Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and DNA Extraction
2.2. Primers and Probes
2.3. Basic Recombinase Polymerase Amplification (Basic RPA)
2.4. Multienzyme Isothermal Rapid Amplification (MIRA) and Lateral-Flow Dipstick (LFD)
2.5. Optimization of MIRA-LFD
2.6. Specificity and Sensitivity of MIRA-LFD
2.7. Comparison of Vibrio Parahaemolyticus Detection in Fresh Oysters by RPA-LFD, PCR, and qPCR
2.8. Polymerase Chain Reaction (PCR) and Quantitative Polymerase Chain Reaction (qPCR)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Primer Selection for tlh, trh, and tdh Genes for the Application of MIRA-LFD
3.2. Optimization of MIRA-LFD to Amplify tlh, trh, and tdh Genes
3.3. Evaluation of the Sensitivity and Specificity of the tlh, trh, and tdh Genes
3.4. Detection of tlh, trh, and tdh Genes from Oyster Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Letchumanan, V.; Chan, K.-G.; Lee, L.-H. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 2014, 5, 705. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.-C.; Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef] [PubMed]
- DePaola, A.; Nordstrom, J.L.; Bowers, J.C.; Wells, J.G.; Cook, D.W. Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl. Environ. Microbiol. 2003, 69, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Froelich, B.A.; Noble, R.T. Vibrio bacteria in raw oysters: Managing risks to human health. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150209. [Google Scholar] [CrossRef] [PubMed]
- Broberg, C.A.; Calder, T.J.; Orth, K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes Infect. 2011, 13, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez West, C.K.; Klein, S.L.; Lovell, C.R. High frequency of virulence factor genes tdh, trh, and tlh in Vibrio parahaemolyticus strains isolated from a pristine estuary. Appl. Environ. Microbiol. 2013, 79, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Iida, T. The pathogenicity of Vibrio parahaemolyticus and the role of the thermostable direct haemolysin and related haemolysins. Rev. Res. Med. Microbiol. 1993, 4, 106–113. [Google Scholar] [CrossRef]
- Shirai, H.; Ito, H.; Hirayama, T.; Nakamoto, Y.; Nakabayashi, N.; Kumagai, K.; Takeda, Y.; Nishibuchi, M. Molecular epidemiologic evidence for association of thermostable direct hemolysin (TDH) and TDH-related hemolysin of Vibrio parahaemolyticus with gastroenteritis. Infect. Immun. 1990, 58, 3568–3573. [Google Scholar] [CrossRef]
- Ohnishi, K.; Nakahira, K.; Unzai, S.; Mayanagi, K.; Hashimoto, H.; Shiraki, K.; Honda, T.; Yanagihara, I. Relationship between heat-induced fibrillogenicity and hemolytic activity of thermostable direct hemolysin and a related hemolysin of Vibrio parahaemolyticus. FEMS Microbiol. Lett. 2011, 318, 10–17. [Google Scholar] [CrossRef]
- Hongping, W.; Jilun, Z.; Ting, J.; Yixi, B.; Xiaoming, Z. Insufficiency of the Kanagawa hemolytic test for detecting pathogenic Vibrio parahaemolyticus in Shanghai, China. Diagn. Microbiol. Infect. Dis. 2011, 69, 7–11. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Hu, Z.; Xue, X.; Zhang, M.; Wu, Q.; Zhang, W.; Zhang, Y.; Lu, R. Characterization of Vibrio parahaemolyticus isolated from stool specimens of diarrhea patients in Nantong, Jiangsu, China during 2018–2020. PLoS ONE 2022, 17, e0273700. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.H.; Costa, R.A.; Menezes, F.G.; Silva, G.C.; Theophilo, G.N.; Rodrigues, D.P.; Maggioni, R. Kanagawa-negative, tdh-and trh-positive Vibrio parahaemolyticus isolated from fresh oysters marketed in Fortaleza, Brazil. Curr. Microbiol. 2011, 63, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; McArthur, J.; Tuckfield, R.C.; Najarro, M.; Lindell, A.H.; Gooch, J.; Stepanauskas, R. Antibiotic resistance in the shellfish pathogen Vibrio parahaemolyticus isolated from the coastal water and sediment of Georgia and South Carolina, USA. J. Food Prot. 2008, 71, 2552–2558. [Google Scholar] [CrossRef] [PubMed]
- Bej, A.K.; Patterson, D.P.; Brasher, C.W.; Vickery, M.C.; Jones, D.D.; Kaysner, C.A. Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tl, tdh and trh. J. Microbiol. Methods 1999, 36, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Dileep, V.; Kumar, H.; Kumar, Y.; Nishibuchi, M.; Karunasagar, I.; Karunasagar, I. Application of polymerase chain reaction for detection of Vibrio parahaemolyticus associated with tropical seafoods and coastal environment. Lett. Appl. Microbiol. 2003, 36, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Pan, S.-F.; Chen, C.-H. Sequence of a cloned pR72H fragment and its use for detection of Vibrio parahaemolyticus in shellfish with the PCR. Appl. Environ. Microbiol. 1995, 61, 1311–1317. [Google Scholar] [CrossRef]
- Myers, M.L.; Panicker, G.; Bej, A.K. PCR detection of a newly emerged pandemic Vibrio parahaemolyticus O3: K6 pathogen in pure cultures and seeded waters from the Gulf of Mexico. Appl. Environ. Microbiol. 2003, 69, 2194–2200. [Google Scholar] [CrossRef]
- Okura, M.; Osawa, R.; Iguchi, A.; Arakawa, E.; Terajima, J.; Watanabe, H. Genotypic analyses of Vibrio parahaemolyticus and development of a pandemic group-specific multiplex PCR assay. J. Clin. Microbiol. 2003, 41, 4676–4682. [Google Scholar] [CrossRef]
- Kaysner, C.A.; DePaola, A.; Jones, J. Bacteriological Analytical Manual Chapter 9: Vibrio; Food and Drug Administration: Silver Spring, MD, USA, 2004. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-9-vibrio (accessed on 11 August 2023).
- Drake, S.L.; DePaola, A.; Jaykus, L.A. An overview of Vibrio vulnificus and Vibrio parahaemolyticus. Compr. Rev. Food Sci. Food Saf. 2007, 6, 120–144. [Google Scholar] [CrossRef]
- Nordstrom, J.L.; Vickery, M.C.; Blackstone, G.M.; Murray, S.L.; DePaola, A. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl. Environ. Microbiol. 2007, 73, 5840–5847. [Google Scholar] [CrossRef]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Macdonald, J.; Von Stetten, F. A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2019, 144, 31–67. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell. Infect. Microbiol. 2022, 12, 1744. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Park, S.B.; Chang, S.K. Development of Recombinase Polymerase Amplification Combined with Lateral Flow Dipstick Assay To Detect Hemolysin Gene of Vibrio vulnificus in Oysters. J. Food Prot. 2022, 85, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Tan, K.; Liu, L.; Sun, X.X.; Zhao, B.; Wang, J. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol. 2019, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Ren, Y.; Han, X.; Xue, J.; Shan, T.; Chen, Z.; Liu, Y.; Wang, Q. Recombinase polymerase amplification-lateral flow (RPA-LF) assay combined with immunomagnetic separation for rapid visual detection of Vibrio parahaemolyticus in raw oysters. Anal. Bioanal. Chem. 2020, 412, 2903–2914. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Li, J.; Chen, K.; Yu, X.; Sun, C.; Zhang, M. Multiplex recombinase polymerase amplification assay for the simultaneous detection of three foodborne pathogens in seafood. Foods 2020, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, P.; Dong, Y.; Shen, X.; Shen, H.; Li, J.; Jiang, G.; Wang, W.; Dai, H.; Dong, J. An improved recombinase polymerase amplification assay for visual detection of Vibrio parahaemolyticus with lateral flow strips. J. Food Sci. 2020, 85, 1834–1844. [Google Scholar] [CrossRef]
- Heng, P.; Liu, J.; Song, Z.; Wu, C.; Yu, X.; He, Y. Rapid detection of Staphylococcus aureus using a novel multienzyme isothermal rapid amplification technique. Front. Microbiol. 2022, 13, 1027785. [Google Scholar] [CrossRef]
- Gao, W.; Huang, H.; Zhu, P.; Yan, X.; Fan, J.; Jiang, J.; Xu, J. Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. Bioprocess Biosyst. Eng. 2018, 41, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-W.; He, J.-W.; Guo, S.-L.; Li, J. Development and evaluation of a rapid and sensitive multienzyme isothermal rapid amplification with a lateral flow dipstick assay for detection of Acinetobacter baumannii in spiked blood specimens. Front. Cell. Infect. Microbiol. 2022, 12, 1010201. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, L.; Yang, Y.; Li, J.; Luan, X.; Gong, S.; Ma, Y.; Gu, W.; Du, J.; Meng, Q. Development and application of the MIRA and MIRA-LFD detection methods of Spiroplasma eriocheiris. J. Invertebr. Pathol. 2023, 201, 108017. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, P.; Dong, Y.; Chen, S.; Shen, H.; Jiang, G.; Zhu, H.; Dong, J.; Gao, S. An isothermal recombinase polymerase amplification and lateral flow strip combined method for rapid on-site detection of Vibrio vulnificus in raw seafood. Food Microbiol. 2021, 98, 103664. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Gong, F.; Liu, X.; Sun, X.; Yu, Y.; Shu, J.; Pan, Z. Integrating filter paper extraction, isothermal amplification, and lateral flow dipstick methods to detect Streptococcus agalactiae in milk within 15 min. Front. Vet. Sci. 2023, 10, 1100246. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Yao, J.; Yuan, S.; Liu, H.; Wei, N.; Zhang, J.; Shan, W. Development of a lateral flow recombinase polymerase amplification assay for rapid and visual detection of Cryptococcus Neoformans/C. gattii in cerebral spinal fluid. BMC Infect. Dis. 2019, 19, 108. [Google Scholar]
- Wang, Y.; Niu, J.; Sun, M.; Li, Z.; Wang, X.; He, Y.; Qi, J. Rapid and Sensitive Detection of Streptococcus iniae in Trachinotus ovatus Based on Multienzyme Isothermal Rapid Amplification. Int. J. Mol. Sci. 2023, 24, 7733. [Google Scholar] [CrossRef]
- Glover, W.A. Laboratory Method for Vibrio parahaemolyticus (V.p.) Enumeration and Detection through MPN and Real-Time PCR. In Proceedings of the Interstate Shellfish Sanitation Conference (ISSC), Columbia, SC, USA, 13 March 2015. [Google Scholar]
- Rizvi, A.V.; Bej, A.K. Multiplexed real-time PCR amplification of tlh, tdh and trh genes in Vibrio parahaemolyticus and its rapid detection in shellfish and Gulf of Mexico water. Antonie Van Leeuwenhoek 2010, 98, 279–290. [Google Scholar] [CrossRef]
- Ji, C.; Feng, Y.; Sun, R.; Gu, Q.; Zhang, Y.; Ma, J.; Pan, Z.; Yao, H. Development of a multienzyme isothermal rapid amplification and lateral flow dipstick combination assay for bovine coronavirus detection. Front. Vet. Sci. 2022, 9, 1059934. [Google Scholar] [CrossRef]
Bacteria | MIRA-LFD | PCR | qPCR | ||||||
---|---|---|---|---|---|---|---|---|---|
tlh | trh | tdh | tlh | trh | tdh | tlh | trh | tdh | |
Vibrio parahaemolyticus F11-3A | + | + | + | + | + | + | + | + | + |
Vibrio parahaemolyticus ATCC 17802 | + | − | − | + | − | − | + | − | − |
Vibrio parahaemolyticus ATCC 35118 | + | − | + | + | − | + | + | − | + |
Vibrio vulnificus ATCC 33147 | − | − | − | − | − | − | − | − | − |
Vibrio vulnificus ATCC 27562 | − | − | − | − | − | − | − | − | − |
Vibrio vulnificus ATCC 33815 | − | − | − | − | − | − | − | − | − |
Vibrio metschnikovii ATCC 7708 | − | − | − | − | − | − | − | − | − |
Vibrio fluvialis ATCC 33809 | − | − | − | − | − | − | − | − | − |
Vibrio mimicus ATCC 33655 | − | − | − | − | − | − | − | − | − |
Vibrio furnissii ATCC 35627 | − | − | − | − | − | − | − | − | − |
Vibrio cholerae ATCC 39315 | − | − | − | − | − | − | − | − | − |
Vibrio alginolyticus ATCC 33840 | − | − | − | − | − | − | − | − | − |
Escherichia coli ATCC 51739 | − | − | − | − | − | − | − | − | − |
Escherichia coli K-12 | − | − | − | − | − | − | − | − | − |
Escherichia coli O157:H7 ATCC 43895 | − | − | − | − | − | − | − | − | − |
Listeria monocytogenes F5069 | − | − | − | − | − | − | − | − | − |
Lactobacillus buchneri ATCC 12936 | − | − | − | − | − | − | − | − | − |
Listeria innocua ATCC 33090 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Typhimurium 14028 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Gaminara F2712 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Montevideo ATCC BAA-1735 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Senftenburg ATCC 43845 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Enteritidis E190-88 | − | − | − | − | − | − | − | − | − |
Salmonella enterica Serovar Choleraesuis ATCC 10708 | − | − | − | − | − | − | − | − | − |
Bacillus subtilis ATCC 9372 | − | − | − | − | − | − | − | − | − |
Clostridium perfringens ATCC 13124 | − | − | − | − | − | − | − | − | − |
Enterococcus faecalis ATCC 344 | − | − | − | − | − | − | − | − | − |
Lactobacillus acidophilus NRRL B1910 | − | − | − | − | − | − | − | − | − |
Staphylococcus aureus ATCC 25923 | − | − | − | − | − | − | − | − | − |
Shigella flexineri ATCC 12022 | − | − | − | − | − | − | − | − | − |
Assay | Names | Sequences (5′-3′) | Location | Amplicon Size (bp) |
---|---|---|---|---|
Basic RPA | VP_TLH_F1 | AAAAACAATCACACTATTAACTGCATTACTCC | ||
VP_TLH_R1 | GTCAATGGTGAAGTAGCTACCATCTTCGTTTTT | 6–231 | 226 | |
VP_TLH_R1-2 | TTTAAATGAAACGGAGCTCCACCAGTAGCC | 6–261 | 256 | |
VP_TLH_F2 | CTCAGTTTAAGTACTCAACACAAGAAGAGAT | |||
VP_TLH_R2 | CTAAGTTGTTGCTACTTTCTAGCATTTTCT | 869–1237 | 369 | |
VP_TLH_R2-2 | TTGGATGCGTGACATCCCAGAACACAAACT | 869–1180 | 312 | |
VP_TDH_F1 | CTGTGAACATTAATGATAAAGACTATACAA | |||
VP_TDH_R1 | ATTACCAATATATTACCACTACCACTCTCATA | 284–521 | 238 | |
VP_TRH_F1 | ACTCTACTTTGCCTTCAGTTTGCTATTGGCTTC | |||
VP_TRH-R1 | GAAGTCGTGAAAATAGATTGACCGTGAACGCT | 12–254 | 243 | |
VP_TRH-R1-2 | AGGCGCTTAACCATTTTGAGCCTGAAGTCGTGA | 12–277 | 266 | |
VP_TRH-F2 | AGCGCCTATATGACGGTAAATATTAATGGAAAT | |||
VP_TRH_R2 | CATATGCCCATTTCCGCTCTCATATGCTTCGA | 271–513 | 243 | |
VP_TRH-R2-2 | TGACGAAATATTCTGGCGTTTCATCCAAATA | 271–478 | 208 | |
MIRA-LFD | VP_TLH_F1 | AAAAACAATCACACTATTAACTGCATTACTCC | ||
VP_PROBE | /56-FAM/TTCAGCGTCTGAAGTGATCAGCACGCAAGA/idSp/AACCAAACCTATACC/3SpC3/ | |||
VP_TLH_R1 _Biotin | Biotin-GTCAATGGTGAAGTAGCTACCATCTTCGTTTTT | 6–231 | ||
VP_TDH_F1 | CTGTGAACATTAATGATAAAGACTATACAA | |||
VP_TDH_Probe | /56-FAM/AGCTTCAACATTCCTATGATTCTGTAGCTA/idSp/CTTTGTTGGTGAAGA/3SpC3/ | |||
VP_TDH_R1_Biotin | Biotin-ATTACCAATATATTACCACTACCACTCTCATA | 284–521 | ||
VP_TRH_F1 | ACTCTACTTTGCCTTCAGTTTGCTATTGGCTTC | |||
VP_TRH_Probe | /56-FAM/TGAGCTACTATTTGTCGTTAGAAATACAAC/idSp/ATAAAAACTGAATCA/3SpC3/ | |||
VP_TRH_R1_Biotin | Biotin-GAAGTCGTGAAAATAGATTGACCGTGAACGCT | 12–254 |
Assay | Names | Sequences (5′-3′) | Amplicon Size (bp) | Ref. |
---|---|---|---|---|
PCR | VPTLH_L | AAAGCGGATTATGCAGAAGCACTG | [14] | |
VPTRH_R | GCTACTTTCTAGCATTTTCTCTGC | 450 | ||
VPTRH-L | TTGGCTTCGATATTTTCAGTATCT | |||
VPTRH-R | CATAACAAACATATGCCCATTTCCG | 486 | ||
VPTDH-L | GTAAAGGTCTCTGACTTTTGGAC | |||
VPTDH-R | TGGAATAGAACCTTCATCTTCACC | 270 | ||
qPCR | tlh 884 F | ACTCAACACAAGAAGAGATCGACCA | [21] | |
tlh probe | /JOE/CGCTCGCGTTCACGAAACCGT/BHQ2 | |||
tlh 1091R | GATGAGCGGTTGATGTCCAA | |||
trh 20F | TTGCTTTCAGTTTGCTATTGGCT | |||
trh probe | /FAM/AGAAATACAACAATCAAAACTGA/MGBNFQ | |||
trh 292R | TGTTTACCGTCATATAGGCGCTT | |||
tdh 89F | TCCCTTTTCCTGCCCCC | |||
tdh probe | /FAM/TGACATCCTACATGACTGTG/MGBNFQ | |||
tdh 321R | CGCTGCCATTGTATAGTCTTTATC | |||
IAC 46F | GACATCGATATGGGTGCCG | |||
IAC Probe | /Cy5/TCTCATGCGTCTCCCTGGTGAATGTG/BHQ2 | |||
IAC 186R | CGAGACGATGCAGCCATTC |
States | tlh | tdh | trh | ||||||
---|---|---|---|---|---|---|---|---|---|
MIRA-LFD | PCR | qPCR | MIRA-LFD | PCR | qPCR | MIRA-LFD | PCR | qPCR | |
A | 2/6 (33.3% *) | 1/6 (16.6%) | 2/6 (33.3%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) |
B | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) |
C | 2/6 (33.3%) | 0/6 (0%) | 2/6 (33.3%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) | 0/6 (0%) |
D | 3/18 (16.6%) | 0/18 (0%) | 3/18 (16.6%) | 0/18 (0%) | 0/18 (0%) | 0/18 (0%) | 0/18 (0%) | 0/18 (0%) | 0/18 (0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.B.; Zhang, Y. Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens 2024, 13, 57. https://doi.org/10.3390/pathogens13010057
Park SB, Zhang Y. Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens. 2024; 13(1):57. https://doi.org/10.3390/pathogens13010057
Chicago/Turabian StylePark, Seong Bin, and Yan Zhang. 2024. "Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus" Pathogens 13, no. 1: 57. https://doi.org/10.3390/pathogens13010057
APA StylePark, S. B., & Zhang, Y. (2024). Development of Multienzyme Isothermal Rapid Amplification (MIRA) Combined with Lateral-Flow Dipstick (LFD) Assay to Detect Species-Specific tlh and Pathogenic trh and tdh Genes of Vibrio parahaemolyticus. Pathogens, 13(1), 57. https://doi.org/10.3390/pathogens13010057