The Assessment of Infection Risk in Patients with Vitiligo Undergoing Dialysis for End-Stage Renal Disease: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Study and Cohort
2.2. Study Design
2.3. Outcome Variables
2.4. Main Independent Variable—Vitiligo Diagnosis
2.5. Demographic and Other Clinical Risk Factors
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gandhi, K.; Ezzedine, K.; Anastassopoulos, K.P.; Patel, R.; Sikirica, V.; Daniel, S.R.; Napatalung, L.; Yamaguchi, Y.; Baik, R.; Pandya, A.G. Prevalence of Vitiligo among Adults in the United States. JAMA Dermatol. 2022, 158, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Gholijani, N.; Yazdani, M.-R.; Dastgheib, L. Predominant role of innate pro-inflammatory cytokines in vitiligo disease. Arch. Dermatol. Res. 2020, 312, 123–131. [Google Scholar] [CrossRef]
- Boorn, J.G.v.D.; Konijnenberg, D.; Dellemijn, T.A.; van der Veen, J.W.; Bos, J.D.; Melief, C.J.; Vyth-Dreese, F.A.; Luiten, R.M. Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. J. Investig. Dermatol. 2009, 129, 2220–2232. [Google Scholar] [CrossRef] [PubMed]
- Marchioro, H.Z.; de Castro, C.C.S.; Fava, V.M.; Sakiyama, P.H.; Dellatorre, G.; Miot, H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022, 97, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Lee, S.; Kim, T.; Yeom, S.; Shin, J.; Lee, W.; Lee, M.; Lee, A.; Kim, K.; Kim, M.; et al. Factors affecting quality of life in patients with vitiligo: A nationwide study. Br. J. Dermatol. 2018, 178, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, W.; Chung, C.; Tsao, C.; Chien, W.; Hung, C. Increased risk of psychiatric disorders in adult patients with vitiligo: A nationwide, population-based cohort study in Taiwan. J. Dermatol. 2020, 47, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Al Houssien, A.O.; Al Houssien, R.O.; Al Ajroush, W.; Al Kahtani, H.S. Chronic diseases among vitiligo patients. A case control study. Saudi Med. J. 2017, 38, 400–404. [Google Scholar] [CrossRef]
- Lee, J.H.; Ju, H.J.; Seo, J.M.; Almurayshid, A.; Kim, G.M.; Ezzedine, K.; Bae, J.M. Comorbidities in Patients with Vitiligo: A Systematic Review and Meta-Analysis. J. Investig. Dermatol. 2023, 143, 777–789.e6. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, T. Beyond skin white spots: Vitiligo and associated comorbidities. Front. Med. 2023, 10, 1072837. [Google Scholar] [CrossRef]
- Syed-Ahmed, M.; Narayanan, M. Immune Dysfunction and Risk of Infection in Chronic Kidney Disease. Adv. Chronic Kidney Dis. 2019, 26, 8–15. [Google Scholar] [CrossRef]
- Suzuki, M.; Satoh, N.; Nakamura, M.; Horita, S.; Seki, G.; Moriya, K. Bacteremia in hemodialysis patients. World J. Nephrol. 2016, 5, 489–496. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health—National Institute of Diabetes and Digestive and Kidney Diseases. USRDS Annual Data Report: Epidemiology of Kidney Disease in the United States; NIH: Bethesda, MD, USA, 2020.
- Vogelzang, J.L.; van Stralen, K.J.; Noordzij, M.; Diez, J.A.; Carrero, J.J.; Couchoud, C.; Dekker, F.W.; Finne, P.; Fouque, D.; Heaf, J.G.; et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: Data from the ERA-EDTA registry. Nephrol. Dial. Transplant. 2015, 30, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Man, W.; Lv, C.; Song, S.; Shi, Y.; Elias, P.; Man, M. Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites. Ski. Pharmacol. Physiol. 2010, 23, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, D.; Bastonini, E.; Briganti, S.; Ottaviani, M.; D’arino, A.; Truglio, M.; Sciuto, L.; Zaccarini, M.; Pacifico, A.; Cota, C.; et al. Altered epidermal proliferation, differentiation, and lipid composition: Novel key elements in the vitiligo puzzle. Sci. Adv. 2022, 8, eabn9299. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-W.; Jee, S.-H. Strategies to Develop a Suitable Formulation for Inflammatory Skin Disease Treatment. Int. J. Mol. Sci. 2021, 22, 6078. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, M.L.; Ottaviani, M.; Albanesi, V.; Vidolin, A.P.; Leone, G.; Ferraro, C.; Cossarizza, A.; Rossi, L.; Picardo, M. Membrane Lipid Alterations as a Possible Basis for Melanocyte Degeneration in Vitiligo. J. Investig. Dermatol. 2007, 127, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Clark, E.; The Cooperative Antimicrobial Therapy of Septic Shock Database Research Group; Kumar, A.; Langote, A.; Lapinsky, S.; Dodek, P.; Kramer, A.; Wood, G.; Bagshaw, S.M.; Wood, K.; et al. Septic shock in chronic dialysis patients: Clinical characteristics, antimicrobial therapy and mortality. Intensive Care Med. 2016, 42, 222–232. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Lee, C.-T.; Lee, I.-M.; Ho, S.-C.; Yang, C.-Y. Risk of Herpes Zoster in Patients Treated with Long-term Hemodialysis: A Matched Cohort Study. Am. J. Kidney Dis. 2012, 59, 428–433. [Google Scholar] [CrossRef]
- Balbaba, M.; Ulaş, F.; Toplu, S.A. Effect of hemodialysis duration on conjunctival bacterial flora and susceptibility of con-junctival bacterial isolates to fluoroquinolones. Ocul. Immunol. Inflamm. 2013, 21, 197–200. [Google Scholar] [CrossRef]
- Schwade, M.J.; Tien, L.; Waller, J.L.; Davis, L.S.; Baer, S.L.; Mohammed, A.; Young, L.; Kheda, M.F.; Bollag, W.B. Treatment of psoriasis in end-stage renal disease patients is associated with decreased mortality: A retrospective cohort study. Am. J. Med. Sci. 2021, 362, 24–33. [Google Scholar] [CrossRef]
- Momin, R.I.; Baer, S.L.; Waller, J.L.; Young, L.; Tran, S.; Taskar, V.; Bollag, W.B. Atopic Dermatitis and the Risk of Infection in End-Stage Renal Disease. Medicina 2023, 59, 2145. [Google Scholar] [CrossRef] [PubMed]
- Bell, M.; Lui, H.; Lee, T.K.; Kalia, S. Validation of medical service insurance claims as a surrogate for ascertaining vitiligo cases. Arch. Dermatol. Res. 2023, 315, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Beuf, A.H. Racial Variation in Reaction to Physical Stigma: A Study of Degree of Disturbance by Vitiligo among Black and White Patients. J. Health Soc. Behav. 1991, 32, 192–204. [Google Scholar] [CrossRef] [PubMed]
- Bergqvist, C.; Ezzedine, K. Vitiligo: A Review. Dermatology 2020, 236, 571–592. [Google Scholar] [CrossRef]
- Patil, S.; Gautam, M.; Nadkarni, N.; Saboo, N.; Godse, K.; Setia, M.S. Gender Differences in Clinicoepidemiological Features of Vitiligo: A Cross-Sectional Analysis. ISRN Dermatol. 2014, 2014, 186197. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, A.; Fain, P.R.; Thody, A.; Bennett, D.C.; Spritz, R.A. Epidemiology of Vitiligo and Associated Autoimmune Diseases in Caucasian Probands and Their Families. Pigment Cell Res. 2003, 16, 208–214. [Google Scholar] [CrossRef]
- Zhao, J.; Hopke, P.K. Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke. Aerosol Sci. Technol. 2012, 46, 191–197. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Lee, Y.B.; Lee, J.H.; Lee, S.Y.; Yu, D.S.; Han, K.D.; Park, Y.G. Association between vitiligo and smoking: A nationwide population-based study in Korea. Sci. Rep. 2020, 10, 6231. [Google Scholar] [CrossRef]
- Nakamura, M.; Ueda, Y.; Hayashi, M.; Kato, H.; Furuhashi, T.; Morita, A. Tobacco smoke–induced skin pigmentation is mediated by the aryl hydrocarbon receptor. Exp. Dermatol. 2013, 22, 556–558. [Google Scholar] [CrossRef]
- Hong, S.W.; Teesdale-Spittle, P.; Page, R.; Truman, P. A review of monoamine oxidase (MAO) inhibitors in tobacco or tobacco smoke. Neuro Toxicol. 2022, 93, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.M.; Hammad, N.M.; Sharaf, A.L.; Khattab, F. Hepatitis C virus infection could be a risk factor for adult-onset vitiligo in Egyptian patients: A cross-sectional study. J. Cosmet. Dermatol. 2022, 21, 4983–4989. [Google Scholar] [CrossRef] [PubMed]
- Chebrolu, P.; Colombo, R.E.; Gallaher, T.R.; Atwater, S.; Kintziger, K.W.; Baer, S.; Nahman, N.S.; Kheda, M. Bacteremia in Hemodialysis Patients with Hepatitis C. Am. J. Med Sci. 2015, 349, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Taieb, A.; Alomar, A.; Böhm, M.; Dell’anna, M.; De Pase, A.; Eleftheriadou, V.; Ezzedine, K.; Gauthier, Y.; Gawkrodger, D.; Jouary, T.; et al. Guidelines for the management of vitiligo: The European Dermatology Forum consensus. Br. J. Dermatol. 2013, 168, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, Z.; Haj, T.; Kessel, A.; Toubi, E. Age-related autoimmunity. BMC Med. 2013, 11, 94. [Google Scholar] [CrossRef]
- Vascular Access 2006 Work Group. Clinical Practice Guidelines for Vascular Access. Am. J. Kidney Dis. 2006, 48, S176–S247. [Google Scholar] [CrossRef]
- Ravani, P.; Palmer, S.C.; Oliver, M.J.; Quinn, R.R.; MacRae, J.M.; Tai, D.J.; Pannu, N.I.; Thomas, C.; Hemmelgarn, B.R.; Craig, J.C.; et al. Associations between hemodialysis access type and clinical outcomes: A systematic review. J. Am. Soc. Nephrol. 2013, 24, 465–473. [Google Scholar] [CrossRef]
- Patibandla, B.K.; Narra, A.; DeSilva, R.; Chawla, V.; Vin, Y.; Brown, R.S.; Goldfarb-Rumyantzev, A.S. Disparities in arteriovenous fistula placement in older hemodialysis patients. Hemodial. Int. 2014, 18, 118–126. [Google Scholar] [CrossRef]
- Qin, H.; Zheng, X.; Zhong, X.; Shetty, A.K.; Elias, P.M.; Bollag, W.B. Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Arch. Biochem. Biophys. 2011, 508, 138–143. [Google Scholar] [CrossRef]
- Bollag, W.B.; Aitkens, L.; White, J.; Hyndman, K.A. Aquaporin-3 in the epidermis: More than skin deep. Am. J. Physiol. Cell Physiol. 2020, 318, C1144–C1153. [Google Scholar] [CrossRef]
- Gasque, P.; Jaffar-Bandjee, M.C. The immunology and inflammatory responses of human melanocytes in infectious diseases. J. Infect. 2015, 71, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Chovatiya, R.; Silverberg, J.I. Association of herpes zoster and chronic inflammatory skin disease in US inpatients. J. Am. Acad. Dermatol. 2021, 85, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Divo, M.J.; Martinez, C.H.; Mannino, D.M. Ageing and the epidemiology of multimorbidity. Eur. Respir. J. 2014, 44, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Gardner, I.D. The Effect of Aging on Susceptibility to Infection. Rev. Infect. Dis. 1980, 2, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Bagaitkar, J.; Demuth, D.R.; A Scott, D. Tobacco use increases susceptibility to bacterial infection. Tob. Induc. Dis. 2008, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.A.J.; Sørensen, H.T.; Langan, S.M.; Vestergaard, M. Associations of Lifestyle and Anthropometric Factors with the Risk of Herpes Zoster: A Nationwide Population-Based Cohort Study. Am. J. Epidemiol. 2021, 190, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Solberg, Y.; Rosner, M.; Belkin, M. The Association Between Cigarette Smoking and Ocular Diseases. Surv. Ophthalmol. 1998, 42, 535–547. [Google Scholar] [CrossRef]
- Reddy, S.; Sullivan, R.; Zaiden, R.; De Mendoza, V.L.; Naik, N.; Vega, K.J.; Nahman, N.S.; Alexandraki, I. Hepatitis C Infection and the Risk of Bacteremia in Hemodialysis Patients with Tunneled Vascular Access Catheters. South Med. J. 2009, 102, 374–377. [Google Scholar] [CrossRef]
- Pithadia, D.J.; Weathers, E.N.; Colombo, R.E.; Baer, S.L. Severe and Progressive Cellulitis Caused by Serratia marcescens Following a Dog Scratch. J. Investig. Med. High Impact Case Rep. 2019, 7, 2324709619832330. [Google Scholar] [CrossRef]
- Alvaro-Meca, A.; Maté-Cano, I.; Ryan, P.; Briz, V.; Resino, S. Epidemiological Trend of Sepsis in Patients with Hospital Admissions Related to Hepatitis C in Spain (2000–2015): A Nationwide Study. J. Clin. Med. 2020, 9, 1607. [Google Scholar] [CrossRef]
- Marrie, T.J.; Tyrrell, G.J.; Majumdar, S.R.; Eurich, D.T. Concurrent Infection with Hepatitis C Virus and Streptococcus pneumoniae. Emerg. Infect. Dis. 2017, 23, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Moss, M. Epidemiology of Sepsis: Race, Sex, and Chronic Alcohol Abuse. Clin. Infect. Dis. 2005, 41 (Suppl. S7), S490–S497. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L. Factors Affecting Wound Healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, D.C.; Messaoudi, I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front. Immunol. 2022, 13, 911951. [Google Scholar] [CrossRef]
- Vázquez-Martínez, E.R.; García-Gómez, E.; Camacho-Arroyo, I.; González-Pedrajo, B. Sexual dimorphism in bacterial infections. Biol. Sex Differ. 2018, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Mohus, R.M.; Gustad, L.T.; Furberg, A.-S.; Moen, M.K.; Liyanarachi, K.V.; Askim, Å.; Åsberg, S.E.; DeWan, A.T.; Rogne, T.; Simonsen, G.S.; et al. Explaining sex differences in risk of bloodstream infections using mediation analysis in the population-based HUNT study in Norway. Sci. Rep. 2022, 12, 8436. [Google Scholar] [CrossRef]
- Angele, M.K.; Pratschke, S.; Hubbard, W.J.; Chaudry, I.H. Gender differences in sepsis: Cardiovascular and immunological aspects. Virulence 2014, 5, 12–19. [Google Scholar] [CrossRef]
- Simonsen, S.M.E.; VAN Orman, E.R.; Hatch, B.E.; Jones, S.S.; Gren, L.H.; Hegmann, K.T.; Lyon, J.L. Cellulitis incidence in a defined population. Epidemiol. Infect. 2006, 134, 293–299. [Google Scholar] [CrossRef]
- Barnato, A.E.; Alexander, S.L.; Linde-Zwirble, W.T.; Angus, D.C. Racial variation in the incidence, care, and outcomes of severe sepsis: Analysis of population, patient, and hospital characteristics. Am. J. Respir. Crit. Care Med. 2008, 177, 27–284. [Google Scholar] [CrossRef]
- Ray, G.T.; Suaya, J.A.; Baxter, R. Incidence, microbiology, and patient characteristics of skin and soft-tissue infections in a U.S. population: A retrospective population-based study. BMC Infect. Dis. 2013, 13, 252. [Google Scholar] [CrossRef]
- Habboush, Y.; Yarrarapu, S.N.S.; Guzman, N. Infection Control. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK519017/ (accessed on 17 December 2023).
- Rosso, J.D.; Zeichner, J.; Alexis, A.; Cohen, D.; Berson, D. Understanding the Epidermal Barrier in Healthy and Compromised Skin: Clinically Relevant Information for the Dermatology Practitioner: Proceedings of an Expert Panel Roundtable Meeting. J. Clin. Aesthetic Dermatol. 2016, 9 (Suppl. S1), S2–S8. [Google Scholar]
Variable | Level | Overall | Vitiligo | |||||
---|---|---|---|---|---|---|---|---|
Vitiligo | No Vitiligo | Simple Models | Final Model | |||||
RR (95%CI) | p-Value | aRR (95% CI) | p-Value | |||||
Age (years)—mean (SD) | 63.5 (14.9) | 60.6 (15.0) | 63.5 (14.9) | 0.99 (0.982–0.992) | <0.0001 | 0.992 (0.987–0.997) | 0.0024 | |
Race—n (%) | Black | 425,522 (27.9) | 245 (36.2) | 425,277 (27.9) | 1.45 (1.24–1.70) | <0.0001 | 1.51 (1.27–1.80) | <0.0001 |
Other | 93,724 (6.1) | 32 (4.7) | 93,692 (6.1) | 0.86 (0.60–1.24) | 1.07 (0.74–1.54) | |||
White | 1,007,024 (66.0) | 399 (59.0) | 1,006,625 (66.0) | |||||
Sex—n (%) | Female | 652,673 (42.8) | 415 (61.4) | 652,258 (42.8) | 2.13 (1.8202.49) | <0.0001 | 2.41 (2.06–2.82) | <0.0001 |
Male | 873,597 (57.2) | 261 (38.6) | 873,336 (57.3) | |||||
Ethnicity—n (%) | Hispanic | 230,165 (15.1) | 146 (21.6) | 230,019 (15.1) | 1.55 (1.29–1.86) | <0.0001 | 2.14 (1.75–2.62) | <0.0001 |
Non-Hispanic | 1,296,105 (84.9) | 530 (78.4) | 1,295,575 (84.9) | |||||
Dialysis Modality—n (%) | HD | 1,525,481 (99.9) | 676 (100.0) | 1,524,805 (99.9) | ||||
PD | 789 (0.1) | 0 (0.0) | 789 (0.1) | |||||
Access Type—n (%) | Catheter | 1,232,849 (80.8) | 503 (74.4) | 1,232,346 (80.8) | 0.71 (0.59–0.85) | 0.0001 | 0.65 (0.54–0.78) | <0.0001 |
Graft | 49,771 (3.3) | 32 (4.7) | 49,739 (3.3) | 1.11 (0.76–1.63) | 0.90 (0.61–1.33) | |||
AVF | 243,650 (16) | 141 (20.9) | 243,509 (16) | |||||
Tobacco—n (%) | Yes | 273,815 (17.9) | 286 (42.3) | 273,529 (17.9) | 3.36 (2.88–3.91) | <0.0001 | 3.54 (3.02–4.15) | <0.0001 |
No | 1,252,455 (82.1) | 390 (57.7) | 1,252,065 (82.1) | |||||
Alcohol Dependence—n (%) | Yes | 42,412 (2.8) | 31 (4.6) | 42,381 (2.8) | 1.68 (1.17–2.41) | 0.0047 | ||
No | 1,483,858 (97.2) | 645 (95.4) | 1,483,213 (97.2) | |||||
Hepatitis C—n (%) | Yes | 33,859 (2.2) | 49 (7.3) | 33,810 (2.2) | 3.45 (2.58–4.61) | <0.0001 | 2.14 (1.59–2.89) | <0.0001 |
No | 1,492,411 (97.8) | 627 (92.8) | 1,491,784 (97.8) |
Variable | Level | Bacteremia | Septicemia | Cellulitis | Herpes Zoster | Conjunctivitis | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | Yes | No | Yes | No | ||
Main Independent Variable | |||||||||||
Vitiligo—n (%) | Yes | 227 (0.1) | 449 (0.0) | 475 (0.1) | 201 (0.0) | 331 (0.1) | 345 (0.0) | 50 (0.1) | 626 (0.0) | 14 (0.1) | 662 (0.0) |
No | 236,354 (99.9) | 1,289,240 (100.0) | 548,890 (99.9) | 976,704 (100.0) | 362,695 (99.9) | 1,162,899 (100.0) | 39,842 (99.9) | 1,485,752 (100.0) | 15,391 (99.9) | 1,510,203 (100.0) | |
Demographic and Clinical Risk Factors | |||||||||||
Age (years) —mean (SD) | 62.3 (14.8) | 63.7 (14.8) | 64.5 (14.3) | 63 (15.1) | 62.5 (14.3) | 63.8 (15) | 63.6 (14.5) | 63.5 (14.9) | 61.2 (16.1) | 63.5 (14.8) | |
Race—n (%) | Black | 78,047 (33.0) | 347,475 (26.9) | 159,633 (29.1) | 265,889 (27.2) | 91,859 (25.3) | 333,663 (28.7) | 9531 (23.9) | 415,991 (28) | 5032 (32.7) | 420,490 (27.8) |
Other | 11,648 (4.9) | 82,076 (6.4) | 30,738 (5.6) | 62,986 (6.5) | 17,575 (4.8) | 76,149 (6.6) | 2661 (6.7) | 91,063 (6.1) | 979 (6.4) | 92,745 (6.1) | |
White | 146,886 (62.1) | 860,138 (66.7) | 358,994 (65.4) | 648,030 (66.3) | 253,592 (69.9) | 753,432 (64.8) | 27,700 (69.4) | 979,324 (65.9) | 9394 (61) | 997,630 (66.0) | |
Sex—n (%) | Female | 106,191 (44.9) | 546,482 (42.4) | 247,471 (45.1) | 405,202 (41.5) | 160,396 (44.2) | 492,277 (42.3) | 20,027 (50.2) | 632,646 (42.6) | 7676 (49.8) | 644,997 (42.7) |
Male | 130,390 (55.1) | 743,207 (57.6) | 301,894 (55) | 571,703 (58.5) | 202,630 (55.8) | 670,967 (57.7) | 19,865 (49.8) | 853,732 (57.4) | 7729 (50.2) | 865,868 (57.3) | |
Ethnicity—n (%) | Hispanic | 29,515 (12.5) | 200,650 (15.6) | 73,920 (13.5) | 156,245 (16) | 51,711 (14.2) | 178,454 (15.3) | 5589 (14.0) | 224,576 (15.1) | 2219 (14.4) | 227,946 (15.1) |
Non-Hispanic | 207,066 (87.5) | 1,089,039 (84.4) | 475,445 (86.5) | 820,660 (84) | 311,315 (85.8) | 984,790 (84.7) | 34,303 (86.0) | 1,261,802 (84.9) | 13,186 (85.6) | 1,282,919 (84.9) | |
Dialysis Modality—n (%) | HD | 236,482 (100.0) | 1,288,999 (100.0) | 549,115 (100.0) | 976,366 (99.9) | 362,870 (100.0) | 1,162,611 (100.0) | 39,867 (99.9) | 1,485,614 (100.0) | 15,399 (100.0) | 1,510,082 (100.0) |
PD | 99 (0.0) | 690 (0.1) | 250 (0.1) | 539 (0.1) | 156 (0.0) | 633 (0.1) | 25 (0.1) | 764 (0.1) | NR * | NR * | |
Access Type—n (%) | Catheter | 199,842 (84.5) | 1,033,007 (80.1) | 458,253 (83.4) | 774,596 (79.3) | 294,500 (81.1) | 938,349 (80.7) | 31,285 (78.4) | 1,201,564 (80.8) | 12,488 (81.1) | 1,220,361 (80.8) |
Graft | 8482 (3.6) | 41,289 (3.2) | 18,313 (3.3) | 31,458 (3.2) | 12,724 (3.5) | 37,047 (3.2) | 1409 (3.5) | 48,362 (3.3) | 621 (4) | 49,150 (3.3) | |
AVF | 28,257 (11.9) | 215,393 (16.7) | 72,799 (13.3) | 170,851 (17.5) | 55,802 (15.4) | 187,848 (16.2) | 7198 (18) | 236,452 (15.9) | 2296 (14.9) | 241,354 (16.0) | |
Tobacco —n (%) | Yes | 64,343 (27.2) | 209,472 (16.2) | 162,088 (29.5) | 111,727 (11.4) | 102,902 (28.4) | 170,913 (14.7) | 11,264 (28.2) | 262,551 (17.7) | 3643 (23.7) | 270,172 (17.9) |
No | 172,238 (72.8) | 1,080,217 (83.8) | 387,277 (70.5) | 865,178 (88.6) | 260,124 (71.7) | 992,331 (85.3) | 28,628 (71.8) | 1,223,827 (82.3) | 11,762 (76.4) | 1,240,693 (82.1) | |
Alcohol Dependence—n (%) | Yes | 8524 (3.6) | 33,888 (2.6) | 20,397 (3.7) | 22,015 (2.3) | 11,971 (3.3) | 30,441 (2.6) | 1192 (3.0) | 41,220 (2.8) | 470 (3.0) | 41,942 (2.8) |
No | 228,057 (96.4) | 1,255,801 (97.4) | 528,968 (96.3) | 954,890 (97.8) | 351,055 (96.7) | 1,132,803 (97.4) | 38,700 (97.0) | 1,445,158 (97.2) | 14,935 (97.0) | 1,468,923 (97.2) | |
Hepatitis C—n (%) | Yes | 11,770 (5.0) | 22,089 (1.7) | 25,695 (4.7) | 8164 (0.8) | 15,654 (4.3) | 18,205 (1.6) | 1571 (3.9) | 32,288 (2.2) | 596 (3.9) | 33,263 (2.2) |
No | 224,811 (95.0) | 1,267,600 (98.3) | 523,670 (95.3) | 968,741 (99.2) | 347,372 (95.7) | 1,145,039 (98.4) | 38,321 (96.1) | 1,454,090 (97.8) | 14,809 (96.1) | 1,477,602 (97.8) |
Variable | Level | Simple Models: RR (95% CI) p-Value | Final Models: aRR (95% CI) p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bacteremia | Septicemia | Cellulitis | Herpes Zoster | Conjunctivitis | Bacteremia | Septicemia | Cellulitis | Herpes Zoster | Conjunctivitis | ||
Main Independent Variable | |||||||||||
Vitiligo | Yes vs. No | 1.28 (1.13–1.46) 0.0002 | 1.20 (1.10–1.31) <0.0001 | 1.27 (1.15–1.42) <0.0001 | 1.69 (1.28–2.22) 0.0002 | 1.22 (0.72–2.06) 0.4608 | 1.20 (1.05–1.37) 0.0063 | 1.08 (0.98–1.18) 0.1169 | 1.15 (1.03–1.28) 0.0129 | 1.51 (1.14–1.99) 0.0040 | 1.13 (0.67–1.90) 0.6593 |
Demographic and Clinical Risk Factors | |||||||||||
Age (years) | 1 year increase | 1.016 (1.015–1.016) <0.0001 | 1.027 (1.027–1.028) <0.0001 | 1.017 (1.017–1.017) <0.0001 | 1.023 (1.022–1.024) <0.0001 | 1.011 (1.010–1.013) <0.0001 | 1.016 (1.016–1.016) <0.0001 | 1.028 (1.027–1.028) <0.0001 | 1.015 (1.014–1.015) <0.0001 | 1.021 (1.020–1.022) <0.0001 | 1.011 (1.010–1.012) <0.0001 |
Race | Black vs. White | 1.03 (1.02–1.04) <0.0001 | 0.85 (0.85–0.86) <0.0001 | 0.66 (0.66–0.67) <0.0001 | 0.64 (0.62–0.65) <0.0001 | 1.00 (0.97–1.04) 0.8865 | 0.98 (0.97–0.99) <0.0001 | 0.87 (0.87–0.88) <0.0001 | 0.63 (0.63–0.64) <0.0001 | 0.64 (0.62–0.65) <0.0001 | 0.97 (0.94–1.01) 0.1050 |
Other vs. White | 0.68 (0.66–0.69) <0.0001 | 0.73 (0.72–0.74) <0.0001 | 0.57 (0.56–0.58) <0.0001 | 0.83 (0.80–0.87) <0.0001 | 0.91 (0.85–0.97) 0.0038 | 0.67 (0.65–0.68) <0.0001 | 0.77 (0.76–0.78) <0.0001 | 0.57 (0.56–0.57) <0.0001 | 0.84 (0.81–0.87) <0.0001 | 0.89 (0.83–0.95) 0.0007 | |
Sex | Female vs. Male | 1.12 (1.11–1.13) <0.0001 | 1.14 (1.13–1.15) <0.0001 | 1.09 (1.08–1.10) <0.0001 | 1.38 (1.35–1.40) <0.0001 | 1.35 (1.31–1.39) <0.0001 | 1.10 (1.09–1.11) <0.0001 | 1.12 (1.12–1.13) <0.0001 | 1.11 (1.10–1.12) <0.0001 | 1.40 (1.37–1.43) <0.0001 | 1.33 (1.29–1.37) <0.0001 |
Ethnicity | Hispanic vs. Non-Hispanic | 0.66 (0.65–0.66) <0.0001 | 0.71 (0.71–0.72) <0.0001 | 0.77 (0.76–0.78) <0.0001 | 0.76 (0.74–0.78) <0.0001 | 0.79 (0.75–0.83) <0.0001 | 0.68 (0.67–0.69) <0.0001 | 0.77 (0.77–0.78) <0.0001 | 0.71 (0.70–0.72) <0.0001 | 0.74 (0.72–0.77) <0.0001 | 0.82 (0.78–0.86) <0.0001 |
Dialysis Modality | HD vs. PD | 1.37 (1.13–1.67) 0.0016 | 1.28 (1.13–1.45) 0.0001 | 1.39 (1.19–1.63) <0.0001 | 0.89 (0.61–1.31) 0.5724 | 1.44 (1.65–3.21) 0.3738 | 1.28 (1.05–1.56) 0.0157 | 1.14 (1.01–1.30) 0.0323 | 1.37 (1.17–1.6) <0.0001 | ||
Access Type | Catheter vs. AVF | 1.85 (1.82–1.87) <0.0001 | 1.70 (1.68–1.71) <0.0001 | 1.35 (1.33–1.36) <0.0001 | 1.08 (1.05–1.11) <0.0001 | 1.35 (1.29–1.41) <0.0001 | 1.91 (1.89–1.94) <0.0001 | 1.80 (1.78–1.81) <0.0001 | 1.42 (1.41–1.43) <0.0001 | 1.12 (1.09–1.15) <0.0001 | 1.36 (1.30–1.42) <0.0001 |
Graft vs. AVF | 1.69 (1.64–1.73) <0.0001 | 1.43 (1.41–1.46) <0.0001 | 1.27 (1.25–1.30) <0.0001 | 1.05 (0.99–1.11) 0.0814 | 1.46 (1.33–1.59) <0.0001 | 1.59 (1.55–1.63) <0.0001 | 1.34 (1.32–1.37) <0.0001 | 1.29 (1.26–1.32) <0.0001 | 1.01 (0.95–1.07) 0.7636 | 1.34 (1.23–1.47) <0.0001 | |
Tobacco | Yes vs. No | 1.46 (1.45–1.48) <0.0001 | 1.73 (1.72–1.74) <0.0001 | 1.60 (1.59–1.61) <0.0001 | 1.51 (1.48–1.55) <0.0001 | 1.19 (1.14–1.23) <0.0001 | 1.38 (1.37–1.39) <0.0001 | 1.67 (1.66–1.68) <0.0001 | 1.54 (1.53–1.55) <0.0001 | 1.54 (1.51–1.57) <0.0001 | 1.19 (1.14–1.23) <0.0001 |
Alcohol Dependence | Yes vs. No | 1.22 (1.19–1.24) <0.0001 | 1.28 (1.26–1.29) <0.0001 | 1.11 (1.09–1.13) <0.0001 | 0.99 (0.93–1.05) 0.6597 | 1.01 (0.92–1.11) 0.8528 | 1.04 (1.01–1.05) 0.0028 | 1.10 (1.08–1.11) <0.0001 | 0.95 (0.93–0.97) <0.0001 | ||
Hepatitis C | Yes vs. No | 1.90 (1.87–1.94) <0.0001 | 1.91 (1.88–1.94) <0.0001 | 1.67 (1.64–1.70) <0.0001 | 1.39 (1.32–1.46) <0.0001 | 1.36 (1.25–1.47) <0.0001 | 1.74 (1.70–1.77) <0.0001 | 1.73 (1.70–1.75) <0.0001 | 1.61 (1.58–1.63) <0.0001 | 1.43 (1.36–1.51) <0.0001 | 1.35 (1.24–1.47) <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, P.; Hanson, M.; Waller, J.L.; Tran, S.; Baer, S.L.; Taskar, V.; Bollag, W.B. The Assessment of Infection Risk in Patients with Vitiligo Undergoing Dialysis for End-Stage Renal Disease: A Retrospective Cohort Study. Pathogens 2024, 13, 94. https://doi.org/10.3390/pathogens13010094
Shah P, Hanson M, Waller JL, Tran S, Baer SL, Taskar V, Bollag WB. The Assessment of Infection Risk in Patients with Vitiligo Undergoing Dialysis for End-Stage Renal Disease: A Retrospective Cohort Study. Pathogens. 2024; 13(1):94. https://doi.org/10.3390/pathogens13010094
Chicago/Turabian StyleShah, Pearl, Mitchell Hanson, Jennifer L. Waller, Sarah Tran, Stephanie L. Baer, Varsha Taskar, and Wendy B. Bollag. 2024. "The Assessment of Infection Risk in Patients with Vitiligo Undergoing Dialysis for End-Stage Renal Disease: A Retrospective Cohort Study" Pathogens 13, no. 1: 94. https://doi.org/10.3390/pathogens13010094
APA StyleShah, P., Hanson, M., Waller, J. L., Tran, S., Baer, S. L., Taskar, V., & Bollag, W. B. (2024). The Assessment of Infection Risk in Patients with Vitiligo Undergoing Dialysis for End-Stage Renal Disease: A Retrospective Cohort Study. Pathogens, 13(1), 94. https://doi.org/10.3390/pathogens13010094