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Abstract: There is an increasing need to develop alternative antimicrobials to replace currently used
antibiotics. Phytochemicals, such as essential oils, have garnered significant attention in recent years
as potential antimicrobials. However, the mechanisms underlying their bactericidal activities are not
yet fully understood. In this study, we investigated the bactericidal activity of eugenol oil against
Salmonella enterica serovar Typhimurium (S. Typhimurium) to elucidate its mechanism of action. We
hypothesized that eugenol exerts its bactericidal effects through the production of reactive oxygen
species (ROS), which ultimately leads to cell death. The result of this study demonstrated that the
bactericidal activity of eugenol against S. Typhimurium was significantly (p < 0.05) mitigated by
thiourea (ROS scavenger) or iron chelator 2,2′-dipyridyl, supporting the hypothesis. This finding
contributes to a better understanding of the killing mechanism by eugenol oil.
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1. Introduction

Foodborne diseases are among the most significant public health challenges world-
wide [1]. In the United States alone, these diseases affect millions of people, causing
substantial morbidity and mortality, and costing billions of dollars annually, and are of
global concern as well [2–4]. Only non-typhoidal Salmonella (NTS) serovars can be trans-
ferred from animals to humans and detected in a wide range of animal hosts [5,6]. Therefore,
controlling Salmonella in food production and processing is critically important [6]. The
emergence of Salmonella strains resistant to third-generation cephalosporins and other
antibiotics, particularly those encoded on plasmids, is a growing concern as it can lead to
the further dissemination of antibiotic resistance [5,7,8]. Thus, research into alternative an-
timicrobials to limit Salmonella dissemination is urgently needed [6]. Medicinal plants have
become a promising source of antimicrobial compounds for treating bacterial infections,
with studies showing the bactericidal activities of phytochemicals such as eugenol [9,10].

Eugenol oil is an essential oil derived from plants such as clove, nutmeg, cinnamon,
and basil, and mainly contains eugenol (C10H12O2) [10]. It showed antibacterial activity
against Helicobacter pylori [11]. Jafri et al. [12] found that a 1% eugenol solution reduces the
viability of Candida albicans and Streptococcus mutans in biofilms Another study showed
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its antibacterial effects against Salmonella Typhi [13]. Eugenol disrupts bacterial cell mem-
branes and increases permeability [13–15]. In pathogens such as Candida albicans, this
leads to cytoplasmic leakage and superoxide anions (ROS) accumulation [15]. The ROS
accumulation causes oxidative stress, damaging proteins, lipids, and DNA. In Escherichia
coli, eugenol treatment increased divalent cations and membrane depolarization, enhancing
its antibacterial activity [14].

Thiourea is a scavenger of hydroxyl radicals (•OH), one of the most reactive and
damaging ROS [16]. Thiourea can react with hydroxyl radicals and hydrogen peroxide,
neutralizing them and preventing oxidative damage [16]. Additionally, 2,2′-dipyridyl
inhibits ROS formation by chelating iron ions, thereby preventing reactions that generate
ROS, such as the Fenton and Haber–Weiss reactions [16]. By chelating these metal ions, it
prevents them from participating in oxidation–reduction reactions that generate ROS. By
binding to iron, 2,2′-dipyridyl prevents iron from catalyzing this reaction, thereby reducing
the production of hydroxyl radicals and other ROS [16]. Korobov et al. [17] used 2,2′-
dipyridyl to show the bactericidal effect of the bacteriocin warnerin on Staphylococcus cohnii
was via ROS accumulation. Similarly, in the current study, thiourea and 2,2′-dipyridyl were
used to confirm the role of ROS in the bactericidal mechanism of eugenol. We hypothesized
that eugenol would decrease S. Typhimurium survival while the addition of thiourea or
2,2′-dipyridyl would increase Salmonella survival as compared to eugenol alone.

2. Materials and Methods
2.1. Experimental Design

Salmonella Typhimurium strain 14028s obtained from ATCC (Manassas, VA, USA) and
used in this study was streaked on Luria–Bertani (LB) agar (Fisher Scientific; Waltham, MA,
USA) plates and incubated aerobically overnight at 37 ◦C. The following day, a single colony
was picked, inoculated in LB, and incubated at the same atmosphere and temperature. The
next day, the culture was reinoculated in new LB broth until it reached an optical density of
0.6 at 600 nm (4.8 × 108 CFU/mL). The culture was subsequently separated into four groups:
a control group (no treatment) and three different treatment groups with 4 replications per
treatment. The first treatment group consisted of cell cultures treated with 1% eugenol
(Thermo Fisher Scientific, Waltham, MA, USA). In the second group, 150 mM thiourea (VWR
Chemicals, Sanborn, NY, USA) was added along with 1% eugenol. In the third group, 500 µM
Dip (2,2 dipyridyl; VWR Chemicals) was added along with 1% eugenol.

The treatments were then incubated aerobically at 37 ◦C. All groups were serially
diluted and spread-plated on LB agar. The plates were incubated aerobically at 37 ◦C
overnight. The next day, colony-forming units (CFU/mL) were measured and recorded for
statistical analysis (Figure 1). The Institutional Biosafety Committee (IBC) at the University
of Arkansas, Fayetteville, AR, USA, approved all laboratory experiments involving this
pathogen (Biosafety Level 2).
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2.2. Statistical Analysis

To assess the main effect of the model, we utilized Analysis of Variance (ANOVA)
followed by Student’s t-test to determine whether a significant difference existed between
the control and treatment groups. A reduction was considered significant for treatment
groups if p < 0.05 compared to the control. All data were analyzed using (JMP®, Version
JMP pro-17, SAS Institute Inc., Cary, NC, 1989–2023, USA).

3. Results and Discussion

To demonstrate the significant role of hydroxyl radicals in the lethal effects of eugenol
on S. Typhimurium, we used the iron-chelating 2,2′-dipyridyl and ROS-scavenging thiourea.
There was a significant effect of the treatments in the current study (p < 0.0001). Particularly,
all treatments resulted in a significant reduction (p < 0.001) in Salmonella abundance com-
pared to the control (no treatment) (Figure 2). The highest reduction was observed in the
group treated with 1% eugenol, resulting in an over 80% Salmonella reduction. The groups
treated with 150 mM thiourea + 1% eugenol and 2,2′-dipyridyl + 1% eugenol showed
around 40% and 49% reductions, respectively (Figure 2).
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1% eugenol + 150 mM thiourea (EG + T), and 1% eugenol + 2,2′dipyridyl (EG + Dip). Letters a–d
denote significant differences.

Eugenol’s antibacterial properties are attributed to its free hydroxyl groups, which
disrupt bacterial cell membranes, increase ROS concentrations, or affect enzymatic activities.
This study demonstrated that both thiourea and 2,2′-dipyridyl significantly increased the
survival of S. Typhimurium, indicating the role of hydroxyl radicals in the bactericidal
process of eugenol. Existing research supports this study’s findings on the antimicrobial
properties of eugenol. Eugenol has been shown to be effective against a range of pathogens,
including fungal species and both Gram-positive and Gram-negative bacteria [18–22].
Previous studies have highlighted the effectiveness of eugenol in reducing Salmonella in
human food and animal feed, aligning with the observed significant reduction in Salmonella
abundance in the current in vitro study [9,23–28]. The involvement of hydroxyl radicals in
the antibacterial activity of eugenol has been noted in prior studies. Free hydroxyl groups
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are known to disrupt bacterial cell membranes and increase ROS, leading to bacterial
cell death [19,20,22]. The use of ROS scavengers such as thiourea and iron chelators like
2,2′-dipyridyl to demonstrate the role of ROS in eugenol’s bactericidal action is consistent
with existing research on the mechanism of action of plant-derived antimicrobials [19,20,22].
This study underscores the potential of eugenol as an anti-Salmonella phytochemical. This
aligns with ongoing efforts to alter gastrointestinal microbiota using various strategies,
including probiotics and prebiotics [29,30].

Incorporating eugenol in food materials or water as a botanical antimicrobial could
enhance Salmonella mitigation strategies, reducing the bacterial load during or before food
processing. As a food or animal feed additive, eugenol could be integrated into processed
food or animal feed to continuously manage bacterial populations, leveraging its antimicrobial
properties to maintain gut health and reduce the incidence of infections [28,31–33]. Under-
standing the role of hydroxyl radicals in eugenol’s mechanism can aid in optimizing its use.
Strategies that avoid or mitigate ROS scavengers in feed could enhance the efficacy of eugenol
as an antimicrobial agent.

Combining eugenol with agents that increase ROS can heighten oxidative stress in
pathogens, leading to higher mortality by overwhelming bacterial defenses. Targeting
multiple bacterial pathways (e.g., membrane integrity by eugenol and metabolic pathways
by other antimicrobials) enhances pathogen control and reduces survival chances [34].
Using eugenol with prebiotics and probiotics fosters a healthier gut microbiota balance:
eugenol reduces pathogen load, while prebiotics and probiotics support beneficial bac-
teria, improving gut health [35]. This approach prevents pathogen colonization through
mechanisms such as competitive exclusion by probiotics and direct killing by eugenol,
significantly reducing pathogen burden in the gastro-intestinal environment. Synergistic
antimicrobial effects lower pathogen Salmonella colonization within the gut environment,
reducing disease outbreaks and improving overall health. A healthier gut environment,
bolstered by eugenol and other antimicrobials, enhances the immune response in the gut,
providing further protection against infections [36].

The exact mechanisms by which eugenol reduces Salmonella need further investigation,
especially in the in vivo models. It is crucial to explore how eugenol targets various
Salmonella serovars and strains in the animal models and assess its effects on gut health.
Eugenol possesses antimicrobial potency, which makes this a promising candidate for
controlling Salmonella in the gut environment, but the generation of ROS from eugenol at
different pH levels may need to be considered [37]. It is also crucial to explore how eugenol
affects the non-Salmonella gut microbiota, particularly beneficial bacteria, for determining its
antimicrobial range. Further research into the molecular processes by which eugenol targets
Salmonella is needed to develop practical applications for public health and food safety.

4. Conclusions

This study highlights the potent antimicrobial properties of eugenol, particularly its
efficacy in reducing Salmonella abundance. This research underscores the role of hydroxyl
radicals in the bactericidal action of eugenol, supported by the observed reduction in
Salmonella when ROS scavengers were introduced. This aligns with previous findings on the
disruption of bacterial cell membranes and increased ROS concentration due to eugenol’s
free hydroxyl groups. The significant reduction in Salmonella abundance, especially with
the 1% eugenol treatment, demonstrates its potential as a botanical ingredient that can
be added in different food matrices for inhibiting foodborne pathogen growth [28,38].
Further research is necessary to fully elucidate potential additional mechanisms by which
eugenol targets different Salmonella serovars and strains, and its impact on non-Salmonella
gut microbiota. Understanding these mechanisms will be crucial for optimizing eugenol’s
application in managing Salmonella infections and developing effective strategies to improve
public health outcomes.
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