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Abstract: The ongoing Coronavirus Disease 19 (COVID-19) pandemic has had a profound impact on
the global healthcare system. As the SARS-CoV-2 virus, responsible for this pandemic, continues to
spread and develop mutations in its genetic material, new variants of interest (VOIs) and variants
of concern (VOCs) are emerging. These outbreaks lead to a decrease in the efficacy of existing
treatments such as vaccines or drugs, highlighting the urgency of new therapies for COVID-19.
Therefore, in this study, we aimed to identify potential SARS-CoV-2 antivirals using a virtual screening
protocol and molecular dynamics simulations. These techniques allowed us to predict the binding
affinity of a database of compounds with the virus Mpro protein. This in silico approach enabled
us to identify twenty-two chemical structures from a public database (QSAR Toolbox Ver 4.5 ) and
ten promising molecules from our in-house database. The latter molecules possess advantageous
qualities, such as two-step synthesis, cost-effectiveness, and long-lasting physical and chemical
stability. Consequently, these molecules can be considered as promising alternatives to combat
emerging SARS-CoV-2 variants.

Keywords: SARS-CoV-2; Mpro; 3CLpro; Nsp5; antivirals

1. Introduction

At the end of 2019, numerous cases of a mysterious respiratory disease were reported
in Wuhan, China [1]. As time passed, the number of cases and deaths increased, and
soon enough, the causative agent was discovered to be a novel betacoronavirus, known
today as Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) [2]. SARS-CoV-2
has spread throughout the world, leading to the global COVID-19 pandemic [3]. As a
countermeasure to slow the spread of SARS-CoV-2, several countries decided to implement
lockdown measures, which had significant repercussions on public health, the environment,
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human psychology, the global socioeconomic situation, and education [4]. Despite these
measures, the virus continues to spread, and as of 23 June 2024, there are over 775 million
confirmed COVID-19 cumulative cases of infection, of which more than 7 million have
resulted in death [5].

Coronaviruses (CoVs) are enveloped positive-strand RNA viruses with the largest
known RNA genomes of 30–32 kilobases (kb) [6]. Both animals and humans can be in-
fected with these viruses, which raises the importance of keeping track of their zoonotic
potential [7]. There are seven known human coronaviruses, four of which are endemic
and generally cause mild to moderate upper respiratory tract symptoms [8]. These in-
clude 229-CoV, OC43-CoV, HKU1-CoV, and NL63-CoV [8]. The remaining three CoVs are
betacoronaviruses known to cause pandemics in the 21st century, including SARS-CoV,
MERS-CoV, and SARS-CoV-2 [9]. At the nucleotide level, SARS-CoV-2 shares approxi-
mately 79% sequence identity with SARS-CoV and approximately 50% with MERS-CoV,
both of which were responsible for coronaviral pandemics in the 20th century [10]. Phy-
logenetically, since SARS-CoV-2 is a betacoronavirus, it belongs to the order Nidovirales,
family Coronaviridae, subfamily Orthocoronavirinae, genus Betacoronavirinae, and subgenus
Sarbecovirus [11].

The SARS-CoV-2 genome is composed of different open reading frames (ORFs), of
which ORF 1a/b occupies two-thirds; the rest are occupied by other ORFs coding for
accessory (i.e., ORF3a, ORF6, ORF7, ORF8, and ORF9) and structural (spike, nucleocapsid,
membrane, and envelope) proteins [12]. Accessory proteins such as ORF3a, ORF6, ORF7,
and ORF8 have various functions, including type IFN-I antagonism and suppression of
viral responses [13]. Structural proteins include surface glycoprotein S, envelope protein E,
membrane protein M, and nucleocapsid protein N, which are necessary for virus assembly
and infectivity [14]. To invade host cells, SARS-CoV-2 uses its spike protein, which allows
it to bind to the host cell receptor angiotensin converting enzyme 2 (ACE2); this binding
is followed by a conformational change in the S protein, ultimately facilitating the fusion
of the viral envelope with the cell membrane [15]. In this way, SARS-CoV-2 releases its
genomic RNA into the host cell, which is directly converted to ppa1a and pp1ab, which, in
turn, are proteolytically cleaved, giving rise to 10 and 16 proteins, respectively [16], which
form the viral replicase transcriptase complex (RTC) [17]. This cleavage is achieved by the
action of viral-encoded proteases known as papain-like proteases (PLpro, protease domain
of Nsp3) and chymotrypsin-like (3CLpro) or main protease domains (Mpro) of Nsp5 [17].
Both the latter, along with the spike protein, are important therapeutic targets [18]. PLpro is
the largest nonstructural protein encoded by SARS-CoV-2 and cleaves the viral polyprotein
pp1ab to produce Nsp1-3 [19]. However, the homodimeric cysteine protease Mpro can
proteolytically cleave the pp1ab polyprotein at 11 cleavage sites, which makes it important
in the viral replication cycle [20,21]. In its monomeric form, Mpro has a molecular weight of
34.21 kDa and comprises three domains: domain I (residues 8–101), domain II (residues
102–184), and domain III (residues 201–303), where domains I and II have an antiparallel
β-barrel structure and domain III contains five α-helices arranged into a largely antiparallel
globular cluster [22,23]. The catalytic site of Mpro is located at the intersection of domains I
and II, with a catalytic dyad formed by Cys145 and His41. It is important to note that Mpro

is less enzymatically active than its dimeric form [22].
Currently, there are many ways to control the COVID-19 pandemic: vaccines [24,25],

neutralizing monoclonal antibodies (mAbs) against the spike protein, and the antiviral
drugs ritonavir-boosted nirmatrelvir (targeting the Mpro) [26], molnupiravir, and remdesivir
(both targeting RNA-dependent RNA polymerase—RdRp) [27,28]. However, as SARS-
CoV-2 continues to spread, novel mutations are detected in its genome, resulting in the
emergence of variants that have the potential to evade immunity against SARS-CoV-2, thus
making existing treatments no longer effective [29–31]. This highlights the importance of
having an arsenal of antiviral drugs against SARS-CoV-2 that target the different stages of
its replicative cycle.
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A useful tool for discovering therapeutic targets and drug candidates is computational
chemistry. It helps us to understand protein–ligand interactions, using software to explore
and calculate molecular properties [32]. For instance, computer-aided drug design (CADD)
identified HIV drugs saquinavir and indinavir, which are approved for use in patients.
Similarly, computational methods have aided in COVID-19 drug discovery [33–36].

2. Methods

The scope of this research is to identify potential hit molecules and propose a thera-
peutic strategy aimed at inhibiting the major protease of SARS-CoV-2. Figure 1 shows the
computational approach taken in this work to screen and evaluate two sources of molec-
ular structure data: the public QSAR Toolbox database and our internal database. Our
in-house collection of chemical compounds has been compiled over 30 years of research
and currently contains 250 compounds spanning a wide range of structures, functional
groups, and activities, including antiviral, antineoplastic, antihypertensive, antiparasitic,
and other properties [37,38].
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Figure 1. General workflow diagram.

The QSAR Toolbox database provided access to a wide variety of compounds. From
this database, molecules were selected if they had a similarity of more than 90% to pre-
viously reported protease inhibitors. The Tanimoto coefficient was used as the decision
criterion [39].

To identify these reference molecules, a broad search for protease inhibitors of any
type was conducted in the DrugBank database. A total of 25 molecules were obtained
and used as reference compounds to calculate the respective similarity coefficients. The
resulting compounds were added to the molecules in our internal database to form the
joint database.

Although the compounds in the LQM series had been previously studied in different
diseases, it is not possible to encompass this research within the traditional concept of drug
repositioning, since the QSAR Toolbox database is not specifically made up of molecules
tested as drugs. It is important to clarify that the current research serves primarily as
a screening process to identify potential hit molecules within this joint database. This
approach has the potential to significantly accelerate the discovery of promising candidates
for the development of effective drugs against COVID-19.
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3. Results and Analysis
3.1. Mpro Structure Selection

SARS-CoV-2 Mpro is an important biological and pharmacological target [40]. Its
structural integrity remains remarkably conserved across various coronavirus proteins
owing to the high degree of conservation in its amino acid composition. In other words,
its protein structure shows minimal mutations, resulting in a consistent conformational
behavior [41].

An initial search was conducted within the PDB (Protein Data Bank), where several
structures of Mpro were found. These structures are identified by the following codes:
7TOB, 5R81, 6R7Y, 6R83, 5R7Z, 5R82, 5R84, 6LU7, 6M03, 6Y2F, 6Y2G, 6Y8E, and 6YB7. All
structures were aligned and superposed and the resulting model is illustrated in Figure 2.
This preliminary exploration serves as a focal point for our structure selection. This is
based on its status as one of the most up-to-date structures available in the PDB database
compared to other proteins at the time [42]. The selection criteria for docking, virtual
screening, and molecular dynamics simulations are discussed below.
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2022.02.

To identify potential active sites within the protein, the MOE SiteFinder tool was
used [43]. This tool allows the detection of potential active sites in a receptor from its three-
dimensional coordinates. It is a geometric method that considers the accessibility of the
receptor atoms and a classification by chemical type. It excludes sites exposed to the solvent
and classifies the different regions as hydrophobic or hydrophilic. Hydrophobic regions
are represented as gray spheres, while hydrophilic regions are represented as red spheres.
In Figure 3, the SARS-CoV-2 protein is presented along with the sites showing the highest
interaction with the ligands. It is noteworthy that the amino acids His41 and Cys145 form
a catalytic dyad [44], making them crucial elements for the subsequent experimental steps.

To identify potential protein binding sites or targets, ProteinsPlus, an online platform
developed by the University of Hamburg, was utilized [45]. This platform primarily
focuses on structure-based modeling, with an emphasis on protein-ligand interactions. Its
functionalities include predicting protonation and tautomerization, categorizing various
interactions in protein-protein complexes, and predicting binding sites and assessing their
druggability, among other tools [45].

The approach is based on the concept of “druggability”, and the result of this assess-
ment is a score that evaluates the feasibility of modifying a target using a small-molecule
drug. This evaluation is crucial in the progression of a drug discovery project, transitioning
from the computational “hit to lead” phase [46]. The druggability is used in drug discovery
to elucidate a biological target, and it can be predicted with an affinity for a drug.
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We applied the DoGSiteScorer tool, which is specialized in detecting binding sites,
relying solely on the three-dimensional structure of the protein to deduce the overall
properties of the pocket, including size, shape, and key characteristics. This tool generates
a druggability score for each pocket, which is calculated based on a combination of three
descriptors: volume, surface, and DrugScore. A higher score on this last parameter indicates
a pocket with greater potential and favorability to be the target of a drug. In this context, it
is desirable to have values that meet an acceptable threshold. These values range from 0.5
to 1.0, and those closer to 1.0 indicate pockets with strong druggability potential [47].

Table 1 shows the volume, surface, and DrugScore values, allowing us to identify the
Mpro structure that is the most suitable for drug targeting based on these three values, thus
advancing us to the next phase of this study.

Table 1. DoGSiteScorer values for different Mpro models.

Protein Volume (Å3) Surface (Å2) Drug Score (Druggability)

7TOB 673.33 790.00 0.81
5R81 623.55 648.20 0.71
5R7Y 618.69 718.99 0.77
5R83 623.80 701.32 0.77
5R7Z 623.89 669.87 0.78
5R82 628.54 764.97 0.72
5R84 588.10 717.52 0.74
6LU7 398.59 629.05 0.73
6M03 523.87 747.87 0.78
6Y2F 600.64 672.26 0.70

6Y2G.A 672.29 756.12 0.80
6Y2G.B 660.16 670.12 0.73

6Y8E 589.38 775.76 0.79
6YB7 529.98 682.30 0.76

For each SARS-CoV-2 main protease protein structure, between seven and nine po-
tential binding pockets were identified. According to the results presented in Table 1, the
7TOB structure exhibits a druggability value of 0.81, positioning it as the candidate with
the highest druggability potential. The 7TOB model corresponds to the Omicron variant
1.1.529, which is characterized by a highly conserved protein among the Mpro variants [41].
Therefore, we decided to select this protein to advance to the next phase of our project.
Virtual screening (VS) studies have been conducted on this main protease structure to
identify natural compounds as inhibitors, like theaflavin and ginkgetin [48].

Figure 4 shows the pocket where the catalytic dyad is located and presents an impor-
tant feature of 7TOB: a volume of 673.22 Å3 and a surface area of 790.0 Å2.
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Figure 4. Mpro 7TOB potential interaction site, in green, defined by “ProteinsPlus” online server.

In Table 2, the residues defined by ProteinsPlus (DrugScore), which match with the
SiteFinder process, are presented. These residues are the most likely to interact with
molecules from the database and will be used in molecular docking. These residues are
visualized in Figure 5 and play a crucial role in molecular docking processes. Some of the
amino acids in the Mpro protein have already been identified as relevant in the literature.
These are the His41 and Cys145 residues, which, as mentioned above, form a catalytic dyad
and can inhibit protein activity [22]. Given the presence of these two residues, they prove
to be a crucial part of inhibitor design [44].

Table 2. List of amino acids that make up the pocket of SARS-CoV-2 Mpro (7TOB).

Thr26, Leu27, His41, Ser46, Met49, Tyr118, Asn119, Phe140, Leu141, Asn142, Gly143, Ser144,
Cys145, His163, His164, Met165, Glu166, Leu167, Pro168, His172, Gln189
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Next, the mutations defining the variants of interest (VOIs) such as B.1.1.7, B.1.351, P,
B.1.617.2, BA.1, BA.2, BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, XB, XBB.1.5, XBB.1.1.6, CH.1.1,
XBB.1.9, XBB.2.3, EG.5.1, XBB.1.5.70, HK.3, and BA.2.86 were examined. ORF1ab substi-
tutions shown in the CoVariants online platform [49] were converted to their respective
amino acid sequence changes in Nsp5, then BLAST (Basic Local Alignment Search Tool,
NIH) was used to align the polyprotein 1ab sequences. From this analysis, none of the
VOIs had mutations in the target sites of the Mpro ligand. The only defining amino acid
substitutions found were K90R for the beta variant B.1.351 and P132H for the Omicron
variants BA.1, BA.2, BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, XBB, XBB.1.5, XBB.1.1.6, CH.1.1,
XBB.1.9, XBB.2.3, EG.5.1, XBB.1.5.70, HK.3, and BA.2.86 (Figure 6).

Pathogens 2024, 13, x FOR PEER REVIEW 8 of 22 
 

 

 
Figure 6. The crystal structure of Mpro. Depiction of the Mpro amino acid substitutions in the SARS-
CoV-2 variants of concern. The purple residue represents the K90R substitution present in the beta 
B.1.351 variant, whereas the green residue represents the P132H substitution present in the Omicron 
variants BA.1, BA.2, BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, and XBB. Defining amino acid changes 
are those that appear at the phylogenetic root of a variant. Figure made with BioRender with a pur-
chased license. 

3.2. Selection of Potential Inhibitors of SARS-CoV-2 Mpro 
Once the Mpro structure and its corresponding binding site were defined, we pro-

ceeded to screen the quantitative structure–activity relationship (QSAR) Toolbox molecu-
lar database (QSAR Analytics S.A., Mexico), which contains 311,750 substances with var-
ious biological activities. We filtered the database using molecular similarity virtual 
screening using the Tanimoto coefficient as the decision criterion. We used twenty-five 
chemical structures of commercial antivirals previously identified as protease inhibitors, 
obtained from DrugBank, as references to determine compounds with high similarity 
with the QSAR Toolbox database, as shown in Table 3. 

Atom-centered fragments together with saturated and aromatic cycles and incident 
pi bond (π bond) similarity variants were employed due to the structural characteristics 
of the antiviral compounds. We exclusively selected chemical structures that exhibited a 
similarity equal to or greater than 90% with respect to each of the antivirals used as refer-
ences, resulting in a total of 2565 identified molecules. The selected molecules, sourced 
from DrugBank, share the common feature of being protease inhibitors and were consid-
ered due to their potential impact on the SARS-CoV-2 Mpro protein. As a result, 2565 mol-
ecules were obtained, as shown in Table 3. 

Table 3. Count of compounds filtered by Tanimoto coefficient and their protease inhibitor reference. 

Protease  
Inhibitor 

Number of 
Analogs 

Activity Target/Uniprot ID References 

ASC09 (TMC-
310911) 

4 
Protease inhibitor (PI) with activity against a vari-
ety of HIV-1 strains including multi-PI-resistant 

strains 

Gag-Pol polyprotein/P03366 
HIV-1 protease/O90777 

Dierynck et al. 
(2011) [50] 

Nelfinavir 16 

Used in the treatment of HIV infection, inhibits vi-
ral proteinase enzyme which prevents cleavage of 

the gag-pol polyprotein, resulting in noninfectious, 
immature viral particles. 

HIV-1 protease/O90777 Kaldor et al. (1997) 
[51] 

Figure 6. The crystal structure of Mpro. Depiction of the Mpro amino acid substitutions in the SARS-
CoV-2 variants of concern. The purple residue represents the K90R substitution present in the beta
B.1.351 variant, whereas the green residue represents the P132H substitution present in the Omicron
variants BA.1, BA.2, BA.4, BA.5, BA.2.12.1, BA.2.75, BQ.1, and XBB. Defining amino acid changes
are those that appear at the phylogenetic root of a variant. Figure made with BioRender with a
purchased license.

3.2. Selection of Potential Inhibitors of SARS-CoV-2 Mpro

Once the Mpro structure and its corresponding binding site were defined, we pro-
ceeded to screen the quantitative structure–activity relationship (QSAR) Toolbox molecular
database (QSAR Analytics S.A., Mexico), which contains 311,750 substances with various
biological activities. We filtered the database using molecular similarity virtual screening
using the Tanimoto coefficient as the decision criterion. We used twenty-five chemical
structures of commercial antivirals previously identified as protease inhibitors, obtained
from DrugBank, as references to determine compounds with high similarity with the QSAR
Toolbox database, as shown in Table 3.

Table 3. Count of compounds filtered by Tanimoto coefficient and their protease inhibitor reference.

Protease
Inhibitor

Number of
Analogs Activity Target/Uniprot ID References

ASC09
(TMC-310911) 4

Protease inhibitor (PI) with activity against a
variety of HIV-1 strains including

multi-PI-resistant strains

Gag-Pol polyprotein/P03366
HIV-1 protease/O90777 Dierynck et al. (2011) [50]
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Table 3. Cont.

Protease
Inhibitor

Number of
Analogs Activity Target/Uniprot ID References

Nelfinavir 16

Used in the treatment of HIV infection, inhibits
viral proteinase enzyme which prevents cleavage

of the gag-pol polyprotein, resulting in
noninfectious, immature viral particles.

HIV-1 protease/O90777 Kaldor et al. (1997) [51]

Baicalein 276
Baicalein is under investigation in clinical trials in

the treatment of healthy adults with influenza
fever.

Lactoylglutathione lyase/Q04760
Tumor necrosis factor/P01375

Xanthine dehydrogenase-oxidase/P47989
L-selectin/P14151

Prolyl endopeptidase/P48147
Polyunsaturated fatty acid

5-lipoxygenase/P09917

Islam et al. (2021) [52]

Remdesivir 3
Nucleoside analog used to treat RNA virus

infections by inhibiting the RNA polymerase
(RdRp) enzyme complex for genomic replication.

Replicase polyprotein 1ab/SARS-CoV:
P0C6X7

SARS-CoV-2: P0DTD1
RNA-directed RNA polymerase L/Q05318

Sheahan et al. (2020) [53]

Bromhexine 305

Mucolytic agent, derived from the Adhatoda
vasica plant; used for a variety of respiratory
conditions associated with increased mucus

secretion.

Transmembrane protease serine 2/O15393
Angiotensin-converting enzyme 2/Q9BYF1 Zanasi et al. (2017) [54]

Ritonavir 61
HIV protease inhibitor used in combination with

other antiviral agents for the treatment of HIV
infection.

Gag-Pol polyprotein/P03366 Hull et al. (2011) [55]

Boceprevir 77

NS3/4A protease inhibitor for hepatitis C virus,
used in combination with other medications to

treat chronic hepatitis C genotype 1 infection. It is
not indicated for use as monotherapy.

Genome polyprotein/P26664 Kiser et al. (2013) [56]

Saquinavir 56

HIV protease inhibitor used in combination with
other antiretroviral agents for the treatment of

HIV-1 in patients with advanced
immunodeficiency.

Gag-Pol polyprotein/P03366 Kupferschmidt et al. (1998)
[57]

Camostat 554 Serine protease inhibitor approved in Japan for
the treatment of chronic pancreatitis. Metal ion binding/P07477 Kitamura et al. (2012) [58]

Simeprevir 2

Direct-acting antiviral agent that inhibits the
HCV NS3/4A protease; used to treat chronic

hepatitis C virus (HCV) infection in adults with
HCV genotype 1 or 4.

Genome polyprotein/P26664 Raboisson et al. (2008) [59]
Bafna et al. (2011) [60]

Cyanidin
3-glucoside 56

Anthocyanidin phytochemical and metabolite
found in several plants such as angiosperms; also

produced by Saccharomyces cerevisiae.

No information about a specific protease.
The ability to inhibit the activity of
cyclooxygenase enzymes has been

demonstrated.

Islam et al. (2021) [52]

Vaniprevir 2
In clinical trials for the treatment and diagnosis of

Hepatitis C, including chronic forms and
genotype 1 infections.

Gag-Pol polyprotein/P03366 Bafna et al. (2011) [60]

Chrysphanol 8′(6-
galloylgluside 16

Anthraquinone derivative isolated from rhubarb;
it has an inhibitory effect on platelet aggregation

induced by collagen and thrombin.
No information about a specific protease. Alamri et al. (2020) [61]

Umifenovir 193
Dual-function antiviral and host-targeting agent

used for the treatment and prevention of
influenza and other respiratory viruses.

No information about a specific protease. Lu et al. (2020) [62]

Darunavir 62
HIV protease inhibitor employed in treating HIV
infection, particularly in patients with a history of

previous antiretroviral therapies.

Aspartic-type endopeptidase activity
UniProt: Q72874 Purohit et al. (2009) [63]

Tipranavir 26 Protease inhibitor used to treat HIV-1 that is
resistant to multiple other protease inhibitors.

Aspartic-type endopeptidase activity
UniProt: Q72874 Doyon et al. (2005) [64]

Gc376 155 Direct-acting antiviral for coronaviruses such as
MERS-CoV, feline, ferret, and mink.

Replicase polyprotein 1ab
SARS CoV II: P0DTD1

Feline: Uniprot Q98VG9
Ye et al. (2020) [65]

Triazavirin 33 Influenza A and B infections Triazavirin is a guanosine nucleotide analog
that inhibits RNA synthesis. Kiselev et al. (2012) [66]

Isocodonocarpine 110 Phytochemical identified in silico for its binding
to SARS-CoV-2 papain. No information about a specific protease Khatib et al. (2016) [67]

Withanolide A 19 Phytochemical that exhibits stronger binding
with Mpro compared to hydroxychloroquine. No information about a specific protease Srivastava et al. (2022) [68]

Iso-mulbel-
rochromene 13 Phytochemical inhibitor identified for inhibition

of 3CLpro protease. No information about a specific protease Tao et al. (2023) [69]

α-Ketoamide- 11r 83
Peptidomimetic compound designed for antiviral

activity against Mpro coronavirus and the
enterovirus 3C protease.

Replicase polyprotein 1ab/P0C6X7 Islam et al. (2021) [52]
Zhang et al. (2020) [70]

Lopinavir 101 HIV-1 protease inhibitor used in combination
with ritonavir for the treatment of HIV infection.

Aspartic-type endopeptidase
activity/Q72874 Sheahan et al. (2020) [53]

x77 174 Standard inhibitor identified for the inhibition of
the 3CLpro protease No information about a specific protease Sharma et al. (2023) [71]

Nafamostat 168

Used in trials studying the prevention of liver
transplantation and postreperfusion syndrome.
Anticoagulant therapy for patients undergoing

continuous renal replacement therapy.

Tumor necrosis factor/P01375
Prothrombin/P00734

Coagulation factor X/P00742
Serine protease 1/P07477

Kallikrein-1/P06870
Intercellular adhesion molecule 1/P05362

Hoffmann et al. (2020) [72]
Yamamoto et al. (2016) [73]

Total analogs 2565
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Atom-centered fragments together with saturated and aromatic cycles and incident
pi bond (π bond) similarity variants were employed due to the structural characteristics
of the antiviral compounds. We exclusively selected chemical structures that exhibited
a similarity equal to or greater than 90% with respect to each of the antivirals used as
references, resulting in a total of 2565 identified molecules. The selected molecules, sourced
from DrugBank, share the common feature of being protease inhibitors and were considered
due to their potential impact on the SARS-CoV-2 Mpro protein. As a result, 2565 molecules
were obtained, as shown in Table 3.

We then proceeded to filter the compounds from our joint database (public + in-house)
by virtual screening. The three-dimensional model of the Mpro 7TOB protein of SARS-CoV-
2 was used as the receptor and the total of 2565 (QSAR Toolbox) and 250 (LQM series)
compounds as ligands.

Virtual screening was performed in duplicate using two docking engines (AutoDock
Vina and MOE) as consensus to compare the trend of the calculated scores [43,74,75].
Ensitrelvir (S-217622) and Atazanavir (BMS-232632) molecules were also included in the
screening as reference ligands to compare the binding affinity score with the molecules
studied here as these ligands have shown in vitro and in vivo activity and are even in
clinical trial phases [76].

The preparation of AutoDock Vina input files was as follows: Using the AutoDock-
Tools (ADT), the atomic coordinates of the SARS-CoV-2 main protease model were read
from the PDB 7TOB file. The corresponding protein protonation was performed; then, the
non-polar hydrogens were merged and the corresponding atomic partial Kollman charges
were added. The receptor–ligand interaction zone was defined to include the amino acids
identified above, generating a search box with the following dimensions: 25.50 Å × 28.05
Å × 25.50 Å (x, y, z) with the center located at an average distance from the atoms of the
catalytic dyad (Cys145 and His41). Figure 7 illustrates the search box used for virtual
screening. To prepare the ligand files, the PyRx tool was used to convert our compounds to
the pdbqt format required for use in AutoDock Vina [77].
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The MOE protocol was as follows: the alpha triangle matching algorithm was used to
calculate initial poses for each molecule and, using the London dG scoring function, the
100 poses were obtained. These poses were refined and optimized, keeping the receptor
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rigid and evaluating with the GBVI/WSA dG scoring function, resulting in a total of 50 pose
results for each ligand.

As a result of this filtering process, 22 compounds from the QSAR Toolbox database
and 10 compounds from the LQM series were identified and are presented in the Table 4.
The score values for each of the ligands obtained by the different docking engines are
presented. The ligands with the most favorable interaction energy among the 32 compounds
are highlighted: MproL6 and LQM 778.

Table 4. Predicted score values by AutoDock Vina and MOE for 32 selected compounds.

Ligand Structure AutoDock Vina Score
(kcal/mol)

MOE Score
(kcal/mol)

Residues of the Mpro That
Interact with the Ligands

Ensitrelvir (S-217622)
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Table 4. Cont.

Ligand Structure AutoDock Vina Score
(kcal/mol)

MOE Score
(kcal/mol)

Residues of the Mpro That
Interact with the Ligands

MproL21
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Figures 8 and 9 show the active site of Mpro complexes with Ensitrelvir (S-217622)
and Atazanavir (BMS-232632) respectively. Interactions as a hydrogen bond with Thr-26
phenoxy group (H—π interaction) and Asn 142 amide sidechain also appear in the complex
with the compound LQM 778. Figure 10 shows the active site of the complex formed with
the ligand LQM 778. Although some nearby amino acids do not form direct interactions
with the ligand, there is geometric and hydrophilic complementarity.

Three molecular dynamics simulations of systems involving the Mpro protein were
performed: one simulation of the protein without the ligand, called apo-form, and two
simulations with Mpro complexes, one with the ligand MproL6 and the other with LQM 778.
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The systems for molecular dynamics simulations were prepared using the MOE
2022.02. software. Starting from the representative pose for each system, the system
was solvated in a cubic water box at periodic conditions (P1, 95 Å per side) and Na+

and Cl- counterions were added. Once solvated, a structural minimization of the whole
system was performed. The input files were generated to run the molecular dynamics
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simulations in NAMD 2.13 software [78] using the Amber 14 force field, and the following
protocol was established: first, a gradual heating stage from 0 to 300 K for 1 ns, followed
by an equilibrium stage at 300 K and 1 atm pressure for 4 ns, to finally generate a 100 ns
production stage where the pressure and temperature conditions were 300 K and 1 atm.
For the molecular dynamic simulations, we used a cutoff of 12 and a time step of 0.002 fs.

After completing the molecular dynamics simulations, the following statistical pa-
rameters were calculated for each of these systems: RMSD (root mean square deviation)
(Figure 11), RMSF (root mean square fluctuation) (Figure 12), and ROG (radius of gyration)
(Figure 13).
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The results obtained after calculations reveal that the two systems with ligands have a
lower fluctuation in the RMSD values. It is observed that the system in its apo-form reaches
a maximum distance of 3.5 Å, in contrast to the system with the MproL6 ligand, which
reaches a maximum distance of 3.1 Å. Finally, the system with the LQM 778 ligand has a
maximum distance of 2.3 Å, suggesting that the complexes are more stable. Both ligands
could maintain protein stability once they bind to the pocket.

Figure 12 shows the RMSF results, which allow us to identify the flexibility of the
protein throughout the simulation, as shown in horizontal columns. The first two yellow
columns indicate the region where the His41 and Cys145 residues are located. In addition,
other areas are identified, such as that near residue 150, where the apo-protein showed an
increase in its RMSF value, suggesting that once the ligands interact with the protein, the
fluctuation of this region decreases. Finally, there is a noticeable fluctuation in the region
near position 250; although it is not a significant fluctuation, it represents a distance greater
than 6 Å in the apo-protein, which decreases in the plots with ligands. Therefore, it can be
suggested that the protein remains in the states with more favorable stability and does not
undergo deformations in its structure.

Figure 13 displays the radius of gyration of the systems: MproL6 ligand in red, LQM
778 ligand in purple, and the SARS-CoV-2 Mpro protein in blue in its apo-form. Nonhomo-
geneous behavior among the structures can be observed at the beginning of the simulation
and up to 50 ns. However, starting at 60 ns, the proteins maintain homogeneous behavior,
indicating the stability of the system.

From the results obtained thus far, based on this analysis, it can be suggested that our
identified candidate drugs could potentially be effective against circulating SARS-CoV-2
variants. Currently, the antiviral activity of these compounds is being evaluated in vitro in
the laboratory of Dr. L. Abrahamyan (University of Montreal, Quebec, Canada).

4. Conclusions

In this study, our group investigated one of the key molecular targets of SARS-CoV-2,
the protease Mpro, of which, the PDB model 7TOB crystal structure served as a central
target in our in silico molecular repositioning studies with diverse biological activities.
Using a virtual screening (VS) approach, we applied the concept of repositioning using
two databases, one external and one generated by our group. This approach allowed us to
identify molecules with high potential as promising Mpro inhibitors.



Pathogens 2024, 13, 887 17 of 20

The computational studies consisted of estimating the activity of a selection of
molecules—a joint database composed of those from an in-house LQM series and the
QSAR Toolbox database—against Mpro SARS-CoV-2. Two docking software were used to
calculate an interaction score and, by consensus of the results, the molecules were ranked by
best energy value. As a result of this process, we identified a total of thirty-two promising
candidates, twenty-two from the external database and ten from our own collection of
the LQM 700 series. Notably, the most relevant interactions with the protein residues
His41 and Cys145 remained constant in all candidates, validating the robustness of our
findings. Thus, by a comprehensive analysis of the in silico results, we determined that
two molecules have significant potential as antiviral agents against SARS-CoV-2: MproL6
and LQM 778. These findings were supported by an assessment of computational integrity,
including RMSD, RMSF, and radius of gyration, increasing confidence in their potential
candidacy for future research and development. Furthermore, given that SARS-CoV-2 is in
constant genetic evolution, looking at the latest variants revealed that the only significant
amino acid substitutions found in the latest variants are in the K90R and P132H positions.
This may suggest that our inhibitors identified in this study could target the Mpro of the
latest SARS-CoV-2 variants, making them of great interest, especially in the context of the
emergence of novel variants. With further in vitro and in vivo research, our results in this
article can give rise to an arsenal of molecules against COVID-19.
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