assay in a real-world setting for the diagnosis of pulmonary and extra-pulmonary TB. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1321–1327. [Google Scholar] [CrossRef]
- cobas® MTB-RIF/INH. Available online: https://diagnostics.roche.com/global/en/products/params/cobas-mtb-rif-inh.html (accessed on 28 September 2023).
- Nadarajan, D.; Hillemann, D.; Kamara, R.; Foray, L.; Conteh, O.S.; Merker, M.; Niemann, S.; Lau, J.; Njoya, M.; Kranzer, K.; et al. Evaluation of the Roche cobas MTB and MTB-RIF/INH Assays in Samples from Germany and Sierra Leone. J. Clin. Microbiol. 2021, 59, e02983-20. [Google Scholar] [CrossRef]
- Lapierre, S.G.; Drancourt, M. rpoB targeted loop-mediated isothermal amplification (LAMP) assay for consensus detection of mycobacteria associated with pulmonary infections. Front. Med. 2018, 5, 391660. [Google Scholar] [CrossRef]
- WHO. The Use of Loop-Mediated Isothermal Amplification (TB-LAMP) for the Diagnosis of Pulmonary Tuberculosis: Policy Guidance; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Liu, C.F.; Song, Y.M.; He, P.; Liu, D.X.; He, W.C.; Li, Y.M.; Zhao, Y.L. Evaluation of Multidrug Resistant Loop-mediated Isothermal Amplification Assay for Detecting the Drug Resistance of Mycobacterium tuberculosis. Biomed. Environ. Sci. 2021, 34, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Truenat MTB-RIF Dx Chip-Based Real Time PCR Test for Rifampicin Resistant Mycobacterium tuberculosis (601210005); Molbio Diagnostics Private Limited: Verna, Goa, India, 2023.
- Penn-Nicholson, A.; Gomathi, S.N.; Ugarte-Gil, C.; Meaza, A.; Lavu, E.; Patel, P.; Choudhury, B.; Rodrigues, C.; Chadha, S.; Kazi, M.; et al. A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. Eur. Respir. J. 2021, 58, 2100526. [Google Scholar] [CrossRef] [PubMed]
- Georghiou, S.B.; Gomathi, N.S.; Rajendran, P.; Nagalakshmi, V.; Prabakaran, L.; Prem Kumar, M.M.; Macé, A.; Tripathy, S.; Ruhwald, M.; Schumacher, S.G.; et al. Accuracy of the Truenat MTB-RIF Dx assay for detection of rifampicin resistance-associated mutations. Tuberc. Edinb. Scotl. 2021, 127, 102064. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.B.; Singh, M.; Sharma, S.; Mahajan, N.; Bala, K.; Srivastav, A.; Singh, K.J.; Rao, M.V.V.; Lodha, R.; Kabra, S.K. Expedited diagnosis of pediatric tuberculosis using Truenat MTB-Rif Dx and GeneXpert MTB/RIF. Sci. Rep. 2023, 13, 6976. [Google Scholar] [CrossRef] [PubMed]
- Meaza, A.; Tesfaye, E.; Mohamed, Z.; Zerihun, B.; Seid, G.; Eshetu, K.; Amare, M.; Sinshaw, W.; Dagne, B.; Mollalign, H.; et al. Diagnostic accuracy of Truenat Tuberculosis and Rifampicin-Resistance assays in Addis Ababa, Ethiopia. PLoS ONE 2021, 16, e0261084. [Google Scholar] [CrossRef]
- Makhado, N.A.; Matabane, E.; Faccin, M.; Pinçon, C.; Jouet, A.; Boutachkourt, F.; Goeminne, L.; Gaudin, C.; Maphalala, G.; Beckert, P.; et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: An observational study. Lancet Infect. Dis. 2018, 18, 1350–1359. [Google Scholar] [CrossRef]
- Deeplex Myc-TB: From Clinical Samples to Drug Resistance Profile; GenoScreen: Lille, France, 2022.
- Feuerriegel, S.; Kohl, T.A.; Utpatel, C.; Andres, S.; Maurer, F.P.; Heyckendorf, J.; Jouet, A.; Badalato, N.; Foray, L.; Kamara, R.F.; et al. Rapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex-MycTB. Eur. Respir. J. 2021, 57, 2001796. [Google Scholar] [CrossRef]
- Band, V.I.; Weiss, D.S. Heteroresistance: A cause of unexplained antibiotic treatment failure? PLoS Pathog. 2019, 15, e1007726. [Google Scholar] [CrossRef]
- Bonnet, I.; Enouf, V.; Morel, F.; Ok, V.; Jaffré, J.; Jarlier, V.; Aubry, A.; Robert, J.; Sougakoff, W. A Comprehensive Evaluation of GeneLEAD VIII DNA Platform Combined to Deeplex Myc-TB® Assay to Detect in 8 Days Drug Resistance to 13 Antituberculous Drugs and Transmission of Mycobacterium tuberculosis Complex Directly From Clinical Samples. Front. Cell. Infect. Microbiol. 2021, 11, 707244. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Chen, L.; Wang, W.; Yu, F.; Xiong, H. Whole-genome sequencing of Mycobacterium tuberculosis for prediction of drug resistance. Epidemiol. Infect. 2022, 150, 1193–1202. [Google Scholar] [CrossRef]
- Panova, A.; Vinokurov, A.; Lagutkin, D.; Gracheva, A.; Nikolaev, A.; Samoilova, A.; Vasilyeva, I. Application of next-generation sequencing to detect MTB resistance to first- and second-line anti-TB drugs. Eur. Respir. J. 2020, 56, 1605. [Google Scholar] [CrossRef]
- van der Werf, M.J.; Ködmön, C. Whole-genome sequencing as tool for investigating international tuberculosis outbreaks: A systematic review. Front. Public Health 2019, 7, 453056. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Huang, F.; Zhang, G.; He, W.; Ou, X.; He, P.; Zhao, B.; Zhu, B.; Liu, F.; Li, Z.; et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin. Microbiol. Infect. 2022, 28, 731.e9–731.e15. [Google Scholar] [CrossRef] [PubMed]
- Tagliani, E.; Cirillo, D.M.; Ködmön, C.; van der Werf, M.J. EUSeqMyTB to set standards and build capacity for whole genome sequencing for tuberculosis in the EU. Lancet Infect. Dis. 2018, 18, 377. [Google Scholar] [CrossRef] [PubMed]
- Dookie, N.; Khan, A.; Padayatchi, N.; Naidoo, K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front. Microbiol. 2022, 13, 775030. [Google Scholar] [CrossRef]
- Wu, X.; Tan, G.; Yang, J.; Guo, Y.; Huang, C.; Sha, W.; Yu, F. Prediction of Mycobacterium tuberculosis drug resistance by nucleotide MALDI-TOF-MS. Int. J. Infect. Dis. 2022, 121, 47–54. [Google Scholar] [CrossRef]
- Su, K.Y.; Yan, B.S.; Chiu, H.C.; Yu, C.J.; Chang, S.Y.; Jou, R.; Liu, J.L.; Hsueh, P.R.; Yu, S.L. Rapid Sputum Multiplex Detection of the M. tuberculosis Complex (MTBC) and Resistance Mutations for Eight Antibiotics by Nucleotide MALDI-TOF MS. Sci. Rep. 2017, 7, 41486. [Google Scholar] [CrossRef]
- Heyckendorf, J.; Andres, S.; Köser, C.U.; Olaru, I.D.; Schön, T.; Sturegård, E.; Beckert, P.; Schleusener, V.; Kohl, T.A.; Hillemann, D.; et al. What Is Resistance? Impact of Phenotypic versus Molecular Drug Resistance Testing on Therapy for Multi- and Extensively Drug-Resistant Tuberculosis. Antimicrob. Agents Chemother. 2018, 62, e01550-17. [Google Scholar] [CrossRef]
Assay (Manufacture, Year) | Test Type | Gene Target (Anti-TB Drug) | (% Sensitivity, Specificity) | Strengths | Limitations |
---|---|---|---|---|---|
Probe-based genotypic Assays | |||||
Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA, 2010) | Cartridge-based real time PCR | rpoB (RIF) | MTBC: (85, 98) RIF resistance: (96, 98) |
|
|
Xpert MTB/RIF Ultra (Cepheid, 2017) | Cartridge-based real time PCR and melt curve | rpoB (RIF) | MTBC: (90, 96) RIF resistance (94, 98) | ||
Xpert MTB/XDR (Cepheid, 2021) | Cartridge-based real time PCR | inhA, fabG1, oxyR-ahpC, katG (INH, ETH *), gyrA, gyrB (FQs), rrs, eis (SLIDs) | MTBC: (100, 100) Drug resistance: INH (94.2, 98); FQs (93.1, 98.3); AMK (86.1, 98.9); ETH (98, 99.7); KAN (98.1, 97), CAP (70, 99.7) | ||
BD MAX MDR-TB (Becton Dickinson, North Charleston, SC, USA, 2021) | Automated multiplexed real-time PCR on high throughput platform | rpoB (RIF), inhA, katG (codon 315) (INH) | MTBC: (90.6, 98.5) Drug resistance: RIF (90, 95), INH (82, 100) |
|
|
Cobas MTB-RIF/INH (Roche Diagnostics, Basel, Switzerland, 2021) | Automated NAAT on high throughput platform | rpoB (RIF), inhA, katG (INH) | MTBC: (89.2, 98.6) Drug resistance: RIF (97.2, 98.6), INH (96.9, 99.4) | ||
RealTime MTB RIF (Abbott Molecular, Des Plaines, IL, USA, 2019) | Automated NAAT on high throughput platform | rpoB (RIF), inhA, katG (INH) | MTBC: (92.4, 95.4) Drug resistance: RIF (94.8, 100), INH (88.3, 94.3) | ||
FluoroType MTBDR (Hain LifeScience, Nehren, Germany, 2021) | Automated NAAT on high throughput platform | rpoB (RIF), inhA, katG (INH) | MTBC: (96.1, 100) Drug resistance: RIF (98.9, 100), INH (91.7, 100) | ||
TRUENAT MTB- RIF Dx (Molbio Diagnostics, Goa, India, 2020) | Chip-based real-time micro-PCR Battery operated | rpoB (RIF) | MTBC: (100, 100) RIF resistance (84, 97); |
|
|
GenoType MTBDRplus (Hain Lifescience, 2008) | Line probe assay based on reverse-hybridisation DNA strip technology | rpoB (RIF), inhA, katG (INH, ETH *) | MTBC: (82.7, 98.9) Drug resistance: RIF (98.2, 97.8); INH (95.4, 98.8) |
|
|
GenoType MTBDRsl v 2.0 (Hain Lifescience, 2016) | Line probe assay based on reverse-hybridisation DNA strip technology | gyrA, gryB (FQs), rrs, eis (SLIDs) | Drug resistance: FQ (100, 98.9); AMK (93.8, 98.5); CAP (86.2, 95.9) | ||
Genoscholar NTM+MDRTB II (Nipro, Osaka, Japan, 2021) | Line probe assay based on reverse-hybridisation DNA strip technology | rpoB (RIF), katG, inhA (INH), pncA (PZA) | DR-TB, RIF: (96.5, 97.5), INH: (94.9, 97.6) |
|
|
Genoscholar PZA TB II (Nipro, 2021) | Manual reverse hybridisation assay | pncA (PZA) | PZA: (81%, 98%,) |
|
|
FQ+KM-TB II (Nipro, 2021) | Reverse hybridisation assay | gyrA, gyrB, (FQs) eis, rrs (SLIDs) | FQ: (93.0, 100) SLIDs (NA) |
|
|
Sequencing-based DST Assays | |||||
Deeplex Myc-TB (Genoscreen, Lille, France, 2023) | Targeted NGS | rpoB (RIF), inhA, fabG1, ahpC, katG (INH, ETH*), pncA (PZA), embB (EMB), gidB, rpsL (STR), gyrA, gyrB (FQs), rrs (AMK, STR, KAN, CAP), eis (KAN), tlyA (CAP), ethA, (ETH), rrl, rplC (LZD), rv0678 (BDQ, CFZ)) | RIF (99.4, 98.8); INH (98.3, 98.4); PZA (85.7, 100); EMB (92.2, 90.7); STR (90.7, 98.9) FQs (91.7, 99.2); AMK (100, 100); KAN (88.9, 100); CAP (93.8, 97.4); ETH (92.6, 68) LZD (NA, 100) |
|
|
Ion AmpliSeq (Thermo Fisher Scientific, Waltham, MA, USA) | Targeted NGS | embB (EMB), eis (AMK, KAN, CAP), gyrA (FQs), inhA, katG (INH), pncA (PZA), rpoB (RIF), rpsL (STR) | RIF (100, 100); NH (100, 100) EMB (92.9, 93.8); PZA (100, FQs (100, 100); AMK (100, 100); CAP (66.7, 100); KAN (66.7, 96.7); STR (92.9, 100) |
|
|
Phenotypic DST Assays | |||||
Löwenstein-Jensen (LJ) | Solid culture | - | - |
|
|
Middlebrook 7H10, 7H11 | Solid culture | - | - |
| |
MGIT 460/960 (Becton Dickinson, 2007) | Liquid media | - | MTBC: (95.2, 99.2) |
|
|
MODS | Liquid culture and light microscopy | - | DR-TB Pooled (94.4, 91.8) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, K.; Perumal, R.; Ngema, S.L.; Shunmugam, L.; Somboro, A.M. Rapid Diagnosis of Drug-Resistant Tuberculosis–Opportunities and Challenges. Pathogens 2024, 13, 27. https://doi.org/10.3390/pathogens13010027
Naidoo K, Perumal R, Ngema SL, Shunmugam L, Somboro AM. Rapid Diagnosis of Drug-Resistant Tuberculosis–Opportunities and Challenges. Pathogens. 2024; 13(1):27. https://doi.org/10.3390/pathogens13010027
Chicago/Turabian StyleNaidoo, Kogieleum, Rubeshan Perumal, Senamile L. Ngema, Letitia Shunmugam, and Anou M. Somboro. 2024. "Rapid Diagnosis of Drug-Resistant Tuberculosis–Opportunities and Challenges" Pathogens 13, no. 1: 27. https://doi.org/10.3390/pathogens13010027
APA StyleNaidoo, K., Perumal, R., Ngema, S. L., Shunmugam, L., & Somboro, A. M. (2024). Rapid Diagnosis of Drug-Resistant Tuberculosis–Opportunities and Challenges. Pathogens, 13(1), 27. https://doi.org/10.3390/pathogens13010027