Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician?
Abstract
:1. Introduction
1.1. Daptomycin
1.2. Dalbavancin
1.3. Linezolid and Tedizolid
1.4. Ceftaroline
1.5. Ceftobiprole
1.6. Fosfomycin
2. Conclusions
3. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-Negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- O’Driscoll, T.; Crank, C.W. Vancomycin-Resistant Enterococcal Infections: Epidemiology, Clinical Manifestations, and Optimal Management. Infect. Drug Resist. 2015, 8, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Gasink, L.B.; Lautenbach, E. Prevention and Treatment of Health Care-Acquired Infections. Med. Clin. N. Am. 2008, 92, 295–313. [Google Scholar] [CrossRef] [PubMed]
- Cherazard, R.; Epstein, M.; Doan, T.-L.; Salim, T.; Bharti, S.; Smith, M.A. Antimicrobial Resistant Streptococcus Pneumoniae: Prevalence, Mechanisms, and Clinical Implications. Am. J. Ther. 2017, 24, e361–e369. [Google Scholar] [CrossRef]
- van Duin, D.; Paterson, D.L. Multidrug-Resistant Bacteria in the Community: An Update. Infect. Dis. Clin. N. Am. 2020, 34, 709–722. [Google Scholar] [CrossRef]
- Heidary, M.; Khosravi, A.D.; Khoshnood, S.; Nasiri, M.J.; Soleimani, S.; Goudarzi, M. Daptomycin. J. Antimicrob. Chemother. 2018, 73, 1–11. [Google Scholar] [CrossRef]
- Tran, T.T.; Gomez Villegas, S.; Aitken, S.L.; Butler-Wu, S.M.; Soriano, A.; Werth, B.J.; Munita, J.M. New Perspectives on Antimicrobial Agents: Long-Acting Lipoglycopeptides. Antimicrob. Agents Chemother. 2022, 66, e0261420. [Google Scholar] [CrossRef]
- Zahedi Bialvaei, A.; Rahbar, M.; Yousefi, M.; Asgharzadeh, M.; Samadi Kafil, H. Linezolid: A Promising Option in the Treatment of Gram-Positives. J. Antimicrob. Chemother. 2017, 72, 354–364. [Google Scholar] [CrossRef]
- Burdette, S.D.; Trotman, R. Tedizolid: The First Once-Daily Oxazolidinone Class Antibiotic. Clin. Infect. Dis. 2015, 61, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Jorgenson, M.R.; DePestel, D.D.; Carver, P.L. Ceftaroline Fosamil: A Novel Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus. Ann. Pharmacother. 2011, 45, 1384–1398. [Google Scholar] [CrossRef] [PubMed]
- Vidaillac, C.; Rybak, M.J. Ceftobiprole: First Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus. Pharmacotherapy 2009, 29, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Viaggi, B.; Rossolini, G.M.; Pea, F.; Viale, P. Targeted Therapy of Severe Infections Caused by Staphylococcus aureus in Critically Ill Adult Patients: A Multidisciplinary Proposal of Therapeutic Algorithms Based on Real-World Evidence. Microorganisms 2023, 11, 394. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. MIC and Zone Diameter Distributions and ECOFFs. Available online: https://www.eucast.org/mic_and_zone_distributions_and_ecoffs (accessed on 25 September 2023).
- García-de-la-Mària, C.; Pericas, J.M.; Del Río, A.; Castañeda, X.; Vila-Farrés, X.; Armero, Y.; Espinal, P.A.; Cervera, C.; Soy, D.; Falces, C.; et al. Early in Vitro and In Vivo Development of High-Level Daptomycin Resistance Is Common in Mitis Group Streptococci after Exposure to Daptomycin. Antimicrob. Agents Chemother. 2013, 57, 2319–2325. [Google Scholar] [CrossRef]
- Fowler, V.G.; Boucher, H.W.; Corey, G.R.; Abrutyn, E.; Karchmer, A.W.; Rupp, M.E.; Levine, D.P.; Chambers, H.F.; Tally, F.P.; Vigliani, G.A.; et al. Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus. N. Engl. J. Med. 2006, 355, 653–665. [Google Scholar] [CrossRef]
- Grabein, B.; Graninger, W.; Rodríguez Baño, J.; Dinh, A.; Liesenfeld, D.B. Intravenous Fosfomycin-Back to the Future. Systematic Review and Meta-Analysis of the Clinical Literature. Clin. Microbiol. Infect. 2017, 23, 363–372. [Google Scholar] [CrossRef]
- Jones, T.W.; Jun, A.H.; Michal, J.L.; Olney, W.J. High-Dose Daptomycin and Clinical Applications. Ann. Pharmacother. 2021, 55, 1363–1378. [Google Scholar] [CrossRef]
- Delgado, V.; Ajmone Marsan, N.; de Waha, S.; Bonaros, N.; Brida, M.; Burri, H.; Caselli, S.; Doenst, T.; Ederhy, S.; Erba, P.A.; et al. 2023 ESC Guidelines for the Management of Endocarditis. Eur. Heart J. 2023, 44, 3948–4042. [Google Scholar] [CrossRef]
- Seaton, R.A.; Gonzalez-Ruiz, A.; Cleveland, K.O.; Couch, K.A.; Pathan, R.; Hamed, K. Real-World Daptomycin Use across Wide Geographical Regions: Results from a Pooled Analysis of CORE and EU-CORE. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Russo, A.; Venditti, M.; Novelli, A.; Pai, M.P. Considerations for Higher Doses of Daptomycin in Critically Ill Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia. Clin. Infect. Dis. 2013, 57, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Kullar, R.; Casapao, A.M.; Davis, S.L.; Levine, D.P.; Zhao, J.J.; Crank, C.W.; Segreti, J.; Sakoulas, G.; Cosgrove, S.E.; Rybak, M.J. A Multicentre Evaluation of the Effectiveness and Safety of High-Dose Daptomycin for the Treatment of Infective Endocarditis. J. Antimicrob. Chemother. 2013, 68, 2921–2926. [Google Scholar] [CrossRef] [PubMed]
- Cojutti, P.G.; Candoni, A.; Ramos-Martin, V.; Lazzarotto, D.; Zannier, M.E.; Fanin, R.; Hope, W.; Pea, F. Population Pharmacokinetics and Dosing Considerations for the Use of Daptomycin in Adult Patients with Haematological Malignancies. J. Antimicrob. Chemother. 2017, 72, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Kahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C.G.; European Committee on Antimicrobial Susceptibility Testing. Daptomycin in the Treatment of Enterococcal Bloodstream Infections and Endocarditis: A EUCAST Position Paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Timbrook, T.T.; Caffrey, A.R.; Luther, M.K.; Lopes, V.; LaPlante, K.L. Association of Higher Daptomycin Dose (7 mg/kg or Greater) with Improved Survival in Patients with Methicillin-Resistant Staphylococcus aureus Bacteremia. Pharmacotherapy 2018, 38, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Britt, N.S.; Potter, E.M.; Patel, N.; Steed, M.E. Comparative Effectiveness and Safety of Standard-, Medium-, and High-Dose Daptomycin Strategies for the Treatment of Vancomycin-Resistant Enterococcal Bacteremia Among Veterans Affairs Patients. Clin. Infect. Dis. 2017, 64, 605–613. [Google Scholar] [CrossRef]
- Hall, A.D.; Steed, M.E.; Arias, C.A.; Murray, B.E.; Rybak, M.J. Evaluation of Standard- and High-Dose Daptomycin versus Linezolid against Vancomycin-Resistant Enterococcus Isolates in an In Vitro Pharmacokinetic/Pharmacodynamic Model with Simulated Endocardial Vegetations. Antimicrob. Agents Chemother. 2012, 56, 3174–3180. [Google Scholar] [CrossRef]
- Humphries, R.M.; Pollett, S.; Sakoulas, G. A Current Perspective on Daptomycin for the Clinical Microbiologist. Clin. Microbiol. Rev. 2013, 26, 759–780. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 8 January 2024).
- Clinical and Laboratory Standards Institute. CLSI M100. In Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2023; Available online: https://clsi.org/ast-2023/ (accessed on 8 January 2024).
- Kelley, P.G.; Gao, W.; Ward, P.B.; Howden, B.P. Daptomycin Non-Susceptibility in Vancomycin-Intermediate Staphylococcus aureus (VISA) and Heterogeneous-VISA (hVISA): Implications for Therapy after Vancomycin Treatment Failure. J. Antimicrob. Chemother. 2011, 66, 1057–1060. [Google Scholar] [CrossRef]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Jones, R.N. Analysis of 5-Year Trends in Daptomycin Activity Tested against Staphylococcus aureus and Enterococci from European and US Hospitals (2009–2013). J. Glob. Antimicrob. Resist. 2015, 3, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Markwart, R.; Willrich, N.; Eckmanns, T.; Werner, G.; Ayobami, O. Low Proportion of Linezolid and Daptomycin Resistance Among Bloodborne Vancomycin-Resistant Enterococcus faecium and Methicillin-Resistant Staphylococcus aureus Infections in Europe. Front. Microbiol. 2021, 12, 664199. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Campanile, F.; Santagati, M.; Mezzatesta, M.L.; Cafiso, V.; Pacini, G. Insights and Clinical Perspectives of Daptomycin Resistance in Staphylococcus aureus: A Review of the Available Evidence. Int. J. Antimicrob. Agents 2015, 46, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.S.; Schneider, T.; Sahl, H.-G. Mechanisms of Daptomycin Resistance in Staphylococcus aureus: Role of the Cell Membrane and Cell Wall. Ann. N. Y. Acad. Sci. 2013, 1277, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Munita, J.M.; Arias, C.A. Mechanisms of Drug Resistance: Daptomycin Resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 32–53. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Bayer, A.S.; Arias, C.A. Evolving Resistance among Gram-Positive Pathogens. Clin. Infect. Dis. 2015, 61 (Suppl. S2), S48–S57. [Google Scholar] [CrossRef] [PubMed]
- Hines, K.M.; Shen, T.; Ashford, N.K.; Waalkes, A.; Penewit, K.; Holmes, E.A.; McLean, K.; Salipante, S.J.; Werth, B.J.; Xu, L. Occurrence of Cross-Resistance and β-Lactam Seesaw Effect in Glycopeptide-, Lipopeptide- and Lipoglycopeptide-Resistant MRSA Correlates with Membrane Phosphatidylglycerol Levels. J. Antimicrob. Chemother. 2020, 75, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Panesso, D.; McGrath, D.M.; Qin, X.; Mojica, M.F.; Miller, C.; Diaz, L.; Tran, T.T.; Rincon, S.; Barbu, E.M.; et al. Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. N. Engl. J. Med. 2011, 365, 892–900. [Google Scholar] [CrossRef]
- Thitiananpakorn, K.; Aiba, Y.; Tan, X.-E.; Watanabe, S.; Kiga, K.; Sato’o, Y.; Boonsiri, T.; Li, F.-Y.; Sasahara, T.; Taki, Y.; et al. Association of mprF Mutations with Cross-Resistance to Daptomycin and Vancomycin in Methicillin-Resistant Staphylococcus aureus (MRSA). Sci. Rep. 2020, 10, 16107. [Google Scholar] [CrossRef]
- Werth, B.J.; Ashford, N.K.; Penewit, K.; Waalkes, A.; Holmes, E.A.; Ross, D.H.; Shen, T.; Hines, K.M.; Salipante, S.J.; Xu, L. Dalbavancin Exposure In Vitro Selects for Dalbavancin-Non-Susceptible and Vancomycin-Intermediate Strains of Methicillin-Resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2021, 27, 910.e1–910.e8. [Google Scholar] [CrossRef]
- Barber, K.E.; Ireland, C.E.; Bukavyn, N.; Rybak, M.J. Observation of “Seesaw Effect” with Vancomycin, Teicoplanin, Daptomycin and Ceftaroline in 150 Unique MRSA Strains. Infect. Dis. Ther. 2014, 3, 35–43. [Google Scholar] [CrossRef]
- Jiang, S.; Zhuang, H.; Zhu, F.; Wei, X.; Zhang, J.; Sun, L.; Ji, S.; Wang, H.; Wu, D.; Zhao, F.; et al. The Role of mprF Mutations in Seesaw Effect of Daptomycin-Resistant Methicillin-Resistant Staphylococcus aureus Isolates. Antimicrob. Agents Chemother. 2022, 66, e0129521. [Google Scholar] [CrossRef]
- Renzoni, A.; Kelley, W.L.; Rosato, R.R.; Martinez, M.P.; Roch, M.; Fatouraei, M.; Haeusser, D.P.; Margolin, W.; Fenn, S.; Turner, R.D.; et al. Molecular Bases Determining Daptomycin Resistance-Mediated Resensitization to β-Lactams (Seesaw Effect) in Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e01634-16. [Google Scholar] [CrossRef]
- Vignaroli, C.; Rinaldi, C.; Varaldo, P.E. Striking “Seesaw Effect” between Daptomycin Nonsusceptibility and Beta-Lactam Susceptibility in Staphylococcus Haemolyticus. Antimicrob. Agents Chemother. 2011, 55, 2495–2496. [Google Scholar] [CrossRef]
- Zeng, W.; Feng, L.; Qian, C.; Chen, T.; Wang, S.; Zhang, Y.; Zheng, X.; Wang, L.; Liu, S.; Zhou, T.; et al. Acquisition of Daptomycin Resistance by Enterococcus faecium Confers Collateral Sensitivity to Glycopeptides. Front. Microbiol. 2022, 13, 815600. [Google Scholar] [CrossRef]
- Sharma, M.; Riederer, K.; Chase, P.; Khatib, R. High Rate of Decreasing Daptomycin Susceptibility during the Treatment of Persistent Staphylococcus aureus Bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 2008, 27, 433–437. [Google Scholar] [CrossRef]
- Akins, R.L.; Katz, B.D.; Monahan, C.; Alexander, D. Characterization of High-Level Daptomycin Resistance in Viridans Group Streptococci Developed upon in Vitro Exposure to Daptomycin. Antimicrob. Agents Chemother. 2015, 59, 2102–2112. [Google Scholar] [CrossRef]
- Wang, C.; Ye, C.; Liao, L.; Wang, Z.; Hu, Y.; Deng, C.; Liu, L. Adjuvant β-Lactam Therapy Combined with Vancomycin or Daptomycin for Methicillin-Resistant Staphylococcus aureus Bacteremia: A Systematic Review and Meta-Analysis. Antimicrob. Agents Chemother. 2020, 64, e01377-20. [Google Scholar] [CrossRef]
- Tong, S.Y.C.; Lye, D.C.; Yahav, D.; Sud, A.; Robinson, J.O.; Nelson, J.; Archuleta, S.; Roberts, M.A.; Cass, A.; Paterson, D.L.; et al. Effect of Vancomycin or Daptomycin With vs. Without an Antistaphylococcal β-Lactam on Mortality, Bacteremia, Relapse, or Treatment Failure in Patients With MRSA Bacteremia: A Randomized Clinical Trial. JAMA 2020, 323, 527–537. [Google Scholar] [CrossRef]
- Moise, P.A.; Amodio-Groton, M.; Rashid, M.; Lamp, K.C.; Hoffman-Roberts, H.L.; Sakoulas, G.; Yoon, M.J.; Schweitzer, S.; Rastogi, A. Multicenter Evaluation of the Clinical Outcomes of Daptomycin with and without Concomitant β-Lactams in Patients with Staphylococcus aureus Bacteremia and Mild to Moderate Renal Impairment. Antimicrob. Agents Chemother. 2013, 57, 1192–1200. [Google Scholar] [CrossRef]
- Pujol, M.; Miró, J.-M.; Shaw, E.; Aguado, J.-M.; San-Juan, R.; Puig-Asensio, M.; Pigrau, C.; Calbo, E.; Montejo, M.; Rodriguez-Álvarez, R.; et al. Daptomycin Plus Fosfomycin Versus Daptomycin Alone for Methicillin-Resistant Staphylococcus aureus Bacteremia and Endocarditis: A Randomized Clinical Trial. Clin. Infect. Dis. 2021, 72, 1517–1525. [Google Scholar] [CrossRef]
- Kebriaei, R.; Stamper, K.C.; Singh, K.V.; Khan, A.; Rice, S.A.; Dinh, A.Q.; Tran, T.T.; Murray, B.E.; Arias, C.A.; Rybak, M.J. Mechanistic Insights into the Differential Efficacy of Daptomycin Plus β-Lactam Combinations against Daptomycin-Resistant Enterococcus faecium. J. Infect. Dis. 2020, 222, 1531–1539. [Google Scholar] [CrossRef]
- Kebriaei, R.; Rice, S.A.; Stamper, K.C.; Seepersaud, R.; Garcia-de-la-Maria, C.; Mishra, N.N.; Miro, J.M.; Arias, C.A.; Tran, T.T.; Sullam, P.M.; et al. Daptomycin Dose-Ranging Evaluation with Single-Dose versus Multidose Ceftriaxone Combinations against Streptococcus Mitis/Oralis in an ex vivo Simulated Endocarditis Vegetation Model. Antimicrob. Agents Chemother. 2019, 63, e00386-19. [Google Scholar] [CrossRef]
- Huang, C.; Chen, I.; Lin, L. Comparing the Outcomes of Ceftaroline plus Vancomycin or Daptomycin Combination Therapy versus Vancomycin or Daptomycin Monotherapy in Adults with Methicillin-Resistant Staphylococcus aureus Bacteremia—A Meta-Analysis. Antibiotics 2022, 11, 1104. [Google Scholar] [CrossRef]
- Van Bambeke, F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015, 75, 2073–2095. [Google Scholar] [CrossRef]
- Dunne, M.W.; Puttagunta, S.; Giordano, P.; Krievins, D.; Zelasky, M.; Baldassarre, J. A Randomized Clinical Trial of Single-Dose Versus Weekly Dalbavancin for Treatment of Acute Bacterial Skin and Skin Structure Infection. Clin. Infect. Dis. 2016, 62, 545–551. [Google Scholar] [CrossRef]
- Dunne, M.W.; Talbot, G.H.; Boucher, H.W.; Wilcox, M.; Puttagunta, S. Safety of Dalbavancin in the Treatment of Skin and Skin Structure Infections: A Pooled Analysis of Randomized, Comparative Studies. Drug Saf. 2016, 39, 147–157. [Google Scholar] [CrossRef]
- Gatti, M.; Andreoni, M.; Pea, F.; Viale, P. Real-World Use of Dalbavancin in the Era of Empowerment of Outpatient Antimicrobial Treatment: A Careful Appraisal Beyond Approved Indications Focusing on Unmet Clinical Needs. Drug Des. Devel. Ther. 2021, 15, 3349–3378. [Google Scholar] [CrossRef]
- Lovatti, S.; Tiecco, G.; Mulé, A.; Rossi, L.; Sforza, A.; Salvi, M.; Signorini, L.; Castelli, F.; Quiros-Roldan, E. Dalbavancin in Bone and Joint Infections: A Systematic Review. Pharmaceuticals 2023, 16, 1005. [Google Scholar] [CrossRef]
- Raad, I.; Darouiche, R.; Vazquez, J.; Lentnek, A.; Hachem, R.; Hanna, H.; Goldstein, B.; Henkel, T.; Seltzer, E. Efficacy and Safety of Weekly Dalbavancin Therapy for Catheter-Related Bloodstream Infection Caused by Gram-Positive Pathogens. Clin. Infect. Dis. 2005, 40, 374–380. [Google Scholar] [CrossRef]
- Tobudic, S.; Forstner, C.; Burgmann, H.; Lagler, H.; Ramharter, M.; Steininger, C.; Vossen, M.G.; Winkler, S.; Thalhammer, F. Dalbavancin as Primary and Sequential Treatment for Gram-Positive Infective Endocarditis: 2-Year Experience at the General Hospital of Vienna. Clin. Infect. Dis. 2018, 67, 795–798. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Vinuesa, D.; Plata, A.; Martin Dávila, P.; Iftimie, S.; Sequera, S.; Loeches, B.; Lopez-Cortés, L.E.; Fariñas, M.C.; Fernández-Roldan, C.; et al. DALBACEN Cohort: Dalbavancin as Consolidation Therapy in Patients with Endocarditis and/or Bloodstream Infection Produced by Gram-Positive Cocci. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 30. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results From the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef]
- Riccobono, E.; Giani, T.; Baldi, G.; Arcangeli, S.; Antonelli, A.; Tellone, V.; Del Vecchio, A.; De Joannon, A.C.; Rossolini, G.M. Update on Activity of Dalbavancin and Comparators against Clinical Isolates of Gram-Positive Pathogens from Europe and Russia (2017–2018), and on Clonal Distribution of MRSA. Int. J. Antimicrob. Agents 2022, 59, 106503. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Mendes, R.E.; Duncan, L.R.; Flamm, R.K.; Sader, H.S. Activity of Dalbavancin and Comparator Agents against Gram-Positive Cocci from Clinical Infections in the USA and Europe 2015–2016. J. Antimicrob. Chemother. 2018, 73, 2748–2756. [Google Scholar] [CrossRef]
- Zhang, R.; Polenakovik, H.; Barreras Beltran, I.A.; Waalkes, A.; Salipante, S.J.; Xu, L.; Werth, B.J. Emergence of Dalbavancin, Vancomycin, and Daptomycin Nonsusceptible Staphylococcus aureus in a Patient Treated With Dalbavancin: Case Report and Isolate Characterization. Clin. Infect. Dis. 2022, 75, 1641–1644. [Google Scholar] [CrossRef]
- Werth, B.J.; Jain, R.; Hahn, A.; Cummings, L.; Weaver, T.; Waalkes, A.; Sengupta, D.; Salipante, S.J.; Rakita, R.M.; Butler-Wu, S.M. Emergence of Dalbavancin Non-Susceptible, Vancomycin-Intermediate Staphylococcus aureus (VISA) after Treatment of MRSA Central Line-Associated Bloodstream Infection with a Dalbavancin- and Vancomycin-Containing Regimen. Clin. Microbiol. Infect. 2018, 24, 429.e1–429.e5. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Pfaller, M.A.; Flamm, R.K. Antimicrobial Activity of Dalbavancin Tested against Gram-Positive Organisms Isolated from Patients with Infective Endocarditis in US and European Medical Centres. J. Antimicrob. Chemother. 2019, 74, 1306–1310. [Google Scholar] [CrossRef]
- Al Janabi, J.; Tevell, S.; Sieber, R.N.; Stegger, M.; Söderquist, B. Emerging Resistance in Staphylococcus Epidermidis during Dalbavancin Exposure: A Case Report and in Vitro Analysis of Isolates from Prosthetic Joint Infections. J. Antimicrob. Chemother. 2023, 78, 669–677. [Google Scholar] [CrossRef]
- Moellering, R.C. Linezolid: The First Oxazolidinone Antimicrobial. Ann. Intern. Med. 2003, 138, 135–142. [Google Scholar] [CrossRef]
- Clemett, D.; Markham, A. Linezolid. Drugs 2000, 59, 815–827; discussion 828. [Google Scholar] [CrossRef]
- Ntziora, F.; Falagas, M.E. Linezolid for the Treatment of Patients with [Corrected] Mycobacterial Infections [Corrected] a Systematic Review. Int. J. Tuberc. Lung Dis. 2007, 11, 606–611. [Google Scholar]
- Bonilla, H.; Huband, M.D.; Seidel, J.; Schmidt, H.; Lescoe, M.; McCurdy, S.P.; Lemmon, M.M.; Brennan, L.A.; Tait-Kamradt, A.; Puzniak, L.; et al. Multicity Outbreak of Linezolid-Resistant Staphylococcus Epidermidis Associated with Clonal Spread of a Cfr-Containing Strain. Clin. Infect. Dis. 2010, 51, 796–800. [Google Scholar] [CrossRef]
- Morales, G.; Picazo, J.J.; Baos, E.; Candel, F.J.; Arribi, A.; Peláez, B.; Andrade, R.; de la Torre, M.-A.; Fereres, J.; Sánchez-García, M. Resistance to Linezolid Is Mediated by the Cfr Gene in the First Report of an Outbreak of Linezolid-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2010, 50, 821–825. [Google Scholar] [CrossRef]
- Sánchez García, M.; De la Torre, M.A.; Morales, G.; Peláez, B.; Tolón, M.J.; Domingo, S.; Candel, F.J.; Andrade, R.; Arribi, A.; García, N.; et al. Clinical Outbreak of Linezolid-Resistant Staphylococcus aureus in an Intensive Care Unit. JAMA 2010, 303, 2260–2264. [Google Scholar] [CrossRef]
- Mendes, R.E.; Deshpande, L.M.; Jones, R.N. Linezolid Update: Stable In Vitro Activity Following More than a Decade of Clinical Use and Summary of Associated Resistance Mechanisms. Drug Resist. Updat. 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Marshall, S.H.; Donskey, C.J.; Hutton-Thomas, R.; Salata, R.A.; Rice, L.B. Gene Dosage and Linezolid Resistance in Enterococcus faecium and Enterococcus Faecalis. Antimicrob. Agents Chemother. 2002, 46, 3334–3336. [Google Scholar] [CrossRef]
- Besier, S.; Ludwig, A.; Zander, J.; Brade, V.; Wichelhaus, T.A. Linezolid Resistance in Staphylococcus aureus: Gene Dosage Effect, Stability, Fitness Costs, and Cross-Resistances. Antimicrob. Agents Chemother. 2008, 52, 1570–1572. [Google Scholar] [CrossRef]
- Tsiodras, S.; Gold, H.S.; Sakoulas, G.; Eliopoulos, G.M.; Wennersten, C.; Venkataraman, L.; Moellering, R.C.; Ferraro, M.J. Linezolid Resistance in a Clinical Isolate of Staphylococcus aureus. Lancet 2001, 358, 207–208. [Google Scholar] [CrossRef]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The Emerging Problem of Linezolid-Resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarokhalil, D. The Global Prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-Resistant Staphylococcus aureus and Coagulase-Negative Staphylococci Strains: A Systematic Review and Meta-Analysis. Antimicrob. Resist. Infect. Control 2020, 9, 56. [Google Scholar] [CrossRef]
- Bi, R.; Qin, T.; Fan, W.; Ma, P.; Gu, B. The Emerging Problem of Linezolid-Resistant Enterococci. J. Glob. Antimicrob. Resist. 2018, 13, 11–19. [Google Scholar] [CrossRef]
- Deshpande, L.M.; Castanheira, M.; Flamm, R.K.; Mendes, R.E. Evolving Oxazolidinone Resistance Mechanisms in a Worldwide Collection of Enterococcal Clinical Isolates: Results from the SENTRY Antimicrobial Surveillance Program. J. Antimicrob. Chemother. 2018, 73, 2314–2322. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Le, J.; Denys, G.; Flamm, R.K.; Jones, R.N. Antimicrobial Susceptibility of Streptococcus Pneumoniae from North America, Europe, Latin America, and the Asia-Pacific Region: Results From 20 Years of the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect. Dis. 2019, 6, S14–S23. [Google Scholar] [CrossRef]
- Mendes, R.E.; Hogan, P.A.; Jones, R.N.; Sader, H.S.; Flamm, R.K. Surveillance for Linezolid Resistance via the Zyvox® Annual Appraisal of Potency and Spectrum (ZAAPS) Programme (2014): Evolving Resistance Mechanisms with Stable Susceptibility Rates. J. Antimicrob. Chemother. 2016, 71, 1860–1865. [Google Scholar] [CrossRef]
- Jones, R.N.; Stilwell, M.G.; Hogan, P.A.; Sheehan, D.J. Activity of Linezolid against 3,251 Strains of Uncommonly Isolated Gram-Positive Organisms: Report from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2007, 51, 1491–1493. [Google Scholar] [CrossRef]
- Endimiani, A.; Blackford, M.; Dasenbrook, E.C.; Reed, M.D.; Bajaksouszian, S.; Hujer, A.M.; Rudin, S.D.; Hujer, K.M.; Perreten, V.; Rice, L.B.; et al. Emergence of Linezolid-Resistant Staphylococcus aureus after Prolonged Treatment of Cystic Fibrosis Patients in Cleveland, Ohio. Antimicrob. Agents Chemother. 2011, 55, 1684–1692. [Google Scholar] [CrossRef]
- Valderrama, M.-J.; Alfaro, M.; Rodríguez-Avial, I.; Baos, E.; Rodríguez-Avial, C.; Culebras, E. Synergy of Linezolid with Several Antimicrobial Agents against Linezolid-Methicillin-Resistant Staphylococcal Strains. Antibiotics 2020, 9, 496. [Google Scholar] [CrossRef]
- Mao, J.; Li, T.; Zhang, N.; Wang, S.; Li, Y.; Peng, Y.; Liu, H.; Yang, G.; Yan, Y.; Jiang, L.; et al. Dose Optimization of Combined Linezolid and Fosfomycin against Enterococcus by Using an In Vitro Pharmacokinetic/Pharmacodynamic Model. Microbiol. Spectr. 2021, 9, e00871-21. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P.; Cojutti, P.; Del Pin, B.; Zamparini, E.; Furlanut, M. Therapeutic Drug Monitoring May Improve Safety Outcomes of Long-Term Treatment with Linezolid in Adult Patients. J. Antimicrob. Chemother. 2012, 67, 2034–2042. [Google Scholar] [CrossRef]
- Lan, S.-H.; Lin, W.-T.; Chang, S.-P.; Lu, L.-C.; Chao, C.-M.; Lai, C.-C.; Wang, J.-H. Tedizolid Versus Linezolid for the Treatment of Acute Bacterial Skin and Skin Structure Infection: A Systematic Review and Meta-Analysis. Antibiotics 2019, 8, 137. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A Novel Oxazolidinone with Potent Activity against Multidrug-Resistant Gram-Positive Pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef]
- Brenciani, A.; Morroni, G.; Schwarz, S.; Giovanetti, E. Oxazolidinones: Mechanisms of Resistance and Mobile Genetic Elements Involved. J. Antimicrob. Chemother. 2022, 77, 2596–2621. [Google Scholar] [CrossRef]
- Saravolatz, L.D.; Stein, G.E.; Johnson, L.B. Ceftaroline: A Novel Cephalosporin with Activity against Methicillin-Resistant Staphylococcus aureus. Clin. Infect. Dis. 2011, 52, 1156–1163. [Google Scholar] [CrossRef]
- Sader, H.S.; Jones, R.N.; Stilwell, M.G.; Flamm, R.K. Ceftaroline Activity Tested against Uncommonly Isolated Gram-Positive Pathogens: Report from the SENTRY Antimicrobial Surveillance Program (2008–2011). Int. J. Antimicrob. Agents 2014, 43, 284–286. [Google Scholar] [CrossRef]
- Drusano, G.L. Pharmacodynamics of Ceftaroline Fosamil for Complicated Skin and Skin Structure Infection: Rationale for Improved Anti-Methicillin-Resistant Staphylococcus aureus Activity. J. Antimicrob. Chemother. 2010, 65 (Suppl. S4), iv33–iv39. [Google Scholar] [CrossRef]
- Corey, G.R.; Wilcox, M.; Talbot, G.H.; Friedland, H.D.; Baculik, T.; Witherell, G.W.; Critchley, I.; Das, A.F.; Thye, D. Integrated Analysis of CANVAS 1 and 2: Phase 3, Multicenter, Randomized, Double-Blind Studies to Evaluate the Safety and Efficacy of Ceftaroline versus Vancomycin plus Aztreonam in Complicated Skin and Skin-Structure Infection. Clin. Infect. Dis. 2010, 51, 641–650. [Google Scholar] [CrossRef]
- Beresford, E.; Biek, D.; Jandourek, A.; Mawal, Y.; Riccobene, T.; Friedland, H.D. Ceftaroline Fosamil for the Treatment of Acute Bacterial Skin and Skin Structure Infections. Expert. Rev. Clin. Pharmacol. 2014, 7, 123–135. [Google Scholar] [CrossRef]
- Zhong, N.S.; Sun, T.; Zhuo, C.; D’Souza, G.; Lee, S.H.; Lan, N.H.; Chiang, C.-H.; Wilson, D.; Sun, F.; Iaconis, J.; et al. Ceftaroline Fosamil versus Ceftriaxone for the Treatment of Asian Patients with Community-Acquired Pneumonia: A Randomised, Controlled, Double-Blind, Phase 3, Non-Inferiority with Nested Superiority Trial. Lancet Infect. Dis. 2015, 15, 161–171. [Google Scholar] [CrossRef]
- Abate, G.; Wang, G.; Frisby, J. Ceftaroline: Systematic Review of Clinical Uses and Emerging Drug Resistance. Ann. Pharmacother. 2022, 56, 1339–1348. [Google Scholar] [CrossRef]
- Cosimi, R.A.; Beik, N.; Kubiak, D.W.; Johnson, J.A. Ceftaroline for Severe Methicillin-Resistant Staphylococcus aureus Infections: A Systematic Review. Open Forum Infect. Dis. 2017, 4, ofx084. [Google Scholar] [CrossRef]
- Destache, C.J.; Guervil, D.J.; Kaye, K.S. Ceftaroline Fosamil for the Treatment of Gram-Positive Endocarditis: CAPTURE Study Experience. Int. J. Antimicrob. Agents 2019, 53, 644–649. [Google Scholar] [CrossRef]
- Alm, R.A.; McLaughlin, R.E.; Kos, V.N.; Sader, H.S.; Iaconis, J.P.; Lahiri, S.D. Analysis of Staphylococcus aureus Clinical Isolates with Reduced Susceptibility to Ceftaroline: An Epidemiological and Structural Perspective. J. Antimicrob. Chemother. 2014, 69, 2065–2075. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, E.-J.; Kim, D.; Kim, J.W.; Lee, K.-J.; Kim, H.S.; Kim, Y.R.; Shin, J.H.; Shin, J.H.; Shin, K.S.; et al. Ceftaroline Resistance by Clone-Specific Polymorphism in Penicillin-Binding Protein 2a of Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, e00485-18. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Mendes, R.E.; Flamm, R.K.; Jones, R.N.; Sader, H.S. Ceftaroline Activity Against Multidrug-Resistant Streptococcus Pneumoniae from U.S. Medical Centers (2014) and Molecular Characterization of a Single Ceftaroline Nonsusceptible Isolate. Microb. Drug Resist. 2017, 23, 571–579. [Google Scholar] [CrossRef]
- Bae, I.-G.; Stone, G.G. Activity of Ceftaroline against Pathogens Associated with Community-Acquired Pneumonia Collected as Part of the AWARE Surveillance Program, 2015–2016. Diagn. Microbiol. Infect. Dis. 2019, 95, 114843. [Google Scholar] [CrossRef]
- Farrell, D.J.; Castanheira, M.; Mendes, R.E.; Sader, H.S.; Jones, R.N. In Vitro Activity of Ceftaroline against Multidrug-Resistant Staphylococcus aureus and Streptococcus Pneumoniae: A Review of Published Studies and the AWARE Surveillance Program (2008–2010). Clin. Infect. Dis. 2012, 55 (Suppl. S3), S206–S214. [Google Scholar] [CrossRef]
- Sader, H.S.; Farrell, D.J.; Flamm, R.K.; Streit, J.M.; Mendes, R.E.; Jones, R.N. Antimicrobial Activity of Ceftaroline and Comparator Agents When Tested against Numerous Species of Coagulase-Negative Staphylococcus Causing Infection in US Hospitals. Diagn. Microbiol. Infect. Dis. 2016, 85, 80–84. [Google Scholar] [CrossRef]
- Sader, H.S.; Flamm, R.K.; Jones, R.N. Antimicrobial Activity of Ceftaroline Tested against Staphylococci with Reduced Susceptibility to Linezolid, Daptomycin, or Vancomycin from U.S. Hospitals, 2008 to 2011. Antimicrob. Agents Chemother. 2013, 57, 3178–3181. [Google Scholar] [CrossRef]
- McGee, L.; Biek, D.; Ge, Y.; Klugman, M.; du Plessis, M.; Smith, A.M.; Beall, B.; Whitney, C.G.; Klugman, K.P. In Vitro Evaluation of the Antimicrobial Activity of Ceftaroline against Cephalosporin-Resistant Isolates of Streptococcus Pneumoniae. Antimicrob. Agents Chemother. 2009, 53, 552–556. [Google Scholar] [CrossRef]
- Morrissey, I.; Leakey, A. Activity of Ceftaroline against Serotyped Streptococcus Pneumoniae Isolates from Europe and South Africa Associated with Community-Acquired Bacterial Pneumonia (2007–2008). J. Antimicrob. Chemother. 2012, 67, 1408–1412. [Google Scholar] [CrossRef]
- Sanchez, E.H.; Mendes, R.E.; Sader, H.S.; Allison, G.M. In Vivo Emergence of Ceftaroline Resistance during Therapy for MRSA Vertebral Osteomyelitis. J. Antimicrob. Chemother. 2016, 71, 1736–1738. [Google Scholar] [CrossRef]
- Nigo, M.; Diaz, L.; Carvajal, L.P.; Tran, T.T.; Rios, R.; Panesso, D.; Garavito, J.D.; Miller, W.R.; Wanger, A.; Weinstock, G.; et al. Ceftaroline-Resistant, Daptomycin-Tolerant, and Heterogeneous Vancomycin-Intermediate Methicillin-Resistant Staphylococcus aureus Causing Infective Endocarditis. Antimicrob. Agents Chemother. 2017, 61, e01235-16. [Google Scholar] [CrossRef]
- Horner, C.; Mushtaq, S.; Livermore, D.M.; BSAC Resistance Surveillance Standing Committee. Activity of Ceftaroline versus Ceftobiprole against Staphylococci and Pneumococci in the UK and Ireland: Analysis of BSAC Surveillance Data. J. Antimicrob. Chemother. 2020, 75, 3239–3243. [Google Scholar] [CrossRef]
- Giacobbe, D.R.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Pea, F.; Petrosillo, N.; Rossolini, G.M.; Tascini, C.; Tumbarello, M.; Viale, P.; et al. Ceftobiprole: Drug Evaluation and Place in Therapy. Expert Rev. Anti-Infect. Infect. Ther. 2019, 17, 689–698. [Google Scholar] [CrossRef]
- Hsu, W.-H.; Hsu, C.-K.; Lai, C.-C. Ceftobiprole Medocaril for the Treatment of Pneumonia. Expert Rev. Anti-Infect. Infect. Ther. 2023, 21, 551–563. [Google Scholar] [CrossRef]
- Gentile, I.; Buonomo, A.R.; Corcione, S.; Paradiso, L.; Giacobbe, D.R.; Bavaro, D.F.; Tiseo, G.; Sordella, F.; Bartoletti, M.; Palmiero, G.; et al. CEFTO-CURE Study: CEFTObiprole Clinical Use in Real-lifE—A Multi-Centre Experience in Italy. Int. J. Antimicrob. Agents 2023, 62, 106817. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Kosar, J.; Baxter, M.; Dhami, R.; Borgia, S.; Irfan, N.; MacDonald, K.S.; Dow, G.; Lagacé-Wiens, P.; Dube, M.; et al. Real-Life Experience with Ceftobiprole in Canada: Results from the CLEAR (CanadianLEadership onAntimicrobialReal-Life Usage) Registry. J. Glob. Antimicrob. Resist. 2021, 24, 335–339. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Andini, R.; Mazza, M.C.; Sangiovanni, F.; Bertolino, L.; Ursi, M.P.; Paradiso, L.; Karruli, A.; Esposito, C.; Murino, P.; et al. Real-Life Experience with Ceftobiprole in a Tertiary-Care Hospital. J. Glob. Antimicrob. Resist. 2020, 22, 386–390. [Google Scholar] [CrossRef]
- Holland, T.L.; Cosgrove, S.E.; Doernberg, S.B.; Jenkins, T.C.; Turner, N.A.; Boucher, H.W.; Pavlov, O.; Titov, I.; Kosulnykov, S.; Atanasov, B.; et al. Ceftobiprole for Treatment of Complicated Staphylococcus aureus Bacteremia. N. Engl. J. Med. 2023, 389, 1390–1401. [Google Scholar] [CrossRef]
- Banerjee, R.; Gretes, M.; Basuino, L.; Strynadka, N.; Chambers, H.F. In Vitro Selection and Characterization of Ceftobiprole-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2008, 52, 2089–2096. [Google Scholar] [CrossRef] [PubMed]
- Hawser, S.; Kothari, N.; Jemmely, N.; Redder, N. Susceptibility of Ceftobiprole against Gram-Positive and Gram-Negative Clinical Isolates from 2019 from Different European Territories. J. Glob. Antimicrob. Resist. 2022, 29, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Canton, R.; Hamed, K.; Wiktorowicz, T.; Redder, N.; Jemmely, N.; Quevedo, J.; Santerre Henriksen, A. In Vitro Activity of Ceftobiprole and Comparator Antibiotics against Contemporary European Isolates (2016–2019). JAC Antimicrob. Resist. 2022, 4, dlac030. [Google Scholar] [CrossRef]
- Flamm, R.K.; Duncan, L.R.; Hamed, K.A.; Smart, J.I.; Mendes, R.E.; Pfaller, M.A. Ceftobiprole Activity against Bacteria from Skin and Skin Structure Infections in the United States from 2016 through 2018. Antimicrob. Agents Chemother. 2020, 64, e02566-19. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Flamm, R.K.; Mendes, R.E.; Streit, J.M.; Smart, J.I.; Hamed, K.A.; Duncan, L.R.; Sader, H.S. Ceftobiprole Activity against Gram-Positive and -Negative Pathogens Collected from the United States in 2006 and 2016. Antimicrob. Agents Chemother. 2019, 63, e01566-18. [Google Scholar] [CrossRef]
- Morroni, G.; Brenciani, A.; Brescini, L.; Fioriti, S.; Simoni, S.; Pocognoli, A.; Mingoia, M.; Giovanetti, E.; Barchiesi, F.; Giacometti, A.; et al. High Rate of Ceftobiprole Resistance among Clinical Methicillin-Resistant Staphylococcus aureus Isolates from a Hospital in Central Italy. Antimicrob. Agents Chemother. 2018, 62, e01663-18. [Google Scholar] [CrossRef]
- Hawser, S.; Kothari, N.; Jemmely, N.; Redder, N. Surveillance of Ceftobiprole against Gram-Positive and Gram-Negative Clinical Isolates from 2018 from Different European Territories. J. Glob. Antimicrob. Resist. 2021, 26, 326–329. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kastoris, A.C.; Kapaskelis, A.M.; Karageorgopoulos, D.E. Fosfomycin for the Treatment of Multidrug-Resistant, Including Extended-Spectrum β-Lactamase Producing, Enterobacteriaceae Infections: A Systematic Review. Lancet Infect. Dis. 2010, 10, 43–50. [Google Scholar] [CrossRef]
- Falagas, M.E.; Maraki, S.; Karageorgopoulos, D.E.; Kastoris, A.C.; Kapaskelis, A.; Samonis, G. Antimicrobial Susceptibility of Gram-Positive Non-Urinary Isolates to Fosfomycin. Int. J. Antimicrob. Agents 2010, 35, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Frantzeskaki, F.; Wallis, S.C.; Diakaki, C.; Giamarellou, H.; Koulenti, D.; Karaiskos, I.; Lipman, J.; Dimopoulos, G.; Roberts, J.A. Population Pharmacokinetics of Fosfomycin in Critically Ill Patients. Antimicrob. Agents Chemother. 2015, 59, 6471–6476. [Google Scholar] [CrossRef]
- Gatti, M.; Giannella, M.; Rinaldi, M.; Gaibani, P.; Viale, P.; Pea, F. Pharmacokinetic/Pharmacodynamic Analysis of Continuous-Infusion Fosfomycin in Combination with Extended-Infusion Cefiderocol or Continuous-Infusion Ceftazidime-Avibactam in a Case Series of Difficult-to-Treat Resistant Pseudomonas Aeruginosa Bloodstream Infections and/or Hospital-Acquired Pneumonia. Antibiotics 2022, 11, 1739. [Google Scholar] [CrossRef]
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to Fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef]
- Carlone, N.A.; Borsotto, M.; Cuffini, A.M.; Savoia, D. Effect of Fosfomycin Trometamol on Bacterial Adhesion in Comparison with Other Chemotherapeutic Agents. Eur. Urol. 1987, 13 (Suppl. S1), 86–91. [Google Scholar] [CrossRef]
- Yokota, S.; Okabayashi, T.; Yoto, Y.; Hori, T.; Tsutsumi, H.; Fujii, N. Fosfomycin Suppresses RS-Virus-Induced Streptococcus Pneumoniae and Haemophilus Influenzae Adhesion to Respiratory Epithelial Cells via the Platelet-Activating Factor Receptor. FEMS Microbiol. Lett. 2010, 310, 84–90. [Google Scholar] [CrossRef]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Kapaskelis, A.; Falagas, M.E. Intravenous Fosfomycin for the Treatment of Patients with Bone and Joint Infections: A Review. Expert Rev. Anti-Infect. Infect. Ther. 2022, 20, 33–43. [Google Scholar] [CrossRef]
- Tsegka, K.G.; Voulgaris, G.L.; Kyriakidou, M.; Falagas, M.E. Intravenous Fosfomycin for the Treatment of Patients with Central Nervous System Infections: Evaluation of the Published Evidence. Expert Rev. Anti-Infect. Infect. Ther. 2020, 18, 657–668. [Google Scholar] [CrossRef]
- Engel, H.; Gutiérrez-Fernández, J.; Flückiger, C.; Martínez-Ripoll, M.; Mühlemann, K.; Hermoso, J.A.; Hilty, M.; Hathaway, L.J. Heteroresistance to Fosfomycin Is Predominant in Streptococcus Pneumoniae and Depends on the murA1 Gene. Antimicrob. Agents Chemother. 2013, 57, 2801–2808. [Google Scholar] [CrossRef]
- Lu, C.-L.; Liu, C.-Y.; Huang, Y.-T.; Liao, C.-H.; Teng, L.-J.; Turnidge, J.D.; Hsueh, P.-R. Antimicrobial Susceptibilities of Commonly Encountered Bacterial Isolates to Fosfomycin Determined by Agar Dilution and Disk Diffusion Methods. Antimicrob. Agents Chemother. 2011, 55, 4295–4301. [Google Scholar] [CrossRef]
- Falagas, M.E.; Maraki, S.; Karageorgopoulos, D.E.; Kastoris, A.C.; Mavromanolakis, E.; Samonis, G. Antimicrobial Susceptibility of Multidrug-Resistant (MDR) and Extensively Drug-Resistant (XDR) Enterobacteriaceae Isolates to Fosfomycin. Int. J. Antimicrob. Agents 2010, 35, 240–243. [Google Scholar] [CrossRef]
- Taj, Y.; Abdullah, F.E.; Kazmi, S.U. Current Pattern of Antibiotic Resistance in Staphylococcus aureus Clinical Isolates and the Emergence of Vancomycin Resistance. J. Coll. Physicians Surg. Pak. 2010, 20, 728–732. [Google Scholar] [PubMed]
- Falagas, M.E.; Roussos, N.; Gkegkes, I.D.; Rafailidis, P.I.; Karageorgopoulos, D.E. Fosfomycin for the Treatment of Infections Caused by Gram-Positive Cocci with Advanced Antimicrobial Drug Resistance: A Review of Microbiological, Animal and Clinical Studies. Expert Opin. Investig. Drugs 2009, 18, 921–944. [Google Scholar] [CrossRef] [PubMed]
- Karageorgopoulos, D.E.; Wang, R.; Yu, X.-H.; Falagas, M.E. Fosfomycin: Evaluation of the Published Evidence on the Emergence of Antimicrobial Resistance in Gram-Negative Pathogens. J. Antimicrob. Chemother. 2012, 67, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Miró, J.M.; Entenza, J.M.; Del Río, A.; Velasco, M.; Castañeda, X.; Garcia de la Mària, C.; Giddey, M.; Armero, Y.; Pericàs, J.M.; Cervera, C.; et al. High-Dose Daptomycin plus Fosfomycin Is Safe and Effective in Treating Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Endocarditis. Antimicrob. Agents Chemother. 2012, 56, 4511–4515. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Officially Licensed Indications | Other Common Off-Label Uses |
---|---|---|
Daptomycin |
|
|
Dalbavancin |
|
|
Linezolid |
|
|
Tedizolid |
|
|
Ceftaroline |
|
|
Ceftobiprole 1 |
|
|
Fosfomycin (IV use) |
|
|
Pathogen | Antibiotic | EUCAST Version 14.0 (mg/L) [31] | CLSI M100 Version 2023 (mg/L) [32] | ||
---|---|---|---|---|---|
S≤ | R> | S≤ | R> | ||
Staphylococcus aureus and coagulase-negative staphylococci (CoNS) | Daptomycin | 1 | 1 | 1 | 1 |
Dalbavancin | 0.125 | 0.125 | 0.25 1 | 0.25 1 | |
Linezolid | 4 | 4 | 4 | 8 | |
Tedizolid | 0.5 | 0.5 | 0.5 1 | 2 1 | |
Ceftaroline | 1 1 | 2 1,2 | 1 1 | 8 1 | |
Ceftobiprole | 2 | 2 | - | - | |
Fosfomycin | - | - | - | - | |
Enterococcus spp. | Daptomycin | IE | IE | 2 3 | 8 |
Dalbavancin | IE | IE | 0.25 4 | 0.25 4 | |
Linezolid | 4 | 4 | 2 | 4 | |
Tedizolid | IE | IE | 0.5 | 0.5 4 | |
Ceftaroline | - | - | - | - | |
Ceftobiprole | - | - | - | - | |
Fosfomycin | - | - | 64 | 256 4 | |
Streptococcus groups A, B, C, and G | Daptomycin | 1 | 1 | 1 | 1 |
Dalbavancin | 0.125 | 0.125 | 0.25 | 0.25 | |
Linezolid | 2 | 2 | 2 | 2 | |
Tedizolid | 0.5 | 0.5 | 0.5 5 | 0.5 5 | |
Ceftaroline | ¥ | ¥ | 0.5 | 0.5 | |
Ceftobiprole | IE | IE | - | - | |
Fosfomycin | - | - | - | - | |
Streptococcus pneumoniae | Daptomycin | IE | IE | - | - |
Dalbavancin | IE | IE | - | - | |
Linezolid | 2 | 2 | 2 | 2 | |
Tedizolid | IE | IE | - | - | |
Ceftaroline | 0.25 | 0.25 | 0.5 | 0.5 | |
Ceftobiprole | 0.5 | 0.5 | - | - | |
Fosfomycin | - | - | - | - | |
Viridans group streptococci | Daptomycin | - | - | 1 | 1 |
Dalbavancin | 0.125 | 0.125 | 0.25 6 | 0.25 6 | |
Linezolid | IE | IE | 2 | 2 | |
Tedizolid | 0.5 | 0.5 | - | - | |
Ceftaroline | - | - | - | - | |
Ceftobiprole | - | - | - | - | |
Fosfomycin | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tebano, G.; Zaghi, I.; Baldasso, F.; Calgarini, C.; Capozzi, R.; Salvadori, C.; Cricca, M.; Cristini, F. Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician? Pathogens 2024, 13, 88. https://doi.org/10.3390/pathogens13010088
Tebano G, Zaghi I, Baldasso F, Calgarini C, Capozzi R, Salvadori C, Cricca M, Cristini F. Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician? Pathogens. 2024; 13(1):88. https://doi.org/10.3390/pathogens13010088
Chicago/Turabian StyleTebano, Gianpiero, Irene Zaghi, Francesco Baldasso, Chiara Calgarini, Roberta Capozzi, Caterina Salvadori, Monica Cricca, and Francesco Cristini. 2024. "Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician?" Pathogens 13, no. 1: 88. https://doi.org/10.3390/pathogens13010088
APA StyleTebano, G., Zaghi, I., Baldasso, F., Calgarini, C., Capozzi, R., Salvadori, C., Cricca, M., & Cristini, F. (2024). Antibiotic Resistance to Molecules Commonly Prescribed for the Treatment of Antibiotic-Resistant Gram-Positive Pathogens: What Is Relevant for the Clinician? Pathogens, 13(1), 88. https://doi.org/10.3390/pathogens13010088