Biting Back: Advances in Fighting Ticks and Understanding Tick-Borne Pathogens
1. Introduction
2. Impact of Ticks and TBD
2.1. Pathogenesis of Anaemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines—A Review—By Zygner et al. [3]
2.2. Neurologic Features of Lyme Disease That May Present to a Rheumatologist—By Govil et al. [5]
2.3. Borrelia miyamotoi: A Comprehensive Review—By Cleveland et al. [8]
3. Epidemiology of Ticks and TBD
3.1. Human Borrelia miyamotoi Infection in North America—By Burde et al. [11]
3.2. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany—By Brandenburg et al. [13]
3.3. Isolate of Theileria orientalis Ikeda Is Not Transstadially Transmitted to Cattle by Rhipicephalus microplus—By Onzere et al. [15]
3.4. Effective Methods of Estimation of Pathogen Prevalence in Pooled Ticks—By Fracasso et al. [20]
4. Control of Ticks and TBD
4.1. Advances in Babesia Vaccine Development: An Overview—By Jerzak et al. [22]
4.2. Does Experimental Reduction of Blacklegged Tick (Ixodes scapularis) Abundance Reduce Lyme Disease Incidence?—By Ostfeld and Keesing [25]
4.3. The Role of Parasitoid Wasps, Ixodiphagus spp. (Hymenoptera: Encyrtidae), in Tick Control—By Ramos et al. [27]
5. Closing Remarks
Conflicts of Interest
References
- Nava, S.; Guglielmone, A.A.; Mangold, A.J. An overview of systematics and evolution of ticks. Front. Biosci. Landmark Ed. 2009, 14, 2857–2877. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Toledo, A. Emerging tick-borne pathogens of public health importance: A mini-review. J. Med. Microbiol. 2020, 69, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Zygner, W.; Gójska-Zygner, O.; Norbury, L.J. Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines—A Review. Pathogens 2023, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Köster, L.S.; Lobetti, R.G. Canine babesiosis: A perspective on clinical complications, biomarkers, and treatment. Vet. Med. Res. Rep. 2015, 6, 119–128. [Google Scholar] [CrossRef]
- Govil, S.; Capitle, E.; Lacqua, A.; Khianey, R.; Coyle, P.K.; Schutzer, S.E. Common Neurologic Features of Lyme Disease That May Present to a Rheumatologist. Pathogens 2023, 12, 576. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.R.; Strle, F.; Wormser, G.P. Comparison of Lyme Disease in the United States and Europe. Emerg. Infect. Dis. 2021, 27, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.O.; Nelder, M.P.; Russell, C.; Li, Y.; Badiani, T.; Sander, B.; Sider, D.; Patel, S.N. Clinical manifestations of reported Lyme disease cases in Ontario, Canada: 2005–2014. PLoS ONE 2018, 13, e0198509. [Google Scholar] [CrossRef]
- Cleveland, D.W.; Anderson, C.C.; Brissette, C.A. Borrelia miyamotoi: A Comprehensive Review. Pathogens 2023, 12, 267. [Google Scholar] [CrossRef]
- Fukunaga, M.; Takahashi, Y.; Tsuruta, Y.; Matsushita, O.; Ralph, D.; McClelland, M.; Nakao, M. Genetic and Phenotypic Analysis of Borrelia miyamotoi Sp. Nov., Isolated from the Ixodid Tick Ixodes persulcatus, the Vector for Lyme Disease in Japan. Int. J. Syst. Bacteriol. 1995, 45, 804–810. [Google Scholar] [CrossRef]
- Sormunen, J.J.; Andersson, T.; Aspi, J.; Bäck, J.; Cederberg, T.; Haavisto, N.; Halonen, H.; Hänninen, J.; Inkinen, J.; Kulha, N.; et al. Monitoring of Ticks and Tick-Borne Pathogens through a Nationwide Research Station Network in Finland. Ticks Tick Borne Dis. 2020, 11, 101449. [Google Scholar] [CrossRef]
- Burde, J.; Bloch, E.M.; Kelly, J.R.; Krause, P.J. Human Borrelia miyamotoi Infection in North America. Pathogens 2023, 12, 553. [Google Scholar] [CrossRef] [PubMed]
- Ogden, N.H.; Ben Beard, C.; Ginsberg, H.S.; Tsao, J.I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Èntomol. 2020, 58, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, P.J.; Obiegala, A.; Schmuck, H.M.; Dobler, G.; Chitimia-Dobler, L.; Pfeffer, M. Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany. Pathogens 2023, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, K.L.; Johnson, N.; Phipps, L.P.; Stephenson, J.R.; Fooks, A.R.; Solomon, T. Tick-borne encephalitis virus—A review of an emerging zoonosis. J. Gen. Virol. 2009, 90 Pt 8, 1781–1794. [Google Scholar] [CrossRef] [PubMed]
- Onzere, C.K.; Herndon, D.R.; Hassan, A.; Oyen, K.; Poh, K.C.; Scoles, G.A.; Fry, L.M. A U.S. Isolate of Theileria orientalis Ikeda Is Not Transstadially Transmitted to Cattle by Rhipicephalus microplus. Pathogens 2023, 12, 559. [Google Scholar] [CrossRef] [PubMed]
- Alkishe, A.; Raghavan, R.K.; Peterson, A.T. Likely Geographic Distributional Shifts among Medically Important Tick Species and Tick-Associated Diseases under Climate Change in North America: A Review. Insects 2021, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Bogema, D.R.; Micallef, M.L.; Liu, M.; Padula, M.P.; Djordjevic, S.P.; Darling, A.E.; Jenkins, C. Analysis of Theileria orientalis draft genome sequences reveals potential species-level divergence of the Ikeda, Chitose and Buffeli genotypes. BMC Genom. 2018, 19, 298. [Google Scholar] [CrossRef]
- Watts, J.G.; Playford, M.C.; Hickey, K.L. Theileria orientalis: A review. N. Z. Vet. J. 2016, 64, 3–9. [Google Scholar] [CrossRef]
- Yabsley, M.J.; Thompson, A.T. Haemaphysalis longicornis (Asian longhorned tick). Trends Parasitol. 2023, 39, 305–306. [Google Scholar] [CrossRef]
- Fracasso, G.; Grillini, M.; Grassi, L.; Gradoni, F.; Rold, G.D.; Bertola, M. Effective Methods of Estimation of Pathogen Prevalence in Pooled Ticks. Pathogens 2023, 12, 557. [Google Scholar] [CrossRef]
- Bertola, M.; Montarsi, F.; Obber, F.; Da Rold, G.; Carlin, S.; Toniolo, F.; Porcellato, E.; Falcaro, C.; Mondardini, V.; Ormelli, S.; et al. Occurrence and identification of Ixodes ricinus borne pathogens in Northeastern Italy. Pathogens 2021, 10, 1181. [Google Scholar] [CrossRef] [PubMed]
- Jerzak, M.; Gandurski, A.; Tokaj, M.; Stachera, W.; Szuba, M.; Dybicz, M. Advances in Babesia Vaccine Development: An Overview. Pathogens 2023, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Homer, M.J.; Aguilar-Delfin, I.; Telford, S.R., III; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Westblade, L.F.; Simon, M.S.; Mathison, B.A.; Kirkman, L.A. Babesia microti: From Mice to Ticks to an Increasing Number of Highly Susceptible Humans. J. Clin. Microbiol. 2017, 55, 2903–2912. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.S.; Keesing, F. Does Experimental Reduction of Blacklegged Tick (Ixodes scapularis) Abundance Reduce Lyme Disease Incidence? Pathogens 2023, 12, 714. [Google Scholar] [CrossRef] [PubMed]
- Willadsen, P. Tick control: Thoughts on a research agenda. Vet. Parasitol. 2006, 138, 161–168. [Google Scholar] [CrossRef]
- Ramos RA, N.; de Macedo, L.O.; Bezerra-Santos, M.A.; de Carvalho, G.A.; Verocai, G.G.; Otranto, D. The Role of Parasitoid Wasps, Ixodiphagus spp. (Hymenoptera: Encyrtidae), in Tick Control. Pathogens 2023, 12, 676. [Google Scholar] [CrossRef]
- Bonatte, P., Jr.; Barros, J.C.; Maciel, W.G.; Garcia, M.V.; Higa, L.O.S.; Andreotti, R. Control strategies for the tick Rhipicephalus microplus (Canestrini, 1888) on cattle: Economic evaluation and report of a multidrug-resistant strain. Acta Parasitol. 2022, 67, 1564–1572. [Google Scholar]
- Collatz, J.; Selzer, P.; Fuhrmann, A.; Oehme, R.M.; Mackenstedt, U.; Kahl, O.; Steidle, J.L.M. A hidden beneficial: Biology of the tick-wasp Ixodiphagus hookeri in Germany. J. Appl. Entomol. 2011, 135, 351–358. [Google Scholar] [CrossRef]
- Mwangi, E.N.; Hassan, S.M.; Kaaya, G.P.; Essuman, S. The impact of Ixodiphagus hookeri, a tick parasitoid, on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Exp. Appl. Acarol. 1997, 21, 117–126. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diakou, A. Biting Back: Advances in Fighting Ticks and Understanding Tick-Borne Pathogens. Pathogens 2024, 13, 73. https://doi.org/10.3390/pathogens13010073
Diakou A. Biting Back: Advances in Fighting Ticks and Understanding Tick-Borne Pathogens. Pathogens. 2024; 13(1):73. https://doi.org/10.3390/pathogens13010073
Chicago/Turabian StyleDiakou, Anastasia. 2024. "Biting Back: Advances in Fighting Ticks and Understanding Tick-Borne Pathogens" Pathogens 13, no. 1: 73. https://doi.org/10.3390/pathogens13010073
APA StyleDiakou, A. (2024). Biting Back: Advances in Fighting Ticks and Understanding Tick-Borne Pathogens. Pathogens, 13(1), 73. https://doi.org/10.3390/pathogens13010073