Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Genome Sequencing, Assembly and Analysis
2.3. Phylogenetic Analysis
2.4. Polymerase Chain Reaction (PCR) Screening
2.5. Sodium Dodecyl Sulfate–Polyacrylamide Electrophoresis (SDS-PAGE) and Western Blotting
2.6. SpeB Caseinolytic Activity Assay
2.7. SLO Activity Assay
2.8. Ethics Approvals
2.9. Statistical Analysis
2.10. Data Availability
3. Results
3.1. Investigation of 17 Contemporary GAS Isolates
3.2. Detection of Diverse Toxin Profiles in GAS Clinical Isolates
3.3. Concordance of GAS Virulence Factor Expression and Increased Virulence Factor Expression
3.4. Mutations Within Major GAS Virulence Factors May Drive Differential Toxin Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.W. Pathogenesis of Group A Streptococcal infections. Clin. Microbiol. Rev. 2000, 13, 470–511. [Google Scholar] [CrossRef] [PubMed]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of Group A Streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Abo, Y.N.; Oliver, J.; McMinn, A.; Osowicki, J.; Baker, C.; Clark, J.E.; Blyth, C.C.; Francis, J.R.; Carr, J.; Smeesters, P.R.; et al. Increase in invasive Group A Streptococcal disease among Australian children coinciding with northern hemisphere surges. Lancet Reg. Health West. Pac. 2023, 41, 100873. [Google Scholar] [CrossRef]
- Bennett, J.; Zhang, J.; Leung, W.; Jack, S.; Oliver, J.; Webb, R.; Wilson, N.; Sika-Paotonu, D.; Harwood, M.; Baker, M.G. Rising ethnic inequalities in acute rheumatic fever and rheumatic heart disease, New Zealand, 2000–2018. Emerg. Infect. Dis. 2021, 27, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Sims Sanyahumbi, A.; Colquhoun, S.; Wyber, R.; Carapetis, J.R. Global disease burden of Group A Streptococcus. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Yu, D.; Guo, D.; Zheng, Y.; Yang, Y. A review of penicillin binding protein and Group A Streptococcus with reduced-beta-lactam susceptibility. Front. Cell. Infect. Microbiol. 2023, 13, 1117160. [Google Scholar] [CrossRef]
- Ajay Castro, S.; Dorfmueller, H.C. Update on the development of Group A Streptococcus vaccines. NPJ Vaccines 2023, 8, 135. [Google Scholar] [CrossRef]
- Guy, R.; Williams, C.; Irvine, N.; Reynolds, A.; Coelho, J.; Saliba, V.; Thomas, D.; Doherty, L.; Chalker, V.; von Wissmann, B.; et al. Increase in scarlet fever notifications in the United Kingdom, 2013/2014. Eurosurveillance 2014, 19, 20749. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Huang, Y.C. Scarlet fever outbreak in Hong Kong, 2011. J. Microbiol. Immunol. Infect. 2011, 44, 409–411. [Google Scholar] [CrossRef]
- Chen, M.; Yao, W.; Wang, X.; Li, Y.; Chen, M.; Wang, G.; Zhang, X.; Pan, H.; Hu, J.; Zeng, M. Outbreak of scarlet fever associated with emm12 type Group A Streptococcus in 2011 in Shanghai, China. Pediatr. Infect. Dis. J. 2012, 31, e158–e162. [Google Scholar] [CrossRef]
- Sika-Paotonu, D.; Beaton, A.; Raghu, A.; Steer, A.; Carapetis, J. Acute rheumatic fever and rheumatic heart disease. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Carapetis, J.R.; Beaton, A.; Cunningham, M.W.; Guilherme, L.; Karthikeyan, G.; Mayosi, B.M.; Sable, C.; Steer, A.; Wilson, N.; Wyber, R.; et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Primers 2016, 2, 15084. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Increased Incidence of Scarlet Fever and Invasive Group A Streptococcus Infection-Multi-Country. 15 December 2022. Available online: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON429 (accessed on 20 May 2024).
- Rampersadh, K.; Salie, M.T.; Engel, K.C.; Moodley, C.; Zuhlke, L.J.; Engel, M.E. Presence of Group A Streptococcus frequently assayed virulence genes in invasive disease: A systematic review and meta-analysis. Front. Cell. Infect. Microbiol. 2024, 14, 1337861. [Google Scholar] [CrossRef]
- Cole, J.N.; Barnett, T.C.; Nizet, V.; Walker, M.J. Molecular insight into invasive Group A Streptococcal disease. Nat. Rev. Microbiol. 2011, 9, 724–736. [Google Scholar] [CrossRef] [PubMed]
- Sanderson-Smith, M.; De Oliveira, D.M.; Guglielmini, J.; McMillan, D.J.; Vu, T.; Holien, J.K.; Henningham, A.; Steer, A.C.; Bessen, D.E.; Dale, J.B.; et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J. Infect. Dis. 2014, 210, 1325–1338. [Google Scholar] [CrossRef]
- US Centers for Disease Control and Prevention. emm Typing Overview and Guidelines. 8 April 2024. Available online: https://www.cdc.gov/strep-lab/php/group-a-strep/emm-typing.html (accessed on 18 September 2024).
- Yang, P.; Peng, X.; Zhang, D.; Wu, S.; Liu, Y.; Cui, S.; Lu, G.; Duan, W.; Shi, W.; Liu, S.; et al. Characteristics of Group A Streptococcus strains circulating during scarlet fever epidemic, Beijing, China, 2011. Emerg. Infect. Dis. 2013, 19, 909–915. [Google Scholar] [CrossRef]
- You, Y.; Davies, M.R.; Protani, M.; McIntyre, L.; Walker, M.J.; Zhang, J. Scarlet fever epidemic in China caused by Streptococcus pyogenes serotype M12: Epidemiologic and molecular analysis. eBioMedicine 2018, 28, 128–135. [Google Scholar] [CrossRef]
- Turner, C.E.; Pyzio, M.; Song, B.; Lamagni, T.; Meltzer, M.; Chow, J.Y.; Efstratiou, A.; Curtis, S.; Sriskandan, S. Scarlet fever upsurge in England and molecular-genetic analysis in north-west London, 2014. Emerg. Infect. Dis. 2016, 22, 1075–1078. [Google Scholar] [CrossRef] [PubMed]
- Chalker, V.; Jironkin, A.; Coelho, J.; Al-Shahib, A.; Platt, S.; Kapatai, G.; Daniel, R.; Dhami, C.; Laranjeira, M.; Chambers, T.; et al. Genome analysis following a national increase in Scarlet Fever in England 2014. BMC Genom. 2017, 18, 224. [Google Scholar] [CrossRef]
- Tse, H.; Bao, J.Y.; Davies, M.R.; Maamary, P.; Tsoi, H.W.; Tong, A.H.; Ho, T.C.; Lin, C.H.; Gillen, C.M.; Barnett, T.C.; et al. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J. Infect. Dis. 2012, 206, 341–351. [Google Scholar] [CrossRef]
- Sanchez-Encinales, V.; Ludwig, G.; Tamayo, E.; Garcia-Arenzana, J.M.; Munoz-Almagro, C.; Montes, M. Molecular characterization of Streptococcus pyogenes causing invasive disease in pediatric population in Spain: A 12-year study. Pediatr. Infect. Dis. J. 2019, 38, 1168–1172. [Google Scholar] [CrossRef]
- Venkatesan, P. Rise in Group A Streptococcal infections in England. Lancet Respir. Med. 2023, 11, e16. [Google Scholar] [CrossRef] [PubMed]
- Chiang-Ni, C.; Hsu, C.Y.; Yeh, Y.H.; Chi, C.Y.; Wang, S.; Tsai, P.J.; Chiu, C.H. Detection of toxigenic M1(UK) lineage Group A Streptococcus clones in Taiwan. J. Microbiol. Immunol. Infect. 2024, 57, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.; Wan, Y.; Ryan, Y.; Li, H.K.; Guy, R.L.; Papangeli, M.; Huse, K.K.; Reeves, L.C.; Soo, V.W.C.; Daniel, R.; et al. Rapid expansion and international spread of M1(UK) in the post-pandemic UK upsurge of Streptococcus pyogenes. Nat. Commun. 2024, 15, 3916. [Google Scholar] [CrossRef]
- Vesty, A.; Ren, X.; Sharma, P.; Lorenz, N.; Proft, T.; Hardaker, A.; Straub, C.; Morgan, J.; Tiong, A.; Anderson, A.; et al. The Emergence and Impact of the M1(UK) Lineage on Invasive Group A Streptococcus Disease in Aotearoa New Zealand. Open Forum Infect. Dis. 2024, 11, ofae457. [Google Scholar] [CrossRef]
- Gouveia, C.; Bajanca-Lavado, M.P.; Mamede, R.; Araujo Carvalho, A.; Rodrigues, F.; Melo-Cristino, J.; Ramirez, M.; Friaes, A.; Portuguese Group for the Study of Streptococcal Infections; Portuguese Study Group of Pediatric Invasive Streptococcal Disease; et al. Sustained increase of paediatric invasive Streptococcus pyogenes infections dominated by M1(UK) and diverse emm12 isolates, Portugal, September 2022 to May 2023. Eurosurveillance 2023, 28, 2300427. [Google Scholar] [CrossRef]
- Vrenna, G.; Rossitto, M.; Agosta, M.; Cortazzo, V.; Fox, V.; De Luca, M.; Lancella, L.; Gargiullo, L.; Granaglia, A.; Fini, V.; et al. First Evidence of Streptococcus pyogenes M1UK Clone in Pediatric Invasive Infections in Italy by Molecular Surveillance. Pediatr. Infect. Dis. J. 2024, 43, e421–e424. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Keller, N.; Brouwer, S.; Jespersen, M.G.; Cork, A.J.; Hayes, A.J.; Pitt, M.E.; De Oliveira, D.M.P.; Harbison-Price, N.; Bertolla, O.M.; et al. Detection of Streptococcus pyogenes M1(UK) in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat. Commun. 2023, 14, 1051. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Barnett, T.C.; Ly, D.; Kasper, K.J.; De Oliveira, D.M.P.; Rivera-Hernandez, T.; Cork, A.J.; McIntyre, L.; Jespersen, M.G.; Richter, J.; et al. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat. Commun. 2020, 11, 5018. [Google Scholar] [CrossRef]
- Davies, M.R.; Holden, M.T.; Coupland, P.; Chen, J.H.; Venturini, C.; Barnett, T.C.; Zakour, N.L.; Tse, H.; Dougan, G.; Yuen, K.Y.; et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 2015, 47, 84–87. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; McIntyre, L.; Mutreja, A.; Lacey, J.A.; Lees, J.A.; Towers, R.J.; Duchene, S.; Smeesters, P.R.; Frost, H.R.; Price, D.J.; et al. Atlas of Group A Streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat. Genet. 2019, 51, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.S.; Griswold, T.; Morrison, S.S.; Caravas, J.A.; Zhang, S.; den Bakker, H.C.; Deng, X.; Carleton, H.A. Mashtree: A rapid comparison of whole genome sequence files. J. Open Source Softw. 2019, 4, 1762. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Pabst, M.J.; Jeng, A.; Kansal, R.; Low, D.E.; Nizet, V.; Kotb, M. Invasive M1T1 Group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 2004, 51, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Ly, A.T.; Noto, J.P.; Walwyn, O.L.; Tanz, R.R.; Shulman, S.T.; Kabat, W.; Bessen, D.E. Differences in SpeB protease activity among Group A Streptococci associated with superficial, invasive, and autoimmune disease. PLoS ONE 2017, 12, e0177784. [Google Scholar] [CrossRef]
- Lamb, C.L.; Price, E.; Field, K.P.; Dayton, C.; McIndoo, E.R.; Katahira, E.J.; Stevens, D.L.; Hobdey, S.E. Enrichment of antigen-specific class-switched B cells from individuals naturally immunized by infection with Group A Streptococcus. mSphere 2019, 4. [Google Scholar] [CrossRef]
- Odo, C.M.; Vega, L.A.; Mukherjee, P.; DebRoy, S.; Flores, A.R.; Shelburne, S.A. Emergent emm4 Goup A Streptococcus evidences a survival strategy during interaction with immune effector cells. Infect. Immun. 2024, 92, e0015224. [Google Scholar] [CrossRef]
- Wessels, M.R. Cell wall and surface molecules of Streptococcus pyogenes: Capsule. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022. [Google Scholar]
- Bhakdi, S.; Roth, M.; Sziegoleit, A.; Tranum-Jensen, J. Isolation and identification of two hemolytic forms of streptolysin-O. Infect. Immun. 1984, 46, 394–400. [Google Scholar] [CrossRef]
- Li, H.; Zhou, L.; Zhao, Y.; Ma, L.; Xu, J.; Liu, Y.; Qin, Q.; Hu, J.; Liu, X. Epidemiological analysis of Group A Streptococcus infections in a hospital in Beijing, China. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2361–2371. [Google Scholar] [CrossRef]
- Minko, A.G.; Danilova, T.A.; Danilina, G.A.; Adzhieva, A.A.; Tikhomirov, E.E.; Zhukhovitsky, V.G. Molecular genetic characterization of Streptococcus pyogenes strains isolated from patients with various manifestations of Streptococcal infection. Bull. Exp. Biol. Med. 2023, 175, 662–666. [Google Scholar] [CrossRef]
- Meehan, M.; Murchan, S.; Gavin, P.J.; Drew, R.J.; Cunney, R. Epidemiology of an upsurge of invasive Group A Streptococcal infections in Ireland, 2012–2015. J. Infect. 2018, 77, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Villalon, P.; Saez-Nieto, J.A.; Rubio-Lopez, V.; Medina-Pascual, M.J.; Garrido, N.; Carrasco, G.; Pino-Rosa, S.; Valdezate, S. Invasive Streptococcus pyogenes disease in Spain: A microbiological and epidemiological study covering the period 2007-2019. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.N.; Bah, S.Y.; Khalid, H.; Brailey, A.; Coleman, S.; Kirk, T.; Hussain, N.; Tovey, M.; Chaudhuri, R.R.; Davies, S.; et al. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022–2023 UK upsurge. Microb. Genom. 2024, 10, 001277. [Google Scholar] [CrossRef]
- DebRoy, S.; Sanson, M.; Shah, B.; Regmi, S.; Vega, L.A.; Odo, C.; Sahasrabhojane, P.; McGeer, A.; Tyrrell, G.J.; Fittipaldi, N.; et al. Population genomics of emm4 Group A Streptococcus reveals progressive replacement with a hypervirulent clone in North America. mSystems 2021, 6, e0049521. [Google Scholar] [CrossRef]
- Gergova, R.; Muhtarova, A.; Mitov, I.; Setchanova, L.; Mihova, K.; Kaneva, R.; Markovska, R. Relation between emm types and virulence gene profiles among Bulgarian Streptococcus pyogenes clinical isolates. Infect. Dis. 2019, 51, 668–675. [Google Scholar] [CrossRef]
- Olsen, R.J.; Raghuram, A.; Cantu, C.; Hartman, M.H.; Jimenez, F.E.; Lee, S.; Ngo, A.; Rice, K.A.; Saddington, D.; Spillman, H.; et al. The majority of 9729 Group A Streptococcus strains causing disease secrete SpeB cysteine protease: Pathogenesis implications. Infect. Immun. 2015, 83, 4750–4758. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Shen, X.; Huang, G.; Wang, C.; Shen, Y.; Yang, Y. Characteristics of Streptococcus pyogenes strains isolated from Chinese children with scarlet fever. Acta Paediatr. 2008, 97, 1681–1685. [Google Scholar] [CrossRef]
- Bhakdi, S.; Tranum-Jensen, J.; Sziegoleit, A. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 1985, 47, 52–60. [Google Scholar] [CrossRef]
- Palmer, M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon 2001, 39, 1681–1689. [Google Scholar] [CrossRef]
- Shewell, L.K.; Harvey, R.M.; Higgins, M.A.; Day, C.J.; Hartley-Tassell, L.E.; Chen, A.Y.; Gillen, C.M.; James, D.B.; Alonzo, F., 3rd; Torres, V.J.; et al. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc. Natl. Acad. Sci. USA 2014, 111, E5312–E5320. [Google Scholar] [CrossRef]
- Shewell, L.K.; Day, C.J.; Jen, F.E.; Haselhorst, T.; Atack, J.M.; Reijneveld, J.F.; Everest-Dass, A.; James, D.B.A.; Boguslawski, K.M.; Brouwer, S.; et al. All major cholesterol-dependent cytolysins use glycans as cellular receptors. Sci. Adv. 2020, 6, eaaz4926. [Google Scholar] [CrossRef] [PubMed]
- Nasser, W.; Beres, S.B.; Olsen, R.J.; Dean, M.A.; Rice, K.A.; Long, S.W.; Kristinsson, K.G.; Gottfredsson, M.; Vuopio, J.; Raisanen, K.; et al. Evolutionary pathway to increased virulence and epidemic Group A Streptococcus disease derived from 3,615 genome sequences. Proc. Natl. Acad. Sci. USA 2014, 111, E1768–E1776. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.E.; Holden, M.T.G.; Blane, B.; Horner, C.; Peacock, S.J.; Sriskandan, S. The emergence of successful Streptococcus pyogenes lineages through convergent pathways of capsule loss and recombination directing high toxin expression. mBio 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Sumby, P.; Porcella, S.F.; Madrigal, A.G.; Barbian, K.D.; Virtaneva, K.; Ricklefs, S.M.; Sturdevant, D.E.; Graham, M.R.; Vuopio-Varkila, J.; Hoe, N.P.; et al. Evolutionary origin and emergence of a highly successful clone of serotype M1 Group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 2005, 192, 771–782. [Google Scholar] [CrossRef]
- Vega, L.A.; Malke, H.; McIver, K.S. Virulence-related transcriptional regulators of Streptococcus pyogenes. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations, 2nd ed.; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2022. [Google Scholar]
- Shi, Y.A.; Chen, T.C.; Chen, Y.W.; Liu, Y.S.; Chen, Y.M.; Lai, C.H.; Chiu, C.H.; Chiang-Ni, C. The bacterial markers of identification of invasive CovR/CovS-inactivated Group A Streptococcus. Microbiol. Spectr. 2022, 10, e0203322. [Google Scholar] [CrossRef]
- Plainvert, C.; Rosinski-Chupin, I.; Weckel, A.; Lambert, C.; Touak, G.; Sauvage, E.; Poyart, C.; Glaser, P.; Fouet, A. A novel CovS variant harbored by a colonization strain reduces Streptococcus pyogenes virulence. J. Bacteriol. 2023, 205, e0003923. [Google Scholar] [CrossRef]
- Langshaw, E.L.; Reynolds, S.; Ozberk, V.; Dooley, J.; Calcutt, A.; Zaman, M.; Walker, M.J.; Batzloff, M.R.; Davies, M.R.; Good, M.F.; et al. Streptolysin O deficiency in Streptococcus pyogenes M1T1 covR/S mutant strain attenuates virulence in in vitro and in vivo infection models. mBio 2023, 14, e0348822. [Google Scholar] [CrossRef]
- Miller, E.W.; Danger, J.L.; Ramalinga, A.B.; Horstmann, N.; Shelburne, S.A.; Sumby, P. Regulatory rewiring confers serotype-specific hyper-virulence in the human pathogen Group A Streptococcus. Mol. Microbiol. 2015, 98, 473–489. [Google Scholar] [CrossRef]
- Lynskey, N.N.; Turner, C.E.; Heng, L.S.; Sriskandan, S. A truncation in the regulator RocA underlies heightened capsule expression in serotype M3 Group A Streptococci. Infect. Immun. 2015, 83, 1732–1733. [Google Scholar] [CrossRef]
- Flores, A.R.; Jewell, B.E.; Fittipaldi, N.; Beres, S.B.; Musser, J.M. Human disease isolates of serotype M4 and M22 Group A Streptococcus lack genes required for hyaluronic acid capsule biosynthesis. mBio 2012, 3, e00413-12. [Google Scholar] [CrossRef]
- Turner, C.E.; Abbott, J.; Lamagni, T.; Holden, M.T.; David, S.; Jones, M.D.; Game, L.; Efstratiou, A.; Sriskandan, S. Emergence of a new highly successful acapsular Group A Streptococcus clade of genotype emm89 in the United Kingdom. mBio 2015, 6, e00622. [Google Scholar] [CrossRef] [PubMed]
- Flores, A.R.; Chase McNeil, J.; Shah, B.; Van Beneden, C.; Shelburne, S.A. Capsule-negative emm types are an increasing cause of pediatric Group A Streptococcal infections at a large pediatric hospital in Texas. J. Pediatr. Infect. Dis. Soc. 2019, 8, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Rumke, L.W.; Davies, M.A.; Vestjens, S.M.T.; van der Putten, B.C.L.; Bril-Keijzers, W.C.M.; van Houten, M.A.; Rots, N.Y.; Wijmenga-Monsuur, A.J.; van der Ende, A.; de Gier, B.; et al. Nationwide upsurge in invasive disease in the context of longitudinal surveillance of carriage and invasive Streptococcus pyogenes 2009–2023, the Netherlands: A molecular epidemiological study. J. Clin. Microbiol. 2024, 62, e0076624. [Google Scholar] [CrossRef] [PubMed]
- de Crombrugghe, G.; Botteaux, A.; Osowicki, J.; Steer, A.C.; Smeesters, P.R. Global epidemiological comparison of Streptococcus pyogenes emm-types associated with pharyngitis and pharyngeal carriage. Clin. Microbiol. Infect. 2024, 30, 1074.e1–1074.e4. [Google Scholar] [CrossRef]
- Virolainen, M.; Grondahl-Yli-Hannuksela, K.; Rantakokko-Jalava, K.; Seiskari, T.; Lonnqvist, E.; Kolari, T.; Rissanen, T.; Hyyrylainen, H.L.; DICAR Study Group; Vuopio, J. Epidemiology and emm types among Group A Streptococcal pharyngitis in Finland: A prospective laboratory-based study. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 233–241. [Google Scholar] [CrossRef]
- You, Y.H.; Song, Y.Y.; Yan, X.M.; Wang, H.B.; Zhang, M.H.; Tao, X.X.; Li, L.L.; Zhang, Y.X.; Jiang, X.H.; Zhang, B.H.; et al. Molecular epidemiological characteristics of Streptococcus pyogenes strains involved in an outbreak of scarlet fever in China, 2011. Biomed. Environ. Sci. 2013, 26, 877–885. [Google Scholar] [CrossRef]
- Butler, T.A.J.; Story, C.; Green, E.; Williamson, K.M.; Newton, P.; Jenkins, F.; Varadhan, H.; van Hal, S. Insights gained from sequencing Australian non-invasive and invasive Streptococcus pyogenes isolates. Microb. Genom. 2024, 10, 001152. [Google Scholar] [CrossRef]
- Oliver, J.; Wilmot, M.; Strachan, J.; St George, S.; Lane, C.R.; Ballard, S.A.; Sait, M.; Gibney, K.; Howden, B.P.; Williamson, D.A. Recent trends in invasive Group A Streptococcus disease in Victoria. Commun. Dis. Intell. 2019, 43. [Google Scholar] [CrossRef]
- Alcolea-Medina, A.; Snell, L.B.; Alder, C.; Charalampous, T.; Williams, T.G.S.; Synnovis Microbiology Laboratory, G.; Tan, M.K.I.; Al-Yaakoubi, N.; Humayun, G.; Newsholme, W.; et al. The ongoing Streptococcus pyogenes (Group A Streptococcus) outbreak in London, United Kingdom, in December 2022: A molecular epidemiology study. Clin. Microbiol. Infect. 2023, 29, 887–890. [Google Scholar] [CrossRef]
- Hamzah, S.N.A.; Mohd Desa, M.N.; Jasni, A.S.; Mohd Taib, N.; Masri, S.N.; Hamat, R.A. Distribution of virulence genes and the molecular epidemiology of Streptococcus pyogenes clinical isolates by emm and multilocus sequence typing methods. Med. J. Malays. 2021, 76, 164–170. [Google Scholar]
- Li, H.; Zhou, L.; Zhao, Y.; Ma, L.; Liu, X.; Hu, J. Molecular epidemiology and antimicrobial resistance of Group A Streptococcus recovered from patients in Beijing, China. BMC Infect. Dis. 2020, 20, 507. [Google Scholar] [CrossRef] [PubMed]
- DebRoy, S.; Li, X.; Kalia, A.; Galloway-Pena, J.; Shah, B.J.; Fowler, V.G.; Flores, A.R.; Shelburne, S.A. Identification of a chimeric emm gene and novel emm pattern in currently circulating strains of emm4 Group A Streptococcus. Microb. Genom. 2018, 4, e000235. [Google Scholar] [CrossRef] [PubMed]
- Walkinshaw, D.R.; Wright, M.E.E.; Mullin, A.E.; Excler, J.L.; Kim, J.H.; Steer, A.C. The Streptococcus pyogenes vaccine landscape. NPJ Vaccines 2023, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Sumby, P.; Whitney, A.R.; Graviss, E.A.; DeLeo, F.R.; Musser, J.M. Genome-wide analysis of Group A Streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2, e5. [Google Scholar] [CrossRef]
GAS Isolate Designation | Age | Sex | Sample Source | Clinical Diagnosis | Non-Invasive/Invasive | emm Type |
---|---|---|---|---|---|---|
SP1492 | 13 months | M | Blood | STSS | Invasive | 12 |
SP1493 | 11 months | M | Fluid lower leg | Bacteraemia | Invasive | 12 |
SP1494 | 48 years | M | Thigh tissue | Bacteraemia | Invasive | 4 a |
SP1495 | 17 months | M | Pleural fluid | Bacteriemia | Invasive | 3.93 |
SP1496 | 15 months | F | Throat | Tonsilitis | Non-invasive | 3.93 |
SP1497 | 39 years | F | Bursa fluid | Prepatellar bursitis | Invasive | 41.2 |
SP1498 | 51 years | M | Blood | Bacteraemia | Invasive | 41.2 |
SP1499 | 3 years | F | Swab throat | Scarlet fever | Non-invasive | 3.93 |
SP1500 | 37 years | M | Blood | Bacteraemia | Invasive | 53 |
SP1501 | 39 years | M | Tibia tissue | NF | Invasive | 22 a |
SP1502 | 8 years | F | Throat | Scarlet fever | Non-invasive | 22 a |
SP1503 | 6 years | M | Throat | Scarlet fever | Non-invasive | 89 a |
SP1504 | 4 months | F | Blood | Bacteraemia | Invasive | 12 |
SP1505 | 5 years | M | Throat | Scarlet fever | Non-invasive | 22 a |
SP1506 | 56 years | M | Skin | NF | Invasive | 77 |
SP1507 | 2 years | F | Blood | Bacteraemia | Invasive | 75 |
SP1508 | 6 years | F | Blood | Bacteraemia | Invasive | 4 a |
Isolate | emm Type | speAa | speCa | ssaa | spd1a | hasAb | speBa | sloa | ermBb |
---|---|---|---|---|---|---|---|---|---|
SP1492 | 12 | − | + | + | + | + | + | + | − |
SP1493 | 12 | − | + | + | + | + | + | + | − |
SP1494 | 4 | + | + | + | + | − | + | + | − |
SP1495 | 3.93 | + | − | + | − | + | + | + | − |
SP1496 | 3.93 | + | − | + | − | + | + | + | − |
SP1497 | 41.2 | − | − | − | − | + | + | + | − |
SP1498 | 41.2 | − | − | − | − | + | + | + | − |
SP1499 | 3.93 | + | − | + | − | + | + | + | − |
SP1500 | 53 | − | + | − | + | + | + | + | − |
SP1501 | 22 | + | − | + | − | − | + | + | − |
SP1502 | 22 | + | − | + | − | − | + | + | − |
SP1503 | 89 | − | + | − | + | − | + | + | − |
SP1504 | 12 | - | + | − | + | + | + | + | − |
SP1505 | 22 | + | − | + | − | − | + | + | − |
SP1506 | 77 | − | − | − | − | + | + | + | − |
SP1507 | 75 | − | + | − | Ind c | + | + | + | − |
SP1508 | 4 | − | + | + | + | − | + | + | − |
Isolate | covR | covS | rocA | ropB | ||||
---|---|---|---|---|---|---|---|---|
Carriage | Mutation | Carriage | Mutation | Carriage | Mutation | Carriage | Mutation | |
SP1492 | + | − | + | − | + | − | + | − |
SP1493 | + | − | + | − | + | − | + | − |
SP1494 | + | − | + | truncation | + | − | + | T104I a |
SP1495 | + | − | + | − | + | insertion | + | − |
SP1496 | + | − | + | − | + | insertion | + | − |
SP1497 | + | − | + | − | + | − | + | − |
SP1498 | + | − | + | − | + | − | + | − |
SP1499 | + | − | + | − | + | insertion | + | − |
SP1500 | + | − | + | − | + | − | + | − |
SP1501 | + | − | + | − | + | − | + | − |
SP1502 | + | − | + | − | + | − | + | − |
SP1503 | + | − | + | − | + | − | + | − |
SP1504 | + | − | + | − | + | − | + | − |
SP1505 | + | − | + | − | + | − | + | − |
SP1506 | + | − | + | − | + | − | + | − |
SP1507 | + | − | + | insertion | + | − | + | − |
SP1508 | + | − | + | truncation | + | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaw, P.K.; Hayes, A.J.; Langton, M.; Berkhout, A.; Grimwood, K.; Davies, M.R.; Walker, M.J.; Brouwer, S. Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens 2024, 13, 956. https://doi.org/10.3390/pathogens13110956
Shaw PK, Hayes AJ, Langton M, Berkhout A, Grimwood K, Davies MR, Walker MJ, Brouwer S. Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens. 2024; 13(11):956. https://doi.org/10.3390/pathogens13110956
Chicago/Turabian StyleShaw, Phoebe K., Andrew J. Hayes, Maree Langton, Angela Berkhout, Keith Grimwood, Mark R. Davies, Mark J. Walker, and Stephan Brouwer. 2024. "Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital" Pathogens 13, no. 11: 956. https://doi.org/10.3390/pathogens13110956
APA StyleShaw, P. K., Hayes, A. J., Langton, M., Berkhout, A., Grimwood, K., Davies, M. R., Walker, M. J., & Brouwer, S. (2024). Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens, 13(11), 956. https://doi.org/10.3390/pathogens13110956