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Abstract: Free-living amoebae (FLA) are prevalent in diverse environments, representing various
genera and species with different pathogenicity. FLA-induced infections, such as the highly fatal
amoebic encephalitis, with a mortality rate of 99%, primarily affect immunocompromised individuals
while others such as Acanthamoeba keratitis (AK) and cutaneous amebiasis may affect immunocompe-
tent individuals. Despite the prevalence of FLA, there is a lack of standardized guidelines for their
detection near human habitats. To date, no studies on the isolation and identification of FLA in envi-
ronmental soil samples in Warsaw have been published. The aim of this study was to determine the
presence of amoebae in soil samples collected from Warsaw parks and squares frequented by humans.
The isolated protozoa were genotyped. Additionally, their pathogenic potential was determined
through thermophilicity tests. A total of 23 soil samples were seeded on non-nutrient agar plates
(NNA) at 26 ◦C and monitored daily for FLA presence. From the total of 23 samples, 18 were positive
for FLA growth in NNA and PCR (78.2%). Acanthamoeba spp. was the most frequently isolated genus,
with a total of 13 positive samples (13/18; 72.2%), and the T4 genotype being the most common.
Moreover, Platyamoeba placida (3/18; 16.7%), Stenamoeba berchidia (1/18; 5.6%) and Allovahlkampfia sp.
(1/18; 5.6%), also potentially pathogenic amoebae, were isolated. To our knowledge, this is the first
report of FLA presence and characterization in the Warsaw area.

Keywords: Warsaw; soil; free-living amoebae; Acanthamoeba; T4 genotype

1. Introduction

Free-living amoebae (FLA), a polyphyletic group of heterotrophic protists, are pro-
tozoans with a worldwide distribution [1]. These organisms, known for their ubiquity
and opportunistic nature, inhabit various natural environments, including air, freshwater
bodies such as ponds, hot springs, lakes, and rivers, as well as saline environments, dust,
sediments, and soil [2–6]. Additionally, they have been identified in samples from artificial,
anthropogenic settings such as ventilation systems, public swimming pools, bottled mineral
water, contact lenses, dialysis units, and dental instruments [7,8]. Moreover, FLA have been
documented as part of the natural microbiota of certain fish, mammals, and reptiles [1].
While FLA play a significant role in environmental microbiota, comprehensive research
regarding their distribution remains insufficient. Taxonomically, FLA classification remains
under investigation, with current classifications relying on morphological, biochemical,
and molecular characteristics, thus categorizing pathogenic amoebae into two supergroups:
Amoebozoa and Excavata [9].

The life cycle of an amoeba typically comprises two discernible stages: the trophozoite,
characterized by active feeding and motility, and the highly resilient cyst stage that can
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survive in the environment under unfavorable conditions such as lack of food or extreme
pH, temperature, and salinity ranges [1,10].

As organisms of varying pathogenicity potential, FLA can pose a threat to human
health and life. Diseases caused by FLA are neglected, difficult to diagnose, problem-
atic to treat, and often fatal. Examples of such diseases include Acanthamoeba keratitis
(AK) and granulomatous amoebic encephalitis (GAE) caused by Acanthamoeba spp., pri-
mary amoebic meningoencephalitis (PAM) caused by Naegleria fowleri, balamuthia amoebic
encephalitis (BAE) caused by Balamuthia mandrillaris and pulmonary or cutaneous acan-
thamebiasis [1,11]. Moreover, FLA can act as biological vectors, so-called “Trojan horses”,
and can carry various Microsporidia and pathogenic amoeba-resisting bacteria (ARB) such
as Legionella pneumophila, Mycobacterium leprae, and Pseudomonas spp. Interactions between
FLA and microorganisms exhibit both mutualistic and parasitic dynamics. FLA facilitate
the dissemination of microorganisms in the environment, further supporting their growth,
as evidenced by studies on Legionella pneumophila. Bacteria expressing ARB can successfully
survive within both the trophozoite and cyst stages of FLA, possibly posing a threat to
human health [10,12–14].

Warsaw is a central European metropolis and the capital of Poland belonging to the
Mazovia Voivodeship, with a current population of over 1.8 million inhabitants. The city
covers an area of 517.2 square kilometers. It is the most densely populated city in Poland
(3600 people per square kilometer). Warsaw is located in the umber-transitional climate
zone with the influence of both continental and oceanic air masses throughout the year,
resulting in highly variable weather patterns in the region [15,16].

Infections caused by FLA may be fatal and life-threatening, especially for immuno-
compromised people represented by the growing population of individuals with AIDS,
organ transplant recipients, cancer, and diabetes patients, as well as pregnant women and
children. Despite being considered a rare disease, the global incidence of confirmed FLA in-
fections is steadily increasing. Given all the above, and knowing the challenges in accurate
diagnosis and effective treatment of FLA infections, coupled with ongoing climate warming
trends, research efforts should be undertaken to assess the risk of FLA infection from the
environment [3,17]. Therefore, the aim of this study was to determine the prevalence and
potential pathogenicity of FLA in the human environment in the Warsaw area.

2. Materials and Methods
2.1. Sampling Site

All 23 soil samples were taken from parks and squares in the urban agglomeration of
Warsaw (Figure 1). The sites for the collection of material for testing were chosen because
of the potentially increased risk of contact and, consequently, of FLA infection. These
locations are very popular among both residents and tourists. All samples were collected
directly from the ground surface using a sterile laboratory spatula into 15 mL sterile falcons
in September 2022. During their acquisition, the air temperature oscillated between 9 and
14 ◦C. The material obtained was stored at 4 ◦C until further processing in the laboratory.

List of sites from which soil samples were collected:

1. Zaslaw Malicki Park (WAWA)
2. Szczęśliwicki Park (WAWB)
3. Olszyna Park (WAWC)
4. Kaskada Park (WAWD)
5. Krasiński Garden (WAWE)
6. Saski Garden (WAWF)
7. Świętokrzyski Park (WAWG)
8. Arkadia Park (WAWH)
9. Park named after the Home Army ‘Granat’ Group (WAWI)
10. Pola Mokotowskie (2 samples) (WAWJ, WAWK)
11. Royal Łazienki Park (2 samples) (WAWL, WAWM)
12. Marshall Edward Rydz-Smigly Park (WAWN, WAWO)
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13. Stefan Wiechecki “Wiecha” Park (WAWP)
14. Praski Park (WAWR)
15. Skaryszewski Park (3 samples) (WAWS, WAWT, WAWU)
16. Edward Szymański Park (WAWW, WAWX)
17. Górczewska Park (WAWY)
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Figure 1. Geographical location of the samples.

2.2. FLA Culture

Isolation and cultivation of amoebae was performed at Parasitology Laboratory, De-
partment of Medical Biology, Medical University of Warsaw, Poland. Small amounts of
soil samples (about 1 g) were seeded onto an NNA medium at room temperature using a
sterile metal spatula. The seeding process was performed close to the flame of the burner,
to maintain sterile conditions and to minimize the risk of contamination of the substrate
with microorganisms present in the air. Each petri dish was labelled with a letter (corre-
sponding to the sampling location) and the date of the culture, and they were protected by
sealing with Parafilm. The plates were incubated at room temperature for 24–48 h, after
which the presence of FLA was assessed. If amoebae were suspected, a replicate was per-
formed. The process of creating replicates continued until pure, fungus-free monocultures
were obtained.

2.3. Thermophilicity

A small piece of agar was applied to the 6-well plate containing the NNA medium
with the bottom up from the plates containing the monocultures. All steps were performed
close to the flame of the burner. A total of three sets of plates were obtained, each con-
sisting of four six-well plates. The plates were left for two weeks at room temperature,
to obtain growth of amoebae throughout the substrate and to obtain the same or similar
developmental stage of the isolated FLA. Then, after microscopic verification of the growth
of the amoebae, set one was placed at 45 ◦C, set two at 37 ◦C, and set three was left at room
temperature as a control. The plates were incubated at their respective temperatures for
4 days.

2.4. DNA Extraction

Wizard® Genomic DNA Purification Kit was used to extract FLA DNA from amoeba-
positive samples. PAS solution was added to a Petri dish and the amoebae were then
scraped with a sterile laboratory scraper. The solution was then centrifuged for 10 min at
2500 RPM to obtain a pellet. DNA was isolated from these samples using the instructions
provided by the manufacturer under “Isolating Genomic DNA from Tissue Culture Cells
and Animal Tissue”.
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2.5. PCR and Molecular Characterisation of Isolates

PCR amplification of the 18S rRNA gene from the extracted DNA was carried out using
two universal primers listed in Table 1. The PCR reactions were performed in 40 cycles with
denaturation (95 ◦C, 30 s), annealing (55 ◦C, 30 s) and primer extension (72 ◦C, 1 min) for
FLA primers. However, in the case of Acanthamoeba spp. primers (JDP-1/2), the PCRs were
performed in 40 cycles with denaturation (95 ◦C, 30 s), annealing (50 ◦C, 30 s) and primer
extension (72 ◦C, 30 s) [10]. After the last cycles, the primer extension was maintained
for 7 min at 72 ◦C. PCR products were run on a 1% (w/v) agarose gel in 1xTAE (Tris
acetate-EDTA) buffer stained with ethidium bromide and analyzed under UV light using
the Gel DocTM EZ Imager instrument (BIO-RAD). Sequencing of positive PCR products
was performed in the Laboratory of DNA Sequencing and Oligonucleotide Synthesis (IBB
PAS, Warsaw, Poland). Species identification was based on sequence homology analysis by
comparison with the available DNA sequences in the GenBank database.

Table 1. Primers used in the study.

Name 5′-3′ Sequence Tm [◦C] Amplicon
Length [bp] Source

FLA-F CGCGGTAATTCCAGCTCCAATAGC
55 ~800 [18]

FLA-R CAGGTTAAGGTCTCGTTCGTTAAC

JDP-1 GGCCCAGATCGTTTACCGTGAA
50 ~500 [19]

JDP-2 TCTCACAAGCTGCTAGGGGAGTCA

2.6. Phylogenetic Analysis

Phylogenetic analysis based on the partial 18S rRNA gene sequences was performed
on the Phylogeny.fr website (https://www.phylogeny.fr/phylogeny.cgi, accessed on 26
February 2024) [20]. After alignment with MUSCLE [21] v3.8.31, ambiguous regions were
removed with Gblocks (v0.91b) using the default parameters [22]. The phylogenetic tree
was reconstructed using the maximum likelihood method implemented in the PhyML
program (v3.1/3.0 aLRT), using the default parameters [23,24]. Graphical representation
and editing of the phylogenetic tree were performed with TreeDyn (v198.3.) [25].

3. Results
3.1. FLA Culture

Of the 23 soil samples analyzed, 18 showed the presence of FLA. The mother plates, as
well as the replicates formed from them, were assessed using an optical inverted microscope
(MW 50 OPTA-TECH, OPTA-TECH, Warsaw, Poland) at 400× magnification. The presence
of FLA was visualized using an OPTA-TECH MI5FL 5 MP digital camera (OPTA-TECH,
Warsaw, Poland) at 400× magnification (Figures 2–6).

3.2. Thermophilicity

In plates left at room temperature, no significant morphological changes were ob-
served, the amoebae covered the surface of the substrate more densely, and some tropho-
zoites encysted. The crawlers incubated at 37 ◦C had mostly transformed into cysts, which
were mainly present in groupings of a few/some. Few trophic forms were found, which
were characterized by smaller sizes compared to trophozoites in samples residing at room
temperature. When incubated at 45 ◦C, the number of amoebae present as trophozoites
was significantly reduced, they were distributed in close proximity to each other and were
characterized by smaller sizes compared to trophozoites present in samples incubated at
room temperature. Cysts were found in the majority of the samples, forming clusters, and
in three of the samples cysts were observed with walls formed into a characteristic star
shape. A summary of the results of the experiment is presented in Table 2.

https://www.phylogeny.fr/phylogeny.cgi
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Figure 6. Petri dish containing monoxenic FLA cultures (A) and visualized FLA on NNA (B) (Sample
WAWS: Acanthamoeba polyphaga). Arrows indicate examples of trophozoites.

Table 2. Summary of thermotolerance test results. T—trophozoite, C—cyst, “-”—not detected, “.”
impossible to determine the number unequivocally, “ND”—no data (grey color indicates samples in
which an increase in the number of trophozoites was found after incubation at a given temperature).

Sample
Room Temperature 37 ◦C 45 ◦C

Before After Before After Before After

WAWA
T = 20 T = 40 T = 10 T = 4 T = 10 T = 30

- - - C = 10 - -

WAWC
. T = 50 T = 10 . T = 20 .

- C = 60 - - - -

WAWE
T = 30 T = 100 T = 30 T = 40 T = 40 T = 6

- - - C = 40 - C = 40

WAWF
T = 60 T = 14 T = 20 - T = 6 T = 5

C = 80 C = 330 C = 240 C = 240 C = 350 C = 260

WAWG
T = 30 T = 20 T = 20 T = 40 T = 20 T = 30

C = 40 C = 20 C = 40 C = 40 C = 30 C = 20

WAWI
T = 260 T = 160 T = 70 T = 40 T = 6 T = 140

C = 30 - - C = 10 C = 40 C = 70

WAWK
. T = 80 . . . .

- C = 50 - . . .

WAWL
T = 150 T = 6 T = 10 T = 20 T = 8 T = 30

C = 170 C = 220 C = 150 C = 210 C = 90 C = 140

WAWM
T = 1 T = 20 - - - -

C = 40 C = 120 C = 20 C = 70 C = 20 C = 20

WAWN ND

WAWO
T = 30 T = 40 T = 20 - T = 30 -

C = 9 C = 40 C = 8 C = 100 C = 30 C = 110
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Table 2. Cont.

Sample
Room Temperature 37 ◦C 45 ◦C

Before After Before After Before After

WAWO
T = 30 T = 40 T = 20 - T = 30 -

C = 9 C = 40 C = 8 C = 100 C = 30 C = 110

WAWP
T = 10 T = 10 T = 5 T = 20 T = 10 -

C = 80 C = 170 C = 90 C = 150 C = 200 C = 50

WAWR
T = 20 T = 30 T = 15 T = 20 T = 20 -

C = 90 C = 190 C = 20 C = 230 C = 100 C = 20

WAWS
T = 9 T = 40 T = 10 T = 8 - -

C = 1 C = 40 C = 40 C = 20 C = 80 C = 60

WAWT
. T = 100 T = 50 T = 20 T = 40 -

- - - - - C = 3

WAWU ND

WAWW
T = 100 T = 30 T = 20 T = 20 T = 7 -

C = 120 C = 250 C = 40 C = 120 C = 100 C = 40

WAWY
T = 20 T = 7 T = 40 T = 2 T = 40 -

C = 120 C = 160 C = 100 C = 130 C = 70 C = 240

3.3. Molecular Characterisation of Isolates

From the total of 23 samples, 18 were positive for FLA growth in NNA and PCR
(78.2%) (Table 3). Acanthamoeba spp. were the most abundantly isolated species, with a
total of 13 samples (13/18; 72.2%), with the T4 genotype being the most common (12/13;
92.3%) followed by A. polyphaga (1/13; 7.7%). Additionally, we found Platyamoeba placida
(3/18; 16.7%), Stenamoeba berchidia (1/18; 5.6%) and Allovahlkampfia sp. (1/18; 5.6%).

Table 3. Report of the FLA species isolated from environmental soils of Warsaw parks (NNA: FLA
growth in non-nutrient agar culture; PCR: FLA detection by PCR using FLA or JDP primer pair; bp:
base pairs; Homology (%) related to NCBI DataBase sequence).

Sample Code NNA PCR Primers Isolated Species Seq Length (bp) Identity (%) ID BLASTn

WAWA + FLA Platyamoeba placida 850 >95% AY294150.1

WAWC + JDP Acanthamoeba sp. T4 426 >98% KP863877.1

WAWE + FLA Stenamoeba berchidia 856 >89% KF547922.1

WAWF + JDP Acanthamoeba sp. T4 430 >97% OM414934.1

WAWG + FLA Platyamoeba placida 842 >97% AY294150.1

WAWI + JDP Acanthamoeba sp. T4 416 >89% MT893156.1

WAWK + JDP Acanthamoeba sp. T4 416 >99% KP863877.1

WAWL + FLA Allovahlkampfia sp. 837 >98% KF547914.1

WAWM + JDP Acanthamoeba sp. T4 426 >99% KJ094691.1

WAWN + FLA Platyamoeba placida 844 >97% AY294150.1

WAWO + JDP Acanthamoeba sp. T4 420 >95% KP756958.1



Pathogens 2024, 13, 895 9 of 13

Table 3. Cont.

Sample Code NNA PCR Primers Isolated Species Seq Length (bp) Identity (%) ID BLASTn

WAWP + JDP Acanthamoeba sp. T4 424 >98% KJ094675.1

WAWR + JDP Acanthamoeba sp. T4 435 >98% LC373013.1

WAWS + JDP Acanthamoeba polyphaga 409 >98% AY026244.1

WAWT + JDP Acanthamoeba sp. T4 426 >99% KJ094691.1

WAWU + JDP Acanthamoeba sp. T4 434 >87% OM414922.1

WAWW + JDP Acanthamoeba sp. T4 421 >95% OP164621.1

WAWY + JDP Acanthamoeba sp. T4 430 >99% KJ094675.1

A total of 18 partial FLA 18S rRNA gene sequences obtained in this study were
deposited in the Genbank database. All deposited sequences showed homologies above
89% to DNA sequences present in this database (Table 3). The phylogenetic relationship was
inferred by using the maximum likelihood method based on the HKY85 model [23,24]. The
gamma shape parameter was estimated directly from the data (gamma = 4.596). Reliability
for the internal branch was assessed using the aLRT test (SH-Like). The tree with the
highest log likelihood (−1290.58646) is shown in Figure 7.
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Figure 7. Phylogenetic tree showing the relationship of the 18 newly isolated Amoebozoa strains,
based on their partial 18S rRNA gene sequences. Branches with support value smaller than 50%
were collapsed. Bootstrap values are shown as % next to the branches. Leaf names with the strains
isolated in this study are marked with an asterisk (*). The tree is drawn to scale, with branch lengths
measured in the number of substitutions per site (0.2). The GenBank accession numbers of the 18S
rRNA sequences used to build the tree are as follow: Stenamoeba berchidia, KF547922.1; Acanthamoeba
polyphaga, AY026244.1; Allovahlkampfia sp, KF547914.1; Platyamoeba placida, AY294150.1; Acanthamoeba
genotype T4, KP756958.1.

4. Discussion

The above experimental study focuses on the detection and molecular characterization
of FLA strains isolated from soil samples. While diseases induced by amoebae are more
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commonly associated with tropical climates, occurrences, particularly concerning corneal
AK infections, have been documented also in temperate regions like Poland, Germany,
and Hungary [24–28]. Nevertheless, the absence of specific and effective diagnostic and
treatment regimens for FLA-related conditions prompts further research in this area. Envi-
ronmental research on FLA worldwide includes samples derived mainly from air, water,
and soil of both natural and man-made environments [2,4,7,10].

Researchers from Spain have also investigated the occurrence of FLA in soil. The
samples analyzed came from beaches, gardens, and agricultural fields on the island of
Santiago, part of the Cape Verde archipelago. In total, 26 soil samples were analyzed, with
17 of them containing FLA, representing 65.4% of all samples. Molecular analyses revealed
that the predominant genus of amoebae identified was Acanthamoeba, representing 82.4%
of the FLA detected. Similar results of FLA prevalence and characterization were obtained
also in our study [10].

In the densely populated Warsaw agglomeration, no research has been carried out
on the occurrence of amoebae in the environment so far. Our findings align with research
conducted in 2015 in Poznan, where amoebae belonging to the genus Acanthamoeba were
isolated from soil samples obtained from sandpits within the city’s playgrounds. However,
identification of the genus was conducted only through microscopic examination of trophic
forms and cysts observed. The potential pathogenicity was determined by infecting mice,
with intranasal inoculation, with a suspension containing isolated amoebae. Among the
13 sandpits examined, pathogenic amoebae were detected in 7, with the FLA exhibiting
the highest virulence identified in a sandpit situated near Lake Malta. These findings
underscore the importance of continued environmental surveillance and risk assessment to
safeguard public health, particularly in recreational areas frequented by children [29].

In a 2014 publication, Adamska et al. presented findings from their study conducted
in Poland, focusing on environmental water samples collected from various sources such
as rivers, lakes, and marine composting sites. The study revealed the detection of the
Acanthamoeba genus in 6.5% of the samples and the species H. vermiformis in 3.5% of the
samples. The study concluded that the most detected genotype of Acanthamoeba spp.
was T4, which is consistent with the results obtained in this study. Notably, the majority
of AK infections in Poland and globally have been associated with this genotype [30].
Similarly, a paper from 2015 authored by Leońska-Duniec et al. investigated the presence
of FLA in 86 samples obtained from three distinct water bodies, including outdoor and
indoor swimming pools, firefighting reservoirs, fountains, and water networks. The
results identified the presence of Acanthamoeba genotypes T4, T6, and T16, as well as
H. vermiformis species. Both studies performed thermophilicity exams that confirmed
the potential pathogenicity of 10% and 8.1% of the isolates, respectively [31]. In 2013,
Cholewinski et al. published an article focusing on the isolation and assessment of the
pathogenicity of amoebae extracted from sand samples obtained from urban sandpits. The
study findings revealed the presence of pathogenic amoebae belonging to the Acanthamoeba
genus in 7 out of 13 samples [32].

In our study, the FLA identified predominantly align with the environmental origins of
the samples. We isolated Acanthamoeba spp., noting that the T4 genotype, commonly linked
to human infections, exhibits higher transmissibility and virulence [31,33]. Acanthamoeba sp.
T4 genotype was the most frequent isolated genus in our samples, with a total of 13 positive
samples (72.2%) of which 4 isolates (30.7%) showed increased temperature tolerance.
The increased thermotolerance of Acanthamoeba spp. correlates with their pathogenicity.
Therefore, the ability of Acanthamoeba spp. to grow at high temperatures may provide a
good indicator of the pathogenic potential of a given isolate. However, the mechanisms by
which pathogenic Acanthamoeba adapt to high temperatures and sustain metabolic activities
require further study [34]. Among other protozoa species identified, Platyamoeba placida
and Stenamoeba berchidia were also sporadically found by other authors [35]. Notably,
our research marks the first documentation of Allovahlkampfia spp. in soil samples from
Poland, a discovery that expands our understanding of FLA distribution. The isolation
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of Allovahlkampfia sp., hitherto known for its elusive presence and challenging treatment
profile, underscores its significance. Furthermore, we examined its thermophily profile,
which corroborates its potential pathogenicity, presenting a new dimension in studying
FLAs and their implications for public health [36,37].

The results obtained from the current study confirm the ubiquitous presence of free-
living amoebae in the soil. In our study, 44.5% of isolates showed increased thermophilic-
ity which contrasts with the studies performed by other authors, suggesting potential
pathogenicity and raising concerns regarding the development of these diseases.

5. Conclusions

The soil analyzed from the Warsaw area serves as a reservoir for FLA, confirming
their cosmopolitan nature. Acanthamoeba genus was found in most of the isolates with
the T4 genotype being the most frequently identified in human infection cases. Moreover,
44.5% of the isolated amoebae cultures exhibited growth at temperatures of 37 ◦C or above,
indicating potential pathogenicity. The presence of pathogenic amoebae in environments
close to humans, such as parks and squares, poses a significant threat to human health.
However, based on the immunological studies, we know that humans are exposed to
free-living amoebae regularly. We still do not fully understand why some people become
infected while others do not. There is still room for other free-living amoebae, which have
not yet been associated with human diseases, but may be in the future [38]. Therefore,
further research should be carried out to determine the epidemiological risk associated with
these pathogens and explore strategies for their eradication. Moreover, to our knowledge,
this is the first report of potentially pathogenic FLA isolated from soil samples in the
Warsaw area.
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