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Abstract: Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The
parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is
also considered a zoonosis of great significance and a problem for public health affecting 2.4 million
people worldwide. Nevertheless, besides the negative aspects of infestation, the antigens released
by the fluke, F. hepatica Excretory-Secretory Products (Fh-ES) contain several immunomodulatory
molecules that may be beneficial during the course of type I diabetes, multiple sclerosis, ulcerative
colitis, or septic shock. This phenomenon is based on the natural abilities of adult F. hepatica to
suppress proinflammatory responses. To underline the molecular basis of these mechanisms and
determine the role of microRNA (miRNA) in the process, lipopolysaccharide (LPS)-activated THP-1
macrophages were stimulated with Fh-ES, followed by miRNA microarray analyses. Surprisingly,
no results indicating changes in the miRNA expression profile were noted (p < 0.05). We discuss
potential reasons for these results, which may be due to insufficient sensitivity to detect slight changes
in miRNA expression or the possibility that these changes are not regulated by miRNA. Despite the
negative data, this work may contribute to the future planning of experiments by other researchers.

Keywords: Fasciola hepatica; liver fluke; immune response; miRNA; microarray

1. Introduction

Fasciola hepatica is a liver fluke found worldwide, infesting both wild and domestic an-
imals, as well as humans. It is considered the most significant cause of cattle helminthiasis
in Africa, with a prevalence of 30 to 90% [1], whereas in Australia, 46% of herds are likely
to experience fluke-related production losses [2]. In Europe, it is becoming a re-emerging
sheep disease, with infestation rates ranging from 6% to 61% [3]. Infested livestock suffer
from severe anemia, liver failure, increased susceptibility to secondary infections, and, in
cases of heavy infestations, death may occur [4]. This results in a reduction in milk yield, di-
minished weight gain, and decreased fertility, resulting in global economic losses estimated
at USD 3.2 billion per year [5]. Humans can be accidentally infested by consuming water
or plants contaminated with metacercariae, which is common for rural regions with low
hygiene standards in the endemic areas. Infested individuals may suffer from right upper
quadrant discomfort, anorexia, acute cholecystitis, and biliary obstruction; nevertheless,
in most cases, the parasitosis is asymptomatic. Estimates indicate that 2.4 million people
suffer from the disease, and a further 180 million are at risk, highlighting fascioliasis as
a significant threat to public health. The scale of the problem led the World Health Orga-
nization (WHO) to classify human fascioliasis as a foodborne zoonosis belonging to the
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Neglected Tropical Diseases [6]. The Disability-Adjusted Life Years (DALY) value for the
disease is estimated at 35,000, meaning that 35,000 years of human health are lost annually
due to prevalent cases in the human population [7]. The presence of parasites in the bile
ducts during the chronic phase is often asymptomatic, allowing the fluke to reproduce.
Adult flukes release unembryonated eggs into the host’s bile ducts, which are then passed
into the environment with stool during defecation. In water, the eggs become embryonated
and hatch into free-swimming, ciliated miracidia that seek an intermediate host, typically
a snail from the Lymnaeidae family [8]. Inside the snail’s tissues, the miracidia undergo
several asexual metamorphoses, starting as sporocysts, which then transform into rediae,
giving rise to another generation of rediae through clonal expansion [7,9]. Finally, the redia
develops into a free-living cercaria, which exits the snail into the water [10], followed by
encystation into metacercaria, which awaits ingestion by the definitive host. Once in the
host’s duodenum, the metacercaria excysts into the newly excysted juvenile developmental
stage (NEJ) and migrates through the intestinal wall and the peritoneum [11]—a process
associated with the prehepatic (or the early) stage. Upon reaching the liver capsule, the
immune system reacts vigorously, which is associated with the acute stage, manifesting as
tissue destruction, inflammation, local or systemic toxic/allergic reactions, and internal
damage [12]. The acute phase ceases once the parasite reaches the bile ducts, and the
chronic phase begins, which may last 5 to 8 years [12]. The symptoms may resemble those
of the acute stage but are usually more discrete [12]. Although fever, malaise, abdominal
pain, eosinophilia, hepatomegaly, nausea, weight loss, liver failure [2,13], and biliary duct
obstruction may occur [3,14], this stage is often asymptomatic.

During viral and bacterial infections or parasitoses, the type of immune response
depends on a complicated interplay between the host and the intruder. It can be divided
into four main subtypes: Th1, Th2, Th17, and Treg [15], although sometimes Th1 and Th17
responses are classified as Th1/Th17 due to overlapping effects [16]. These names refer
to T helper (Th) and regulatory T (Treg) cell populations that orchestrate the particular
response. Activated Th1 cells release significant amounts of interferon gamma (IFN-γ) and
IL-12, activating cellular and inflammatory mechanisms, including proinflammatory M1
macrophages involved in phagocytosis and cell-mediated immunity, which are engaged in
fighting intracellular pathogens and induce tissue damage. During a Th17 response, Th17
cells release substantial amounts of IL-17 and IL-22, which activate mechanisms against
extracellular bacteria and fungi [17]. Th2 cells release IL-4, IL-5, and IL-13, leading to the
alternative activation of macrophages, which counteract inflammation and promote tissue
repair [18]. Treg (regulatory T cells) release IL-10 and transforming growth factor beta
(TGF-β), which mitigate the effects of the other responses [19]. All of these types of immune
responses need to be balanced and strictly regulated. Failure to control these processes
can result in allergies, autoimmune diseases, or immunosuppression. Infectious agents
elicit various immune responses depending on the pathogen, its isolate/strain [11,20],
and the host’s genetics [21]. During the acute phase of fascioliasis, the predominant
response is a Th2/Th17 response, which contributes to the liver fibrosis [11]. Once the
parasite settles in the bile ducts, the immune response shifts towards Treg [11], which is
beneficial for both the host and the parasite. The host avoids immunopathology, while the
parasite can survive and reproduce. It is in the parasite’s interest to modulate the immune
response, so it releases a number of bioactive molecules in Fasciola hepatica Excretory-
Secretory Products (Fh-ES), which contain antioxidants, fatty acid binding proteins (FABPs),
cysteine proteases, protease inhibitors, mucin-like peptides, TGF-β mimicking molecules,
helminth defense molecules (HDMs) [22], as well as extracellular vesicles containing
immunomodulatory proteins [23–27] and miRNAs [28]. These factors contribute in various
ways to shifting the immune response and protecting the parasite. Fh-FABPs induce
a tolerogenic phenotype in human dendritic cells [29] and suppress the expression of
proinflammatory factors (IL-1β and tumor necrosis factor alpha (TNF-α)) in monocytes [30],
similar to activin/TGF-like molecule (Fh-TLM—a member of the TGF superfamily), which
induces a Th2/Treg-like phenotype in macrophages [31]. Proteases may activate the NLR
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family pyrin domain containing 3 inflammasome (NLRP3) [32] and protect the parasite by
cleaving antibodies. Antioxidants exhibit pleiotropic effects by directly promoting a Th2
response, preventing the development of a tissue-damaging Th17 response, and detoxifying
host reactive metabolites [22]. It seems that an overall effect of Fh-ES is a combination of
both redundant and non-redundant actions of its components on the immune system, and
further characterization of this impact is required.

Macrophages are an important part of both the innate and adaptive immune responses,
although their interaction with Fh-ES is still not fully understood. While data show a
common trend—Fh-ES’s ability to skew the immune response toward Th2/Treg—the mech-
anisms may be species-dependent. Previously, we demonstrated that Fh-ES reduces TNF-α
release from bovine macrophages [20,33]. A similar anti-inflammatory effect of Fh-ES (or
its fractions) has been shown for human monocytes and mouse macrophages; however,
different mechanisms were observed in these models. In mouse macrophages, Fh-ES in-
creased the release of TGF-β and IL-10, indicating a hallmark of Th2 activation [34]. On the
other hand, Fh-EVs (Fasciola hepatica Extracellular Vesicles) affected neither TNF-α mRNA
expression nor its release by human monocytes. However, prolonged stimulation with LPS
and Fh-EVs increased the mRNA expression of TGF-β and IL-13, powerful modulators
of Treg and Th2 responses, respectively [35]. The various mechanisms responsible for the
upregulation of Th2/Treg mediators and the downregulation of Th1/Th17 mediators remain
to be elucidated. Resolving this puzzle would enhance our understanding of the molecular
mechanisms occurring not only during fascioliasis but also in other helminthiases. Tran-
scriptome profiling and biological big data analyses are undoubtedly powerful tools to
decipher those interactions. miRNAs are potent regulators of gene expression and are heav-
ily involved in regulating the immune system [36], including macrophage polarization [37].
These small, ~22 nt nucleotide-long molecules downregulate gene expression by binding
to target mRNAs, leading to mRNA cleavage, destabilization, or inhibition of translation.
The miRNAs impact on gene expression is challenging to decipher since a single miRNA
can bind to hundreds of target mRNAs, and a single mRNA may be downregulated by
multiple miRNAs [38]. Moreover, parasites have evolved the ability to manipulate the host
miRNAome by transporting their own miRNAs into host macrophages [39]. Given the
significant role of miRNAs in regulating macrophage phenotypes, we undertook a study
to determine changes in miRNA expression profile in human macrophages. We chose a
well-established cell line model—human THP-1 cells—which has been used in numerous
parasitological experiments [40,41].

2. Materials and Methods
2.1. Fh-ES Preparation

Fh-ES collected from adult flukes (Weybridge strain) were generously provided by
Dr. Luke Norbury (Witold Stefański Institute of Parasitology, Polish Academy of Sciences,
Twarda 51/55, 00-818, Warsaw, Poland). Upon recovery of flukes from the rats’ bile
ducts, the Fh-ES was collected as described previously [42] with slight modifications. The
worms were incubated (37 ◦C, 5% CO2) in 40 mL RPMI1640 (Merck, Germany, Darmstadt)
supplemented with penicillin (100 U/mL) and streptomycin (100 µg/mL) for 30 min to
eliminate host tissue contamination and residues of bile. The medium was discarded and
the flukes were rinsed twice with the prewarmed medium before adding 30 mL of fresh
prewarmed medium. The worms were incubated for 36 h, with medium change every
90–120 min. Each batch was immediately frozen at −80 ◦C upon collection and stored
until use. All batches were thawed and pooled together, and the protein concentration
was measured using the Bradford assay. The Fh-ES was then concentrated using a 5 kDa
cutoff Amicon filter (Merck, Darmstadt, Germany) as follows: 10 mL of Fh-ES was added
on the membrane and centrifuged (3000× g, 4 ◦C) until volume reached 0.5 mL. The flow-
through was discarded, and 12 mL of a fresh RPMI1640 medium (4 ◦C) without antibiotics
was added. The sample was centrifuged again (3000× g, 4 ◦C) until the volume reached
0.5 mL. The cycle was repeated three times, resulting in a media exchange of 390,000×.
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The concentrated fraction was filtered through a 0.22 µm syringe filter, followed by protein
concentration measurement using the Bradford method [43], and stored at −80 ◦C until
use.

2.2. Assessment of Endotoxin Level

The endotoxin level was evaluated using the Pierce LAL (Limulus amebocyte lysate)
Chromogenic Endotoxin Quantitation Kit (Thermo Fisher Scientific, Waltham, MA, USA).

2.3. SDS PAGE Analysis

The concentrated fraction (10 µg of Fh-ES) was subjected to SDS PAGE analysis.
Briefly, 10.6 µL of concentrated Fh-ES (0.93 ng/µL) were mixed with 42.4 µL of phosphate-
buffered saline (PBS) and 13.25 µL of 5 × SDS PAGE Dye (10% SDS, 5% β-mercaptoethanol,
50% Glycerol, 500 mM Tris-HCl (pH 6.8) and 0.05% bromophenol blue dye) followed by
incubation at 95 ◦C for 5 min. The sample and the molecular weight marker (Thermo
Fisher Scientific Cat. No. 26619) were loaded onto a 4% stacking gel and resolved (40 V)
until they reached a 12.5% polyacrylamide resolving gel containing 0.2% SDS and further
resolved (at 80 V) until the bromophenol blue reached the bottom of the gel. The gel was
stained overnight with a staining solution (5% v/v acetic acid, 30% v/v methanol, 0.1% w/v
Coomassie Brilliant Blue R250) with gentle shaking following destaining using destaining
solution (5% v/v acetic acid, 30% v/v methanol).

2.4. THP-1 Macrophages Stimulation

THP-1 monocytes were purchased from American Type Culture Collection (ATCC,
Manassas, VA, USA). The monocytes were cultured at 37 ◦C with 5% CO2 in RPMI 1640 sup-
plemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 µg/mL strep-
tomycin. Once the cells reached the appropriate number, they were seeded at 5 × 105 cells
per well in a 24-well cell culture plate and differentiated into macrophages for 48 h using
phorbol 12-myristate 13-acetate (PMA) (30 ng/mL). The cells were rinsed 3 times with
fresh medium followed by treatment with either lipopolysaccharide (LPS) (100 ng/mL) for
control cells or LPS (100 ng/mL) and Fh-ES (7 µg/mL) for experimental cells. Considering
the final endotoxin level in the cell culture medium as an important parameter of the
experiment, the concentration of Fh-ES used to stimulate THP-1 macrophages resulted in
an endotoxin enrichment of the medium to a final concentration of 0.06 EU/mL, which
complies with the strict FDA recommendations for endotoxin levels, even for solutions
in contact with cerebrospinal fluid [44]. The cells were stimulated in octuplicates and
incubated for 48 h (37 ◦C, 5% CO2). The medium was discarded followed by suspending
the cells in QIAzol Lysis Reagent (Qiagen, Venlo, The Netherlands). The suspension of the
lysed cells was stored until use at −80 ◦C.

2.5. Microarray Experiments

miRNA was isolated using the miRNeasy Mini Kit (Qiagen, Venlo, The Netherlands).
The RNA concentration was assessed spectrophotometrically. The RNA quality and in-
tegrity were examined with the Agilent 2100 Bioanalyzer using Agilent RNA 6000 Nano
Kit (Agilent Technologies, Santa Clara, CA, USA). The RNA integrity number (RIN) values
for each sample were above 9. The RNA from each well (8 control wells and 8 experimental
wells) was prepared for hybridization with arrays using the miRNA Complete Labeling
and Hyb Kit (Agilent Technologies, Santa Clara, CA, USA) and hybridized to the Human
miRNA Microarray, Release 21.0, 8 × 60 K (G4872A, Agilent Technologies) according to the
manufacturer’s protocol. Microarrays were scanned using Agilent DNA Microarray Scan-
ner G2505C and analysis of hybridization intensities was performed using Agilent Feature
Extraction (FE) Software, version 10.7.3.1. The results were analyzed using GeneSpring 14
software (Agilent Technologies, Santa Clara, CA, USA).
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2.6. Statistical Analyses

The analyses were performed on miRNA samples obtained from eight wells of control
samples (LPS-activated) and eight wells of experimental samples (LPS-activated and Fh-ES).
The probe sets were filtered by flags to remove poor-quality probes (absent flags) and were
compared using a moderated t-test. However, as commonly observed, using a t-test to
analyze multiple samples results in a number of false-positive results [45]. To address this
issue, various multiple testing corrections were applied to adjust the p-values for multiple
comparisons. These corrections included the Family-Wise Error Rate (FWER) methods:
Bonferroni, Bonferroni-Holm, and Westfall-Young Permutation, and the False Discovery
Rate (FDR) methods: Benjamini–Hochberg, Storey with Bootstrapping, and Storey with
Curve Fitting. The corrections are listed in Table 1 according to their stringency [46], which
defines their abilities to reduce the generation of false-positive data. The statistical analyses
were performed using GenSpring 14 software (Agilent Technologies, Santa Clara, CA,
USA).

Table 1. Applied Corrections for Multiple Comparisons. The corrections are ordered according to
their stringency (S) in comparison to the Benjamini–Hochberg correction. A higher number indicates
a higher stringency of the test, corresponding to a lower probability of generating false-positive
results.

S Description Correction

1 Independence of p-values across genes is assumed. Benjamini–Hochberg (FDR)

Storey with Bootstrapping.
Storey with Curve Fitting. Benjamini–Hochberg refinements

2 Permutates all the genes at the same time, accounting for their
dependence. Westfall and Young (FWER)

3
A stepwise procedure. Tests each hypothesis in an ordered

sequence, allowing one to accept or reject a hypothesis based on
the previous step, with a focus on power and stringency.

Bonferroni-Holm (FWER)

4 A single step procedure where each p value is corrected
independently. Bonferroni (FWER)

3. Results
3.1. Fh-ES Assessment Using SDS-PAGE

The Fh-ES were resolved in a polyacrylamide gel prior to cell stimulation. A specific
pattern was obtained (Figure 1), and the particular bands were identified according to the
literature, with an emphasis on their immunomodulatory functions. The ~25 kDa band
represents the most abundant protein released by the adult fluke: F. hepatica Cathepsins
L (CL) and Cathepsin L-like proteins (CL-like) [24,42] which are released as 30–38 kDa
zymogens [47] and processed into their mature forms. CLs have been shown to induce
NLRP3 inflammasome in dendritic cells [32] and modulate CD4 expression on T Cells [48].
Other components of the ~25 kDa band are likely to include F. hepatica peroxiredoxins
(PRXs) [49] and F. hepatica glutathione S-transferases (GSTs) [50], both of which act as
antioxidants [51] and immunomodulators, influencing macrophages. PRX induces alter-
native activation [26], and GST stimulates prostaglandin production by macrophages [50].
The other abundant fraction (~12 kDa) likely represents F. hepatica fatty acid binding pro-
teins (FABPs) [51], which induce alternative activation of macrophages [52] and F. hepatica
helminth defense molecules (HDMs) [24,53], which are able to block Toll-like receptor (TLR)
activation through LPS binding [27]. The composition of the proteins in bands with higher
molecular masses is more challenging to decipher; however, Fh-ES is known to contain
leucine aminopeptidases (LAP) (~70 kDa) [54] and somatic antigens like glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and actin [42], which may be shed from the tegument
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during in vitro culture. The resolved fraction may also host proteins such as superoxide
dismutase, serum albumin precursor, regucalcin or transferrin [42].
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Figure 1. Fh-ES (10 µg) resolved in 12.5% polyacrylamide gel. M—molecular weight marker (Ther-
moFisher Scientific Cat. No. 26619), Fh-ES—Fasciola hepatica Excretory-Secretory Products. The
protein identification in the bands is defined in the literature review. For the analyzed bands, the
protein is given with Gen Bank numbers. CL—Cathepsin L, CL-like—Cathepsin L-like protein, FABP—
fatty acid binding protein, GAPDH—glyceraldehyde-3-phosphate dehydrogenase, HDM—helminth
defense molecule, LAP—leucine aminopeptidase, PRX—peroxiredoxin.

3.2. Statistical Analyses of Changes in miRNAnome Expression

The obtained microarray raw data were deposited in the Gene Expression Omnibus
(GEO) database under the number GSE277108 and subjected to statistical analyses. A
number of statistical methods were used to analyze the results. First, the moderated
t-test was applied to identify miRNAs with changed expression fold (p < 0.05). The
analyses without a correction identified 7 down-regulated and 11 upregulated miRNAs
(Table 2). Nevertheless, multisample analyses are prone to I-type mistakes (generating false
positive results). The classical p-value concept is suitable for testing differences between
two samples, expecting one false positive discovery per twenty analyses when set as 0.05.
During microarray analyses, multiple comparisons are made: mean expression difference
of miRNA1 between the control group (LPS-activated macrophages) and the treated group
(control stimulated with Fh-ES) is tested using a t-test. Next, the same comparison is
made for miRNA2, miRNA3, . . . miRNAn. This approach results in an increase of false
positive results (type 1 error), e.g., analyzing the expression of 3000 miRNAs with constant
expression among samples will result in randomly identifying, with the highest probability,
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150 (5%) as having changed expression (false positive). Assuming a further 20 miRNAs are
expressed differently among samples and, if we identify all of them (rather unrealistic), we
will have only a small fraction of true positives among all the positive hits: 20/(150 + 20). To
overcome this issue, a statistical measure family-wise error rate (FWER) [55] was introduced
for appropriate control of p-values [56]. It is defined as the probability of getting at
least one false positive hit among the series of comparisons and can be calculated as
FWER = 1 − (1 − α)n, where “α” is defined as a p-value threshold (0.05) and “n” as a
number of comparisons. This formula shows that in analysis, e.g., 3000 miRNAs, we will
get 1 - (1 − 0.05)3000 = 1, leading to conclusion of almost certainly false positive results.
Controlling FWER is very efficient; nevertheless, it usually results in a decrease in true
positive detection [57]. Another way to address multi-hypothesis analyses is the use of
a parameter termed the false discovery rate (FDR) [56]. It is defined as a ratio of false
positive to all positive hits, e.g., if there are 150 false positive hits and 20 true positive
hits, FDR is calculated according to the formula: 150/170 = 88.2%. Both FWER and FDR
may be controlled by the appropriate adjustment, but controlling FDR is more suitable for
analyzing microarray data [58] due to lower stringency (an ability to reject false positive
hits). During the microarray analysis, controlling both FWER and FDR was applied here.
We used various corrections based on several modifications ranging from low to high
stringency (Table 1) to increase the credibility of the results. Only the applied Westfall and
Young permutation correction (p-value adjusted < 0.05) showed differences in expression
of only one miRNA, miR-1537p (Table 2), while other corrections, including Benjamini–
Hochberg, Bonferroni FWER, Bonferroni-Holm FWER, Storey with Bootstrapping, and
Storey with Curve Fitting, showed no change in any miRNA upon stimulation of LPS-
activated macrophages with Fh-ES (Table 2). There are no clear guidelines for FDR value
since various experiments may require different approaches, e.g., clinical trials may require
lower FDR than in vitro experiments [58], although it will increase false negative results.
For that reason, we used a range of corrections, yet only one found a positive hit, which
was considered an artifact.

Table 2. The miRNAs considered as significant (p < 0.05) to change the expression upon stimulation
of LPS-activated THP-1 macrophages with Fh-ES using a moderated t-test and several corrections.
First, the analyses were performed using a moderated t-test and number of miRNAs were identified
(p < 0.05). During the next step, various corrections were used to eliminate false positive results.
ns—non significant (p > 0.05).

miRNA Change Fold

Benjamini–
Hochberg

Storey
with Boot-
strapping

Storey
with Curve

Fitting

Westfall
and Young

Bonferroni-
Holm
FWER

Bonferroni
FWER

p-Value

hsa-miR-4730 down 6.58 ns ns ns ns ns ns
hsa-miR-4728-3p down 5.72 ns ns ns ns ns ns
hsa-miR-1910-5p down 4.12 ns ns ns ns ns ns
hsa-miR-6824-3p down 3.31 ns ns ns ns ns ns

hsa-miR-4741 down 3.14 ns ns ns ns ns ns
hsa-miR-4462 down 3.1 ns ns ns ns ns ns

hsa-miR-26a-1-3p down 2.6 ns ns ns ns ns ns
hsa-miR-324-3p up 1.4 ns ns ns ns ns ns

hsa-miR-19b-1-5p up 3.31 ns ns ns ns ns ns
hsa-miR-7152-3p up 3.51 ns ns ns ns ns ns
hsa-miR-6780a-5p up 4 ns ns ns ns ns ns

hsa-miR-219a-5 up 4.09 ns ns ns ns ns ns
hsa-miR-6512-5p up 4.32 ns ns ns ns ns ns
hsa-miR-378a-5p up 4.52 ns ns ns ns ns ns
hsa-miR-34c-5p up 4.57 ns ns ns ns ns ns

hsa-miR-487b-3p up 5.15 ns ns ns ns ns ns
hsa-miR-4651 up 5.17 ns ns ns ns ns ns

hsa-miR-1537-3p up 7.1 ns ns ns <0.05 ns ns
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4. Discussion

F. hepatica infestation is characterized by a dynamic immune response characterized
by mixed Th2/Th17 type during the acute stage and Treg during established infestation [11].
The first stage is associated with NEJs‘ migration towards the liver through the intestine
and peritoneum [11]. The latter stage is reached upon parasite settlement in the bile ducts
and the release of immunomodulatory molecules [22]. The mounting Treg response dur-
ing the adult stage is to prevent damage to host tissue induced by Th1 response and to
preserve the comfort niche for the parasite suitable for survival and reproduction [59].
Fh-ES is a complicated mixture of antigens: antioxidants, FABPs, cysteine proteases, pro-
tease inhibitors, mucin-like peptides, TGF-β mimics, HDMs [22], and EVs carrying both
proteins [24] and miRNAs [28] impacting host immune cells. A large body of research
indicates the role of Fh-ES-derived molecules in suppressing inflammation in experimental
models of autoimmune diseases: Fh-HDM-1 may ameliorate symptoms of type I diabetes
or multiple sclerosis [60], GST attenuates septic shock in mice [41,61] whereas purified EVs
are beneficial during ulcerative colitis [62]. These data encourage further investigation
on immunomodulatory potential and molecular mechanisms induced in immune cells by
Fh-ES. However, these experiments revealed the impact of Fh-ES-derived molecules, not
the whole fraction of Fh-ES, which leaves a gap in the knowledge regarding the impact of
the complete Fh-ES fraction on the immune response.

We chose to scrutinize Fh-ES’s impact on macrophages, which are a very plastic
population that is involved not only in immune responses but also in wound healing,
fibrosis, and neuroinflammation regulation [63]. Previous studies have shown significant
effects of Fh-ES on these cells. For instance, they have been reported to affect LPS-activated
human monocytes through TLR activation or deactivation [64] and to induce apoptosis
in mouse peritoneal macrophages [65] or death of human hepatocytes [66]. Our previous
research also demonstrated that Fh-ES ameliorates LPS-induced proinflammatory response
in bovine macrophages [67] and indicated that this amelioration may depend on the isolate
used for Fh-ES collection [33]. To further characterize the impact of Fh-ES on macrophages
and their role in the modulation of immune response towards a Th2 phenotype, we used a
widely employed laboratory model of LPS-activated THP-1 macrophages stimulated with
the full Fh-ES fraction. Surprisingly, the experiments showed no change in the expression
of miRNAs upon stimulation of LPS-activated THP-1 macrophages with Fh-ES. Despite
employing various statistical corrections, only one out of six tests indicated a change.
Moreover, according to the method, the expression of only one miRNA was changed,
which seems to indicate a statistical error. On the other hand, Wang et al. (2021) recently
indicated a change in the miRNA profile in goat PBMCs upon stimulation with Fg-ES
(Fasciola gigantica ES) [68]. However, they used a significantly higher concentration of Fg-ES
(80 µg) compared to our study (7 µg), which might explain the different cellular responses.
Similarly, Guasconi et al. (2012) reported on an apoptotic impact of Fh-ESP on mouse
macrophages (both ex vivo and in vitro) using Fh-ES in the concentration of 50 µg/mL [65].
In both the above-mentioned experiments, cells were not subjected to LPS activation. On
the other hand, THP-1 cells stimulated with Toxocara canis ES at a concentration of 5 µg/mL
showed significant changes in cytokine profile (both with and without LPS activation) [40].
THP-1 macrophages were also sensitive to 5 µg/mL of Hd-ES (Hymenolepis diminuta ES),
showing changes in the gene expression profile [69].

Although specific data on the effective dose of Fh-ES required to change miRNA
profile in THP-1 macrophages are lacking, there is evidence that recombinant antigens
can alter cytokine expression. For example, recombinant Fg-Cyst (Fasciola gigantica type
I cystatin) at a concentration of 5 µg/mL dampens IL-6, cyclooxygenase-2 (Cox-2), and
inducible nitric oxide synthase iNOS [70] in LPS-activated THP-1 macrophages, which are
controlled by miR-146a [71], miR29b [72] and miR-369-3p [73], respectively. However, this
effect was observed only at the protein level, with no changes in the mRNA level encoding
IL-6, Cox-2, and iNOS [70]. Similarly, Fasciola hepatica Fh-FABP-12 at 5 µg/mL decreased
the mRNA expression of proinflammatory IL-12a, TNF-α, and IL-1β in LPS-activated
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human macrophages ex vivo [52]. Of course, direct comparison of concentrations of single
recombinant antigens and the mixture of molecules such as Fh-ES is challenging. While
a single antigen may be sufficient to bind to its receptor on a cell, concentrations in vivo
are typically lower, and cells are not exposed to such high concentrations. Nevertheless,
in vitro and ex vivo models may require a higher concentration of antigens due to a lack of
interactions with other cells and extracellular matrix (ECM) rendering them less responsive
to natural concentrations. Moreover, the use of recombinant proteins may require higher
concentration than their in vivo counterparts due to differences in post-translational mod-
ifications, dampening their biological activity, especially when expressed in prokaryotic
expression systems that lack a number of eukaryotic modifications. Extracellular vesi-
cles (Fh-EV) are a significant component of Fh-ES. Sanchez-López demonstrated that a
much lower concentration (10 µg/mL) of Fh-EV is sufficient to increase TGF-β and IL-13
expression and decrease IL-6, IL-1β, C-X-C motif ligand 8 (CXCL8), and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) expression in LPS-activated THP-1
cells. This effect was not observed in cells stimulated with Fh-EV depleted of various
fractions [35]. This suggests that smaller concentrations may be effective in experiments
since physiological outcomes result from complex interactions between Fh-ES and cell
receptors, rather than the effects of single antigens alone. Another issue to consider is the
sensitivity of the method to detect the changes of miRNA levels and the biological effects
of their fluctuations. Recent research has shown that while COVID-19 patients exhibited
altered miRNA expression profiles in peripheral blood, the most highly upregulated and
downregulated miRNAs changed their levels by 1.6 and 2.3 times, respectively [74]. Such
changes were detectable using a different technique, that is Next Generation Sequencing
(NGS) performed on 14 samples. Moreover, although the LPS activation of macrophages
is associated with higher fold change in miRNA levels [75], the vast majority of miRNAs
remain similar across M1, M2a, M2b, and M2c macrophages [76], with only eight miRNAs
showing distinct expression differences; however, at the same time some mRNAs may
change expression up to 80 times [76]. This addresses the issue of statistical analyses
of microarrays. It is more challenging to find differences when the change of miRNA
expression is low. Moreover, multiple sample analyses of miRNA results [77] require
correction, decreasing false positive rates [78]. We used a number of corrections with a
workflow from the least to the most conservative. Of course, it cannot be excluded that
false negative results did not occur here since none of the methods is 100% reliable [79].
Similar experiments were conducted with mouse RAW364-7 macrophages, where NGS
analyses revealed that the cells upregulated and downregulated 16 miRNAs, with the
greatest decrease and increase in expression being 3.01 and 10.18, respectively [80]. Our
experiments used LPS-activated macrophages and employed microarray technology, which
recent data suggest is less suitable for miRNAome analyses compared to NGS [81]. This
might explain the difficulty in identifying differences with our approach, especially if the
particular macrophage population shows stably expressed miRNAs [76].

5. Conclusions

Fh-ES is a powerful modulator of host immune response; however, no changes in
miRNA expression in the macrophages have been noted in this study. The results may be
due to subtle changes not detectable by the microarray technique and the statistical analysis
workflow. A deeper investigation is still to be performed, possibly through more sensitive
NGS techniques.
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Cox-2 cyclooxygenase-2
CXCL8 C-X-C motif ligand 8
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FDR false discovery rate
FWER family wise error rate
FABP fatty acid binding protein
FBS Fetal Bovine Serum
GAPDH glyceraldehyde-3-phosphate dehydrogenase
GEO Gene Expression Omnibus
GST glutathione S-transferases
HDM helminth defense molecule
iNOS inducible nitric oxide synthase
LAL Limulus amebocyte lysate
LAP leucine aminopeptidase
LPS lipopolysaccharide
miRNA micro RNA
NEJ newly excysted juvenile
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NGS Next-Generation Sequencing
NLRP3 family pyrin domain containing 3 inflammasome
PBS phosphate-buffered saline
PRX peroxiredoxin
TGF-β transforming growth factor beta
TLR Toll-like receptor
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