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Abstract: Coccidiosis in chickens is a parasitic disease of economic importance for the poultry industry.
In Ecuador, there is limited information regarding the prevalence of Eimeria spp. on commercial
broiler farms. Therefore, a total of 155 poultry farms in the provinces of Pichincha and Santo Domingo
de los Tsáchilas were surveyed. The analysis of fresh fecal samples was conducted to determine
the parasitic load of six of the seven chicken Eimeria species (excluding E. mitis) through multiplex
PCR. Additionally, an epidemiological survey was performed to assess the risk factors associated
with the infection using a multivariable logistic regression model. All samples tested positive for
the presence of Eimeria spp., despite the farmers having implemented prophylactic measures, and
no clinical coccidiosis cases were recorded. The parasitic load varied between 25 and 69,900 oocyst
per gram. The species prevalence was as follows: Eimeria spp. 100%, E. maxima 80.4%, E. acervulina
70.6%, E. praecox 55.4%, E. tenella 53.6%, E. necatrix 52.2%, and E. brunetti 30.8%. The main species
combination was E. cervuline, E. maxima, E. necatrix, and E. praecox (23.90%), followed by E. tenella, as
a unique species (10.69%), and then E. acervulina, E. maxima, and E. praecox (8.81%). It was observed
that farms operated by independent producers had a higher amount of Eimeria spp. and higher
probability of the presence of E. brunetti, E. necatrix, E. praecox, and E. tenella. Poultry houses located
below 1300 m above sea level were associated with a higher parasitic load and the presence of E.
brunetti. Birds younger than 35 days of age and from open-sided poultry houses (with rudimentary
environmental control) had a higher probability of presenting E. maxima. Drinking water from wells
increased the risk of E. praecox presence. Research aimed at designing control strategies to improve
health management on poultry farms in the region would help minimize the impact of coccidiosis.

Keywords: coccidiosis; Eimeria; OPG (oocysts per gram); risk factors; poultry farming; Ecuador

1. Introduction

Avian coccidiosis is a parasitic disease of significant importance in broiler chickens [1–7]
with a high economic impact on the global poultry industry [8–13]. Several factors contribute
to its persistence, such as the parasite’s direct life cycle, lack of cross-protection in poultry
houses, and ideal environmental conditions for oocyst sporulation [7]. Furthermore, it has
been reported that avian coccidiosis predisposes birds to bacterial diseases of the intestine,
particularly necrotic enteritis caused by Clostridium perfringens, a condition that also results
in significant economic losses and mortality in birds [14]. Moreover, as the bird density
increases, the risk of coccidiosis infection also rises [15]. Poultry industrialization, and its trend
to increase bird density in poultry houses, as well as the reduction in sanitation downtime
between stocks, contribute to the rise in oocyst concentration in the litter material and lead to
a higher risk of parasitic infection [16].
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In 1984, according to its incidence and importance in the poultry industry of Central
and South America, avian coccidiosis was reported as the fourth most relevant disease in
this part of the continent [17]. However, in Latin America, precise information regarding
the prevalence, incidence, and impact on the poultry industry is not available [18,19]. In
Ecuador, there are few reports on the presence of coccidiosis in commercial birds [20–22],
and to date, its prevalence and economic losses in domestic birds have not been determined.

The prophylactic use of anticoccidials in feed has had a profound impact on the poul-
try industry [23,24]. Nevertheless, due to the development of resistance to anticoccidials,
current management programs have been inadequate in controlling this disease [25,26].
Additional strategies, such as increasing biosecurity measures, implementing good man-
agement practices and vaccination, have not been sufficient in coccidiosis control [17].

The identification of Eimeria species provides a foundation for the prevention, surveil-
lance, and control of coccidiosis [27,28]. Determining the parasitic load and species compo-
sition on each farm should be considered fundamental regarding decision-making about
the implementation of anticoccidial and vaccination programs [29]. Furthermore, several
environmental and management factors have been associated with the presence and sever-
ity of coccidiosis, among which include bird age [30–32], stocks size [30], geographical
location, litter depth [30], poor sanitation conditions [32], and poor environmental man-
agement [33]. On the other hand, the widespread use of drugs has exacerbated Eimeria
resistance to anticoccidials [34], becoming a huge problem in the poultry industry [2,13,35].
However, it has also been observed that high hygiene standards and strict biosecurity
programs are associated with lower losses [36].

Currently, it has been estimated that worldwide losses for the industry due to coccidio-
sis amount to between 10 and 14 billion dollars [37]. These values include expenses related
to prophylactic and therapeutic measures, as well as production losses [38,39], making
coccidiosis an ongoing major challenge faced by the global poultry industry [9,15]. For
all these reasons, an analysis of the prevalence of Eimeria spp. in the Ecuadorian poultry
industry, as well as sanitary factors that could determine its presence and variations in
parasite load, promised to be beneficial for both current and future practices.

2. Materials and Methods
2.1. Ethics Statement

The project was approved by the Institutional Committee for the Care and Use of
Laboratory Animals of Faculty of Veterinary Sciences of the National University of La
Plata [91-2-19T], and research procedures were carried out in accordance with national and
institutional regulations.

2.2. Study Area and Farms

The research was conducted in the north-central region of Ecuador, specifically in
the provinces of Pichincha and Santo Domingo de los Tsáchilas, which are located in the
foothills and western flanks of the Andes Mountain range and are the major broiler-chicken
production areas [40] (see Figure 1).

2.3. Sampling and Sample Analysis

The sampling was directed at commercial broiler-chicken farms in their final rearing
phase. The poultry census of 2015 [41] was used as the reference frame for the sampling,
determining a sample size of 155 farms. Whereas a total of 159 fresh feces samples were
obtained on 155 farms, a double sampling was conducted due to the temporal difference
between production stocks.

The birds in the sample were in the last week of the growth period. For sample collection,
the method described by Kumar et al. (2014) [42] was used. This included tracing a W-shaped
pattern along each poultry house to collect fresh feces [regular and cecal feces]. Between 15
and 200 samples were collected from each poultry house. The samples were transported
in sealed bags at 4 ◦C and processed at the Central University of Ecuador Laboratories of
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the Institute of Research in Zoonoses at the (CIZ). Each sample was homogenized, and 20 g
of feces were reserved for the analyses. Then, the Willis flotation technique was employed
to confirm the presence of oocysts. Subsequently, the parasitic load (OPG, oocyst per gram
of feces) was quantified using the modified McMaster technique [43]. Observations were
made using a 10× objective (Carl Zeiss—Axiostar plus microscope) for oocyst counting. DNA
extraction was performed using the commercial FastDNA Spin Kit for Feces [MP] following
the manufacturer’s instructions. Commercial vaccines Fortegra® (E. acervulina, E. maxima, E.
maxima MFP, E mivati, and E. tenella) and Coccivac D2® (E. acervulina, E. maxima, E mivati. E.
brunetti, E. necatrix, and E. tenella) from MSD laboratory were used as positive controls. First,
PCR was individually amplified for each species. Then, multiplex amplification was carried
out, using the technique published by Fernandez et al. (2003) [44] as a reference; the primer
sequences of Eimeria species can be observed in Table 1. The multiplex PCR was conducted
on the BIOER thermocycler (C-1000 Touch). Amplification products were analyzed through
electrophoresis, using a 2% agarose gel stained with ethidium bromide (Invitrogen™). In the
case of E. mitis, PCR could not be standardized for this species due to the lack of positive
control, so only the remaining six species were analyzed.
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Figure 1. (A) Map of Ecuador. Surveyed area: Pichincha y Santo Domingo de los Tsáchilas. (B) Farm
poultry distribution.

Table 1. Primer sequences of Eimeria spp. from domestic birds for the multiplex PCR assay [44].

Species SCAR Primer Identification Primer Sequence Amplicon Size (pb)

E. acervulina Ac-A03-811 Ac-01-F AGTCAGCCACACAATAATGGCAAACATG 811
Ac-01-R AGTCAGCCACAGCGAAAGACGTATGTG

E. brunetti Br-J18-626 Br-01-F TGGTCGCAGAACCTACAGGGCTGT 626
Br-01-R TGGTCGCAGACGTATATTAGGGGTCTG

E. tenella Tn-K04-539 Tn-01-F CCGCCCAAACCAGGTGTCACG 539
Tn-01-R CCGCCCAAACATGCAAGATGGC

E. praecox Pr-A03-718 Pr-01-F AGTCAGCCACCACCAAATAGAACCTTGG 354
Pr-01-R GCCTGCTTACTACAAACTTGCAAGCCCT

E. maxima Mx-A09-1008 Mx-01-F GGGTAACGCCAACTGCCGGGTATG 272
Mx-01-R AGCAAACCGTAAAGGCCGAAGTCCTAGA

E. necatrix Nc-M02-1081 Nc-01-F TTCATTTCGCTTAACAATATTTGGCCTCA 200
Nc-01-R ACAACGCCTCATAACCCCAAGAAATTTTG

2.4. Farm Characteristics

All sampled farms, based on their characteristics and capacity, were of commercial
type (Agrocalidad and CONAVE). Their location was georeferenced. The detailed variables
investigated can be found in Table S1.

2.5. Identification of Risk Factors

To identify the risk factors associated with parasitic load and the presence of different
Eimeria species, an epidemiological “Epidemiological Survey” questionnaire was devel-
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oped and validated by national and international experts. It consisted of observing the
characteristics of the infrastructure of the production centers and conducting interviews
with the head of each poultry farm. The information collected through the questionnaires
was entered into a database using the Microsoft Excel® program for organization and
cleaning purposes.

2.6. Statistical Analysis

To compare the relationship between the characteristics of poultry farms and the
control measures used for Eimeria spp. with the mean number of oocysts per gram of feces
(OPG), analysis of variance (ANOVA) was employed. OPG data were log transformed
(log(x + 1)). Shapiro–Wilk normality test for model residuals was also performed. For
variables with three or more levels, the Tukey test was used to determine if there were
significant differences.

The prevalence of each Eimeria species (P) was calculated with a 95% confidence
interval. When determining the prevalence of E. acervulina, E. maxima and E. tenella,
samples from birds that received anticoccidial vaccines were not considered. This was due
to the use of vaccines with live oocysts, which were likely to contain oocyst from vaccines
rather than field species or strains [43].

To determine the level of association between the presence/absence of each Eimeria
spp. species and the different analyzed factors, the Odds Ratio (OR) was used, while
Fisher’s exact test was used to evaluate the association of each factor. Multiple logistic
regression was used to identify the covariates for the final model, considering all factors
with a p-value less than 0.20. Prior to the analysis, the Variance Inflation Factor (VIF)
was considered to avoid collinearity between variables, discarding variables with a VIF
level greater than 8. The stepwise procedure was used for the selection of the final model.
The statistical analysis was performed using R statistical software [45] version 4.0.2. The
level of statistical significance was set at 5% for the entire study. For map creation and
georeferencing, the statistical package Mapview in the R environment was used [46].

3. Results
3.1. General Information and Farm Management

The 159 samples analyzed between June 2019 and August 2020 were positive for the
presence of Eimeria spp. oocysts. The farms exhibited varying levels of production ranching
from low-technological family farms to highly technical industrial farms, all in conventional
confinement with different installation capacities, ranging from 2000 to 376,444 birds. A
detailed description of the variables can be found in Table S2.

3.2. Parasitological Results

All evaluated farms presented Eimeria spp. oocysts, meaning a prevalence of 100%.
The only parasitic genus identified in the birds was Eimeria spp. No symptoms of poultry
coccidiosis were observed on any farm. The parasitic load ranged from 25 to 69,900 OPG.
Through PCR, six of the seven chicken Eimeria species were identified: E. acervulina, E.
brunetti, E. maxima, E. necatrix, E. praecox, and E. tenella. Figure 2 demonstrates representative
gel images showing the different band sizes for the amplicons corresponding to each of
different Eimeria spp. detected. Note that gel images have been trimmed. The prevalence
of Eimeria spp. per farm is shown in Table 2.

The OPG levels of the analyzed samples did not present any association with the
presences of the Eimeria spp. species identified by PCR (p > 0.05). The most common
combination found was E. acervulina, E. maxima, E. necatrix, and E. praecox, present in
23.90% of the samples, followed by E. tenella, as a unique species, which was present in
10.69% of the samples. Next were E. acervulina, E. maxima, and E. praecox in 8.81% of the
samples; E. tenella and E. brunetti in 6.92% and E. acervulina, E. maxima, and E. necatrix in
5.66%. The combinations of Eimeria species can be observed in Table 3, and the geographic
location of the most frequent combinations in Figure 3.
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Figure 2. Identification of E. acervulina (Ac), E. brunetti (Br), E. maxima (Mx), E. necatrix (Nc), E. praecox
(Pr), and E. tenella (Tn) using PCR. Agarose gel electrophoresis (2%) stained with ethidium bromide
(Invitrogen™) was performed, and the results were observed as follows: Molecular weight marker
1 (A–C): E. acervulina (811 bp): samples 3 (A); E. brunetti (626 bp): sample 2 (B); E. maxima (272 bp):
samples 3 (A); E. necatrix (200 bp): sample 2 (C); E. praecox (354 bp): samples 2 and 3 (B) and sample
2 (C); and E. tenella (539 bp): samples 2 (A). The DNA marker is G016 (100 bp Opti-DNA Marker
(50–1500 bp) abm®).

Table 2. Prevalence of six of the seven poultry Eimeria species in the population of broiler chickens
from the provinces of Pichincha and Sto. Domingo de los Tsáchilas.

Samples Analyzed Positive Samples Prevalence [95% CI]

E. acervulina 153 * 108 70.59 (62.59–77.53)
E. brunetti 159 49 30.82 (23.88–38.70)
E. maxima 153 * 123 80.39 (73.03–86.19)
E. necatrix 159 83 52.20 (44.17–60.13)
E. praecox 159 88 55.35 (47.27–63.16)
E. tenella 153 * 82 53.59 (45.38–61.63)

* E. acervulina, E. maxima y E. tenella were not considered in the farms that received vaccines, as it is assumed that
these species are present.

Table 3. Association of different species of Eimeria in broiler-chicken farms from the provinces of
Pichincha and Sto. Domingo de los Tsáchilas.

E. acervulina E. maxima E. tenella E. brunetti E. necatrix E. praecox Samples Positives
(N 159) Proportion (%)

+ + + + + + 4 2.52
+ + + + + - 3 1.89
+ + + + - + 4 2.52
+ + + + - - 2 1.26
+ + + - + + 7 4.40
+ + + - + - 1 0.63
+ + + - - + 4 2.52
+ + + - - - 1 0.63
+ + - + + - 1 0.63
+ + - + - + 1 0.63
+ + - + - - 3 1.89
+ + - - + + 38 23.90
+ + - - + - 9 5.66
+ + - - - + 14 8.81
+ + - - - - 6 3.77
+ - + + - - 1 0.63
- + + + + + 2 1.26
- + + + + - 1 0.63
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Table 3. Cont.

E. acervulina E. maxima E. tenella E. brunetti E. necatrix E. praecox Samples Positives
(N 159) Proportion (%)

- + + + - - 4 2.52
- + + - + + 1 0.63
- + + - + - 3 1.89
- + + - - - 1 0.63
- + - + + + 1 0.63
- + - - + - 2 1.26
- + - - - - 2 1.26
- - + + + + 1 0.63
- - + + - + 3 1.89
- - + + - - 11 6.92
- - + - - + 1 0.63
- - + - - - 17 10.69
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Figure 3. Geographic location of the most frequent combinations of Eimeria species. (A) Most common
1: E. acervulina, E. maxima, E. necatrix, and E. praecox. (B) Most common 2: E. tenella, (as a unique species).
(C) Most common 3: E. acervulina, E. maxima, and E. praecox. (D) Most common 4: E. tenella and E. brunetti.

3.3. Association between Risk Factors and Eimeria spp. Parasitic Load

The variables that showed association with higher parasitic loads were farms located
at altitudes below 1300 Meters Above Mean Sea Level (m.a.s.l.), poultry houses with dirt
floors, younger birds (less than 35 days old), and evidence of the use of purchased feed. A
lower OPG level was observed in drinking water sources from potable water, followed by
water from rivers or canals and wells, with the latter two groups indicating performance of
water treatment (See Table 4). Further details of the results are shown in Table S2.
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Table 4. Association between risk factors and the presence of Eimeria spp. and its species in the population of broilers chickens in the provinces Pichincha and Sto.
Domingo de los Tsáchilas.

OPG E. acervulina E. brunetti E. maxima E. necatrix E. praecox E. tenella

Parameter Media p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value

DEPENDENCE
Integrated Reference Reference Reference Reference Reference

Independent 2.13
(1.00–4.72) 0.04 * 2.84

(1.35–6.08) 0.01 ** 2.21
(1.11–4.47) 0.02 * 2.48

(0.23–5.10) 0.01 ** 3.22
(1.59–6.67) 0.01 **

ALTITUDE
Below

1300MAMSL 8338.06
0.00 **

Above
1300MAMSL 2582.43

FLOOR MATERIAL
Cement 2614.1

0.00 **
Reference Reference

Ground 11,127.22 4.28
(1.98–9.67) 0.00 ** 2.31

(1.17–4.6)] 0.01 **

ROOF SUPPORT MATERIAL
Metal Reference Reference

Wood 2.63
(1.26–5.56) 0.01 ** 2.44

(1.21–4.97) 0.01 **

WATER SOURCE
River or canal 3506.05 ab

0.045 *
Reference Reference Reference

Well 8734.63 a 2.79
(1.22–6.46) 0.01 ** 2.57

(1.04–6.33) 0.03 * 2.77
(1.23–6.41) 0.01 **

Potable water 2603.85 b 1.51
(0.36–6.97) 0.75 1.85

(0.38–12.17) 0.51 1
(0.21–4.27) 1

ANTICOCCIDIAL MANAGEMENT THROUGH FOOD
Yes 4939.46

0.00 **
Reference Reference Reference Reference Reference

No 13,356.05 12.11
(2.89–108.61) 0.00 ** 4.73

(2.06–11.16) 0.00 ** 6.94
(0.64–63.08) 0.00 ** 2.83

(1.21–7.12) 0.01 ** 7.48
(2.8–23.5) 0.00 **

Alphitubius diaperinus
No Reference Reference

Yes 2.31
(0.02–5.32) 0.03 * 1.98

(1.00–4.00) 0.01 *
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Table 4. Cont.

OPG E. acervulina E. brunetti E. maxima E. necatrix E. praecox E. tenella

Parameter Media p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value

AGE
More than

46 days 3021 b

0.01 **
Reference Reference Reference Reference

Less than
35 days 12,388 a 6.73

(2.32–22.64) 0.00 ** 4.69
(0.48–17.84) 0.01 ** 2.32

(1.00–5.51) 0.01 ** 3.79
(1.58–9.41) 0.00 **

Between 36
and 45 days 5266 b 1.30

(0.56–3.04) 0.56 1.35
(0.54–3.44) 0.53 2.84

(1.2–6.83) 0.04 * 1.65
(0.71–3.85) 0.24

WATER MEDICATED WITH ANTICOCCIDIALS
No Reference Reference

Yes 4.21
(1.38–13.83) 0.006 ** 3.73

(1.10–16.3) 0.02 *

LIME
No Reference Reference

Yes 3.12
(1.41–6.94) 0.00 ** 2.41

(1.01–5.67) 0.03 *

** Differences in farm characteristics and/or control measures with p ≤ 0.01, * Differences in farm characteristics and/or control measures with p ≤ 0.05. CI: Confidence Interval.
Different letters indicate significant differences.
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The final multiple regression model for the risk of the quantity of Eimeria spp. oocysts
(OPG) shows that independent poultry farms had a higher number of oocysts compared to
integrated farms (p < 0.01), with values ranging from 5460 to 9051 oocyst per gram, respec-
tively. Altitudes below 1300 m.a.s.l. showed a higher number of oocysts, OPG = 8338.06,
compared to farms at higher altitudes, OPG = 2582.42 (See Table 4).

The remaining variables analyzed, including the protective measures used by the
surveyed poultry farmers, did not present any association with the quantity of Eime-
ria spp. oocysts.

3.4. Association between Risk Factors and Presence of Distinct Species of de Eimeria spp.

The variables that showed a positive association with the presence of different Eimeria
species (Table 5) were as follow: the type of producer, where the independent producer
level exhibited a higher risk with an OR of 2.13 for E. acervulina (p < 0.05) compared to
integrated producers, and OR = 2.84 for E. brunetti [p < 0.01]; OR = 2.321 for E. necatrix
(p < 0.05); OR = 2.48 for E. praecox (p < 0.01); and OR = 3.22 for E. tenella (p < 0.01) when
compared to integrated producers. Dirt floors presented an OR of 4.28 times higher risk for
E. acervulina (p < 0.01), and 2.31 for E. praecox (p < 0.01), compared to farms with cement
floors. Wooden structures had an OR of 2.63 times higher risk of presenting E. acervulina
(p < 0.01) and OR = 2.44 for E. praecox (p < 0.01), compared to metal structures. The origin of
drinking water, when sourced from a well [groundwater], showed an OR of 2.79 higher risk
for E. acervulina (p < 0.01]; OR = 2.57 for E. maxima (p < 0.05); and OR = 2.77 for E. praecox
(p < 0.01), compared to water from rivers or canals. Not producing their own feed, and
having no control over anticoccidial management, presents an OR = 12.11 times higher risk
for E. acervulina (p < 0.01); 4.73 for E. brunetti (p < 0.01); 6.94 for E. maxima (p < 0.01); 2.83
for E. praecox (p < 0.01]; and 7.48 for E. tenella (p < 0.01), indicating a greater likelihood of
presence compared to those who manufacture themselves or have a long-term relationship
with the feed supplier.

The presence of Alphitobius diaperinus, a specie of beetle, showed an OR = 2.31 times
higher risk of presenting E. maxima (p < 0.05); and OR = 1.98 times higher risk for E. tenella
(p < 0.05) compared to when the insect was not detected. Birds within the youngest age
range [below 35 days] presented an OR = 6.73 higher risk of E. acervulina infection (p < 0.01);
4.69 for E. maxima (p < 0.01); 2.32 for E. necatrix (p < 0.01); and 3.79 for E. praecox (p < 0.01)
compared to birds older than 46 days. Intermediate-aged birds (35 to 45 days) showed
a 2.84 higher risk of presenting E. necatrix (p < 0.05) compared to older birds. Farms
that experienced clinical coccidiosis during breeding and used anticoccidial treatments in
drinking water showed an OR = 4.21 times higher risk of presenting E. brunetti (p < 0.01)
and OR = 3.73 for E. tenella (p < 0.05). The use of hydrated lime in floor disinfection showed
an OR = 3.12 higher risk of presenting E. acervulina (p < 0.01) and 2.41 of E. maxima (p < 0.05),
compared to producers who abstained from use. The rest of the analyzed variables did not
show statistical association. Further details of the results can be found in Table S2.

The final multivariable binary logistic regression model (See Table 4) determined that
independent poultry farms had a higher risk of presenting E. brunetti with an OR = 2.79
(p < 0.05); OR = 2.21 (p < 0.05) for E. necatrix; 3.28 (p < 0.01) for E. praecox and OR = 3.69
(p < 0.01) for E. tenella, compared to producers integrated into poultry companies. Birds
raised at altitudes below 1300 m.a.s.l. showed OR = 5.94 (p < 0.01) times higher possibility of
presenting E. brunetti and 3.43 (p < 0.01) for E. tenella, compared to farms situated at higher
altitudes. Open. sided poultry houses showed a positive association of 3.98 (p < 0.05) with
the presence of E. maxima, compared to controlled-environment poultry houses. Poultry
houses with wooden structures (roof support) had a risk OR = 2.99 (p < 0.05) for the
presence of E. acervulina and 3.47 (p < 0.01) for E. praecox, compared to poultry houses
with metal structures. Drinking water from well sources showed a positive association of
OR = 2.59 (p < 0.05) with the presence of E. praecox compared to water received from rivers
or canals. In birds younger than 35 days, the risk increases by OR = 6.93 times (p <0.01) in
the presence of E. maxima.
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Table 5. Explanatory variables of risk for the parasitic load of Eimeria spp. [OPG] and the presence of Eimeria species using a multivariable binary logistic
regression model.

Explanatory
Variable

OPG E. acervulina E. brunetti E. maxima E. necatrix E. praecox E. tenella

Media p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value OR
(95% CI) p-Value OR

(95% CI) p-Value

DEPENDENCE
Integrated 5459.95 b

<0.01 **
Reference Reference Reference Reference

Independent 9051.97 a 2.79
(1.22–6.37) 0.01 * 2.21

(1.11–4.39) 0.02 * 3.28
(1.46–7.38) 0.003 ** 3.69

(1.78–7.65) 0.00 **

ALTITUDE
Above

1300MAMSL 2582.43 b
0.01

Reference Reference

Below
1300MAMSL 8338.06 a 5.94

(1.68–1.07) 0.01 ** 3.43
(1.65–8.18) 0.01 **

TYPE OF POULTRY HOUSE
Climate-controlled poultry

house Reference

Open-sided poultry house 3.98
(1.13–13.83) 0.03 *

MATERIAL ROOF SOPPORT
Metal Reference Reference

Wood 2.99
(1.21–7.42) 0.02 * 3.47

(1.42–8.50) 0.01 **

WATER SOURCE
River or canal Reference Reference

Potable water 1.64
(0.34–7.87) 0.53 0.75

(0.18–3.18) 0.69

Well 0.30
(0.12–0.78) 0.01 * 2.59

(1.02–6.55) 0.04 *

AGE
More than 46 days Reference

Between 36 and 45 days 1.63
(0.62–4.31) 0.31

Less than 35 days 6.93
(1.60–30.01) 0.01 **

** Differences in farm characteristics and/or control measures with p ≤ 0.01, * Differences in farm characteristics and/or control measures with p ≤ 0.05, CI: Confidence Interval.
Different letters indicate significant differences.
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4. Discussion

This research evidenced the presence of Eimeria spp. in 100% of the samples from
asymptomatic birds, even though the sampled poultry establishments maintained some
level of biosecurity. Eimeria spp. was the only parasitic genus found, demonstrating that
the biosecurity measures were not sufficient to control the presence of this protozoan in
commercial poultry farms, indicating an endemic pattern.

In Ecuador, the presence of Eimeria spp. in commercial broiler chickens has been poorly
studied. In this regard, Villareal monitored the digestive tract of chickens at processing
plants and reported that 5% presented caeca lesions suggestive of E. tenella, and 13% had
macroscopic lesions [enteritis] [21]. Furthermore, when evaluating litter recycling on a farm
in the locality of Pedro Vicente Maldonado, Pichincha Province, it was observed that all the
litter had different OPG of Eimeria spp. at the end of the cycle [20]. Poultry coccidiosis was
also reported as affecting commercial birds in eight out of thirteen farms analyzed in the
Galápagos Islands, Ecuador [22].

Eimeria spp. has been reported in commercial birds from various continents [38]. For
instance, in Romania, a prevalence of 91% was reported [25], in China 97.17% [47], in the
northern region of India 81.3% [11], while in Ethiopia, it was 42.2% [36]. In countries like
Mexico, despite the use of rotation of anticoccidial drugs in the feed, Eimeria spp. was
detected in 100% of the sampled farms [48]. Similarly, in the states of Tocantins [18] and
Bahía [49] in Brazil, Eimeria spp. was also detected in 100% of the farms. In the state of
Santa Catarina, the reported frequency was 96% [12]. In Argentina, a prevalence of 88.37%
was recorded [50], and in Colombia, it was found to be 92.8% [19]. Moreover, even in
controlled-environment poultry houses in Brazil, with negative pressure ventilation, a
prevalence of 87.5% for Eimeria spp. was reported [3,51].

Although there is little published information about the disease in Ecuador, all produc-
ers are aware of its existence and the economic losses it entails. This may be the reason they
maintain permanent prophylactic measures. For example, 97% of surveyed farms use per-
manent anticoccidial programs in the feed, while 3% of them manage anticoccidial vaccines
to prevent economic losses, similar to the results reported in Colombia [19]. Several reasons
could justify the limited use of anticoccidial vaccines, including the cost, which is often
higher compared to anticoccidial drugs [52]. Another reason could be the lack of perception
in improving production parameters with the use of vaccines [53]. On the other hand,
the use of anticoccidial vaccines has been associated with the proliferation of Clostridium
spp. and the occurrence of necrotic enteritis [53]. Additionally, improper management of
litter moisture complicates the vaccine response, leading to the development of clinical
coccidiosis [43].

The parasitic load of Eimeria spp. in broiler chickens in their last week of life varied
between 25 and 69,900 OPG, with no clinical symptoms of coccidiosis in the birds. These
results align with other research findings [13,19,54]. Different Eimeria species presented
varying degrees of pathogenicity [55,56], leading to variations in the number of oocysts
required to produce intestinal lesions [55]. Therefore, it is crucial to know the parasitic
concentration and the species composition of Eimeria spp. [29]. Moreover, the parasitic
presence can be influenced by several factors [57], including different levels of sensitivity
to anticoccidial drugs [13]. The wide range in the parasitic concentration of Eimeria spp.
is likely due to the use of anticoccidials, as various types of drugs and programs were
identified. The specific anticoccidial programs used, withdrawal times, and rotation of
active ingredients could not be established because the interviewees were either unaware
or had inadequate information. This finding coincides with what has been reported in
poultry producers in Colombia [19]. In Ecuador, regulations for the use of drugs in poultry
production are not clearly designed to ensure their responsible use and to minimize the
risk of resistance development.

Through PCR analysis, six species were identified: E. acervulina, E. brunetti, E. maxima,
E. necatrix, E. praecox, and E. tenella. E. mitis was excluded from this research, making
its existence uncertain. Further investigation must be carried out to establish the true
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prevalence of this poultry species. Each sample represented between one and six species.
The prevalence of E. acervulina was 70.59%, for E. maxima 80.39%, and for E. tenella 53.59%.
These species have also been reported in other studies [3,5,19,25,37,58–60]. These results
align with previous research indicating that E. acervulina, E. maxima, and E. tenella are
commonly detected species worldwide [51,61–63]. In this research, the most frequent
species combination was E. acervulina, E. maxima, E. necatrix, and E. praecox with 23.90%,
and then E. tenella as a unique species with 10.69%. Moreover, E. tenella and E. necatrix
are considered the most pathogenic species [47,61,63]. The prevalence of E. necatrix was
52.20%, a higher value compared to other studies [6,19,47,59], while in other studies, some
authors did not detect it [3,60]. The presence of E. necatrix is less likely in broiler chickens,
but it is more common in older birds and in tropical regions [61]. This could justify our
findings, as 77% of the evaluated farms were located at altitudes below 1300 m.a.s.l. The
prevalence of E. praecox was 55.35%, and E. brunetti was 30.82%. These species have also
been reported in other studies [6,25,60,64].

In the final model, the variables that showed an association with the presence of
Eimeria spp. and their species were independent producers, birds raised at altitudes below
1300 m.a.s.l., poultry houses with wooden structures, birds younger than 35 days of age,
open-sided poultry houses, and drinking water from wells. The variable ¨independent
producers¨ showed a high association with greater amounts of OPG of Eimeria spp. and
a higher probability of presenting E. praecox, followed by E. brunetti, E. necatrix, and E.
tenella. These last three species of Eimeria have been linked to high pathogenicity in broiler
chickens [65]. It is worth noting that this group of poultry farmers have established strict
biosecurity systems and, due to their capacity and management, they are considered
commercial-type poultry farmers [66]; furthermore, all of them use chemoprophylaxis.
The presence of cross-resistance and multi-resistance to anticoccidials is quite common,
which complicates the control of coccidiosis through drug rotation [2]. On the other
hand, genetic variations in Eimeria species have been reported between the northern and
southern hemispheres [67], and it is believed that this variation is attributable to the use
of anticoccidial drugs and vaccines [15]. Additionally, this type of producer tends to
have deficient management systems in poultry rearing, which have been associated with
coccidiosis [27,36]. Unlike other studies, the size or capacity of the farm did not show any
statistical association with parasite load or the prevalence of Eimeria [5,68]. Birds raised
at altitudes below 1300 m.a.s.l. presented a higher risk of exhibiting higher OPG values
and Eimeria spp., E. brunetti, and E. tenella. These results could be related to the typical
environmental conditions [tropical and subtropical] of these altitude levels in Ecuador, such
as higher prevalence of coccidiosis at altitudes below 4000 feet [1291 m.a.s.l.]. Altitude and
associated temperature are natural environmental factors that affect parasite abundance [69].
The altitude levels of the studied areas in Ecuador could interfere with the sporulation of
Eimeria oocysts. Lower altitude levels [subtropical zones] exhibit higher relative humidity
and ambient temperature [68], conditions that could favor oocyst sporulation. The quantity
of Eimeria oocysts is positively related to the level of humidity [70]. Similarly, higher
ambient-relative humidity is associated with increased oocyst excretion [48,59].

However, it should be taken into consideration that in Ecuador, birds raised at higher
altitudes undergo restriction or controlled feeding to reduce metabolic diseases [71]. This
practice results in the birds reaching their market weight at a later age. It has been reported
that young chickens are more vulnerable to coccidiosis [72]. The younger age of the birds
(less than 35 days) was identified as a risk factor for the presence of E. maxima and highest
parasitic load of Eimeria oocyst. Several studies agree with these findings [36,58,59,72].

Open-sided poultry sheds showed a higher risk of exhibiting E. maxima compared to
controlled-environment sheds. These results align with previous research, which suggests
that improving environmental control enhances coccidiosis control [3,15,36]. Inadequate
environmental management in poultry sheds has been reported to provide ideal conditions
for oocyst sporulation [7]. Poultry sheds with wooden structures also showed a higher risk
of presenting E. acervulina and E. praecox. The wooden material in contact with poultry
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litter is likely an important reservoir for oocysts. Sporulated oocysts are highly resistant
to environmental conditions [8,16,73]. In this context, the United States Department of
Agriculture in Beltsville, Maryland, reported oocyst survival in the ground for 602 days [55].
Moreover, wooden structures tend to be associated with dirt floors in poultry production
in Ecuador.

The “well water” (groundwater) factor showed a higher risk for E. brunetti and E.
praecox presence. This leads to a presumption that groundwater may be contaminated, and
the purification methods used might not effectively eliminate Eimeria oocyst.

5. Conclusions

Poultry coccidiosis is affecting the central-northern region of Ecuador. Eimeria spp.
was present in 100% of the farms, with the presence of a least six species. Certain types
of producers, farms at altitudes below 1300 m.a.s.l., wooden infrastructure, birds younger
than 35 days, open-sided poultry sheds, and well water for drinking showed a higher risk
of Eimeria species presence. Research aimed at designing control strategies to improve
sanitary management on poultry farms in the region would help minimize the impact
of coccidiosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13010048/s1, Table S1: General information and farm
management; Table S2: Relationship between oocyst per gram of feces (OPG) and Eimeria spp. species
found with the characteristics and control measures applied in the studied farms.
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