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Abstract: Pseudomonas aeruginosa is a leading cause of healthcare-associated infections, which are
related to substantial morbidity and mortality. The incidence of Plasmid-Mediated Quinolone Resis-
tance (PMQR) determinants has been previously reported in this bacterium. However, there is limited
information regarding the presence of PMQR and carbapenemase-encoding genes simultaneously.
This study aims to analyze the prevalence of these determinants on P. aeruginosa strain isolated
from clinical patients in the State of Aguascalientes, Mexico. Fifty-two P. aeruginosa isolates from
nosocomial patients were collected from Centenario Hospital Miguel Hidalgo. This is a retrospective
observational study conducted at a single center. Antibiotic susceptibility was tested using the Vitek-2
system. Only carbapenem-resistant isolates were included in this study. Carbapenemase-encoding
genes and PMQR determinants were screened by polymerase chain reaction (PCR). Resistance rates
of 100% were found on tigecycline and ceftriaxone. Of the 52 isolates, 34.6% were positive for the qnr
genes, 46.2% for the oqxA gene, and 25% for the aac-(6′)-lb gene. The most frequent carbapenemase
genes found in the samples were blaOXA-51 (42.3%), blaOXA-1 (15.4%), and blaVIM (15.4%). blaOXA-51

co-carrying oqxA was detected in 21.1% of the isolates, blaOXA-51 co-carrying aac-(6’)-lb in 11.5%,
blaVIM co-carrying aac-(6′)-lb in 3.8%, and blaKPC co-carrying oqxA in 5.8%. Systematic surveillance to
detect carbapenemase-encoding genes and PMQR determinants, and rational prescription using the
last-line drugs could help in preventing the dissemination of multidrug-resistant determinants.

Keywords: carbapenemase-encoding genes; Plasmid-Mediated Quinolone Resistance (PMQR) genes;
mcr-1; Pseudomonas aeruginosa; multidrug-resistance
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1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium that causes significant healthcare-
related illnesses such as bacteremia, catheter-related infections, surgical site infections,
ventilator-associated pneumonia, otitis, and urinary tract infections [1]. P. aeruginosa is
naturally resistant to many common antibiotics due to its reduced expression of high-
permeability porins and the acquisition of new resistance determinants. As a result of
multi-drug resistance (MDR), infections due to these bacteria became challenging to treat [2],
leading to infection outbreaks, longer hospital stays, and higher mortality rates [3].

Antimicrobial resistance (AMR) is one of the major health threats worldwide. It is
estimated that bacterial AMR was directly responsible for 1.27 million global deaths in
2019 [4]. The development of MDR limits the treatment options since bacteria could display
resistance to a broad spectrum of antibiotic classes, including aminoglycosides (amikacin,
gentamicin, and tobramycin), fluoroquinolones (ciprofloxacin, ofloxacin, and norfloxacin),
carbapenems, tetracyclines [5], and colistin [6]. Carbapenem antibiotics are the last resort
for therapy for infections caused by MDR-P. aeruginosa; however, increased carbapenem-
resistant P. aeruginosa (CRPA) has been reported [7,8]. Those mechanisms of carbapenem
resistance include efflux of the drug mediated by overexpression of the MexAB-OprM
efflux pump, overproduction of AmpC beta-lactamase, inactivation of the OprD outer
membrane protein, and production of carbapenemases [9]. Class B carbapenemases or
metallo-β-lactamases (MBLs) are major determinants of transferable resistance and include
Verona integron-encoded MBLs (VIM) and imipenemase enzymes (IMP) [10]. In Mexico,
blaVIM, blaIMP, and blaGES are the most frequent carbapenemase-encoding genes found in P.
aeruginosa [11–13].

Fluoroquinolones are widely used to treat infections caused by this bacterium. Quinolone
resistance is primarily caused by a chromosomal mutation in the quinolone resistance-
determining region (QRDR) of the DNA gyrase (gyrA and gyrB) and topoisomerase (parC
and parE) encoding genes [14]. However, plasmid-mediated quinolone resistance genes
(PMQR) have also been detected in P. aeruginosa [15–24]. PMQR-mediated mechanisms
include the following: qnr genes, that encode the Qnr protein family (QnrA, QnrB, QnrS,
QnrC, QnrD, QnrE, and QnrVC) [14]; the acetyltransferase aac-(6′)-lb-cr, which is a variant
of an enzyme involved in aminoglycoside acetylation; and the active efflux pumps such
as QepA and OqxA [14,21]. PMQR determinants can spread vertically and horizontally
among bacteria and facilitate the selection of resistant mutants conferring only low-level
fluoroquinolone resistance, which may not be detected by standard susceptibility testing
but may increase the frequency of mutations in the chromosomal genes, facilitating the
selection of high-level resistance to this antibiotic class [25].

Indeed, quinolone resistance determinant QnrVC has also been linked to some epi-
demic strains with acquired carbapenemases, such as ST175 and ST244 [26]. Furthermore,
the presence of these genes might affect the minimal inhibitory concentration (MIC) to
unrelated agents such as novobiocin, tigecycline, or colistin [27]. In addition, several au-
thors have suggested that the presence of the qnr genes is associated with a trend related to
extended hospital stays and increased 30-day mortality [27,28]. Thus, the co-occurrence
of encoding carbapenemase-genes and PMQR determinants may facilitate the emergence
of MDR isolates [29], amplifying antibiotic resistance and limiting the effectiveness of em-
pirical therapy, resulting in the need for more potent and potentially toxic antibiotics such
as polymyxins [30]. Additionally, novel agents like ceftazidime-avibactam, ceftolozane-
tazobactam, imipenem-cilastatin-relebactam, and cefiderocol may be required [31], how-
ever, more clinical trials involving the news therapies are needed to answer these questions.

Given the limited data on the co-existence of PMQR and carbapenemase-encoding
genes among clinical isolates of P. aeruginosa worldwide [22–24], and particularly in Mex-
ico [32], the characterization of the carbapenemase-encoding genes and evaluation of
PMQR determinants in P. aeruginosa isolates from nosocomial patients in Aguascalientes,
Mexico, was carried out. Moreover, the colistin resistance mcr-1 gene was also assessed.
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2. Materials and Methods
2.1. Sampling and Bacterial Isolation

A total of 52 bacteria isolates were collected from July 2019 to February 2023 from
nosocomial patients at Centenario Hospital Miguel Hidalgo, Aguascalientes, Mexico. This
was a retrospective and observational study from a single center. Culture specimens were
categorized according to their source such as blood, urine, respiratory, or biopsy. In case of
a relapse, only the first bacterial isolation was considered. All the isolates were positive for
P. aeruginosa by biochemical testing. As a confirmatory test, all the strains were confirmed
by PCR as Pseudomonas sp., using the primers of PG-GS-F and PG-GS-R that mark the
location 95–113 and 693–712 of the 16SrDNA sequence in Pseudomonas sp., as previously
described [33]. P. aeruginosa ATCC 27853 was used as positive control and water as negative
control. Primers used are listed in Supplementary Table S1.

2.2. Ethics Statement

The Centenario Hospital Miguel Hidalgo’s Ethics Committee approved this study on
16 January 2023, with the assigned number CEI-CI/008/23.

2.3. Data Collection

Clinical data were obtained from Centenario Hospital Miguel Hidalgo’s electronic
clinical record. The repository was used to obtain clinical settings at the time of the
culture, microbiology data, comorbidities, length of hospital stay from the day of the index
culture (LOS), and complications of patients such as septic shock, mechanical ventilation,
and previous antibiotic exposure (any empiric antibiotic prescribed 90 days before the
positive culture).

2.4. Antibiotic Susceptibility Testing

All the strains were tested for antimicrobial susceptibility using the Vitek-2 analysis
system (bioMérieux, Salt Lake City, UT, USA), according to the manufacturer’s instructions.
The antibiotics tested were amikacin, cefepime, ceftazidime, ceftriaxone, ciprofloxacin,
gentamicin, imipenem, meropenem, doripenem, piperacillin/tazobactam, colistin, and
tigecycline. The MIC breakpoint values for each antibiotic are shown in Supplementary
Table S2, CLSI 2020 [34]. However, not all the strains were tested against all the antimicro-
bial agents since not all the antibiotics were available at the hospital at the time of isolation.
Bacteria strains were classified as carbapenem-resistant P. aeruginosa (N = 52) when the
bacteria were non-susceptible to imipenem, meropenem, or doripenem [34]. Strains dis-
playing minimum inhibitory concentration (MIC) values of ≥8µg/mL for carbapenems
were considered resistant. Escherichia coli ATCC 25922 and P. aeruginosa ATCC 27853 were
used as quality-control strains. The results were interpreted as susceptible (S), intermediate
(I), or resistant (R). The isolates were defined as MDR, extensively drug-resistant (XDR), or
pan drug-resistant (PDR) using the clinical laboratory antimicrobial susceptibility testing re-
sults and according to a consensus definition [35]. Only carbapenem-resistant P. aeruginosa
isolates were included in the study.

2.5. Screening and Identification of PMQR and Carbapenemase-Encoding Genes

For DNA extraction, bacteria were cultured on blood agar for 24 h at 37 ◦C. The culture
was transferred into a sterile Broth Heath Infusion, BHI (BD, Le Pont de Claix, France)
5 mL tube, followed by incubation at 37 ◦C overnight. One point five mL of the bacterial
culture were transferred to microcentrifuge tubes and the cells were pelleted at 12,000 rpm
for 5 min. The supernatant was discarded, and the pellet was used for DNA isolation as
described by Sambrook and Russell 2001 [36]. The DNA was stored at −20 ◦C until its use.

First, all the strains were analyzed for the genes encoding the following: (1) serino-β-
lactamases (blaGES and blaKPC); (2) metallo-β-lactamases (blaIMP, blaVIM, and blaNDM), and
(3) oxacillinases (blaOXA-23, blaOXA-48, blaOXA-51, and blaOXA-1) [37,38]. The amplification
programs were performed at 94 ◦C for 5 min, followed by 35 cycles. Each cycle consisted of
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94 ◦C for 30 s, with various annealing conditions (Supplementary Table S1) for 45 s, and
72 ◦C for 1 min, with a final extension step of 72 ◦C for 10 min. Then, a screening for PMQR
genes was performed as previously described [39–43]. The screening includes the detection
of qnrA, qnrB, qnrS, qnrC, and qnrD, as well as the oqxA and acc-(6′)-lb genes. J53pMG252
strain was used as qnrA positive control, J53pMG298 as qnrB control, J53pMG306 as qnrS
control, and Salmonella SA20042859 as a positive control to acc-(6′)-lb. In some cases,
previous clinical strains carrying the different target genes were used as positive controls,
and water as a negative control. The colistin resistance (mcr-1) gene was also tested. The
amplification programs were performed at 94 ◦C for 5 min, followed by 35 cycles. Each
cycle consisted of 94 ◦C for 30 s, 55◦C for 45 s, and 72 ◦C for 30 s, with a final extension step
of 72 ◦C for 10 min. Primers used are listed in Supplementary Table S1. The amplification
products were visualized in agarose gel at 1.5%.

2.6. Statistical Analysis

Statistical data analysis was performed using GraphPad Prim Software (Boston, MA,
USA, version 10.0.3). The results were described as descriptive statistics in terms of relative
frequency. Comparisons among groups were made using the chi-square, Fisher’s exact test
for the categorical data, or the Mann–Whitney U test for the continuous data. Univariate
analysis of risk factors for 30-day mortality after positive carbapenem-resistant P. aeruginosa
culture was carried out. p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Identification of the Isolates and Clinical Characteristics

Based on a standard bacteriological test, 52 clinical strains were collected overall. All
the isolates were positive for P. aeruginosa by biochemical and PCR testing. The clinical
characteristics of the patients and the results of the univariate analysis of risk factors for
30-day mortality are shown in Table 1. Initial diagnosis or service of the patients include the
following: viral pneumonia (20 isolates, 38.5%), Coronavirus (COVID) (6 isolates, 11.5%),
acute respiratory failure (3 isolates, 5.8%), septic shock (2 isolates, 3.8%), kidney stone
(3 isolates, 5.8%), woman surgery (2 isolates, 3.8%), septic arthritis (1 isolate, 1.9%), chronic
obstructive pulmonary disease (1 isolate, 1.9%), multiple burns (1 isolate, 1.9%), general
therapy (5 isolates, 9.6%), encephalopathy (1 isolate, 1.9%), and other conditions (7 isolates,
13.5%). The cases included 28 (53.8%) males and 24 (46.2%) females. The isolates were
distributed among all the age groups, with 19 (36.5%) isolates belonging to the age category
between 20 and 49 years old, 16 (30.8%) isolates between 50 and 64 years old, and 17 (32.7%)
isolates ≥ 65 years old. Most isolates were collected from the respiratory tract (bronchial
discharge culture, 34 isolates, 63.5%), followed by urine culture (13 isolates, 25%). Septic
shock (OR = 0.19; 95% CI 0.04–0.79, p = 0.023) and infection with XDR bacteria (OR = 0.17;
95% CI 0.03–0.88, p = 0.035) were independent risk factors for 30-day mortality after the
culture. Furthermore, 12 strains (23.1%) were isolated from patients with co-infections,
including co-infection with Acinetobacter baumannii (4 isolates, 7.7%), Klebsiella pneumoniae
(3 isolates, 5.8%), Staphylococcus aureus (1 isolate, 1.9%), Chyseobacterium (F.) indologenes (2
isolates, 3.8%), Candida albicans (1 isolate, 1.9%), and Candida tropicals (1 isolate, 1.9%).

Table 1. Univariate analysis of risk factors for the 30-day mortality in patients with carbapenem-
resistant P. aeruginosa.

Variables Total
n, (%)

Death 30-Day
After Culture (%),

[n = 13]

Non-Death 30 Days
After Culture (%),

[n = 39]

a Odds Ratios
(95% CI)

b p Value

Clinical characteristics
Female 24 (46.2) 5 (38.5) 19 (48.7) Reference
Male 28 (53.8) 8 (61.5) 20 (51.3) 0.66 (0.18–2.37) 0.522
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Table 1. Cont.

Variables Total
n, (%)

Death 30-Day
After Culture (%),

[n = 13]

Non-Death 30 Days
After Culture (%),

[n = 39]

a Odds Ratios
(95% CI)

b p Value

Age category
20–49 19 (36.5) 4 (30.8) 15 (38.5) 1.41 (0.37–5.39) 0.619
50–64 16 (30.8) 4 (30.8) 12 (30.8) 1 (0.26–3.9) 1.000
≥65 17 (32.7) 5 (38.5) 12 (30.8) 1.41 (0.38–5.2) 0.609

Specimen type
Respiratory 34 (65.4) 10 (76.9) 24 (61.5) 0.48 (0.11–2.03) 0.319
Urine 13 (25.0) 1 (7.7) 12 (30.8) 0.19 (0.02–1.61) 0.127
Blood 2 (3.8) 1 (7.7) 1 (2.6) 0.32 (0.02–5.44) 0.427
Biopsy 3 (5.8) 1 (7.7) 2 (5.1) 0.65 (0.05–7.8) 0.733

Co-morbidities
Diabetes mellitus 27 (51.9) 8 (61.5) 19 (48.7) 0.59 (0.16–2.14) 0.425
Systemic arterial hypertension 30 (57.7) 8 (61.5) 22 (56.4) 1.24 (0.34–4.47) 0.746
Chronic kidney disease 3 (5.8) 0 (0) 3 (7.7) - -
Congestive heart failure 4 (7.7) 2 (15.4) 2 (5.1) 0.3 (0.04–2.36) 0.251
Hypothyroidism 7 (13.5) 0 (0) 7 (17.9) - -
Obesity 33 (63.5) 8 (61.5) 25 (64.1) 1.12 (0.31–4.07) 0.868
COVID-19 35 (67.3) 10 (76.9) 25 (64.1) 0.54 (0.13–2.28) 0.398

Charlson Comorbidity Index
<3 28 (53.8) 4 (30.8) 24 (61.5) Reference
≥3 24 (46.2) 9 (69.2) 15 (38.5) 0.8 (0.54–1.18) 0.1063

Complication
Mechanical ventilation 43 (82.7) 12 (92.3) 31 (79.5) 0.32 (0.04–2.87) 0.310
Pneumonia associated with
mechanical ventilation 43 (82.7) 12 (92.3) 31 (79.5) 0.32 (0.04–2.87) 0.310

Tracheostomy 28 (53.8) 6 (46.2) 22 (56.4) 1.51(0.43–5.33) 0.522
Septic shock 25 (48.1) 10 (76.9) 15 (38.5) 0.19 (0.04–0.79) 0.023
ICU 21 (40.4) 6 (46.2) 15 (38.5) 0.73 (0.21–2.59) 0.625

Antibiotic exposure in the
previous 90 days
Any antibiotics
Yes 40 (76.9) 10 (76.9) 30 (76.9) 1.0 (0.23–4.44) 1.000
No 12 (23.1) 3 (23.1) 9 (23.1)

Adequate treatment
Yes 34 (65.4) 8 (61.5) 26 (66.7) 0.8 (0.22–2.94) 0.737
No 18 (34.6) 5 (38.5) 13 (33.3)

Antimicrobial resistance
b MDR 15 (28.8) 1 (7.7) 14 (35.9) 0.15 (0.02–1.27) 0.081
XDR 30 (57.7) 11 (84.6) 19 (48.7) 0.17 (0.03–0.88) c 0.035
PDR 7 (13.5) 1 (7.7) 6 (15.4) 2.18 (0.24–20.44) 0.491

a CI: confidence interval; b Statistically significant p-values are present in bold (p ≤ 0.05). MDR: multidrug-resistant;
XDR: extensively drug-resistant; PDR: pandrug-resistant. c Mann–Whitney U value.

3.2. Antimicrobial Susceptibility

Colistin was the most active agent tested for P. aeruginosa infection, with 81.8% suscep-
tibility (Table 2). All the strains exhibited resistance to imipenem (MIC values ranging from
8 to ≥16 µg/mL), meropenem (MIC values ranging from 8 to ≥16 µg/mL), doripenem
(MIC values ≥ 8 µg/mL), ceftriaxone (MIC values ranging from 32 to ≥64 µg/mL), and
tigecycline (MIC values ≥ 8 µg/mL). In addition, 15 of 52 isolates (28.8%) were categorized
as MDR, 30 isolates (57.7%) as XDR, and seven isolates (13.5%) as PDR. Interestingly, all
XDR strains were colistin-susceptible. Individual results are described in Supplementary
Table S3.
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Table 2. Antimicrobial susceptibility of P. aeruginosa isolates (N = 52).

Antimicrobial Class Antimicrobial Agent
Susceptibility (%)

Susceptible Intermediate Resistant

Quinolones Ciprofloxacin (n = 52) 6 (11.5) 0 (0) 46 (88.5)
Carbapenems Imipenem (n = 44) 0 (0) 0 (0) 44 (100)

Meropenem (n = 51) 0 (0) 0 (0) 51 (100)
Doripenem (n = 44) 0 (0) 0 (0) 44 (100)

Polymyxin E Colistin (n = 44) 36 (81.8) 5 (11.4) 3 (6.8)
Glycylcline Tigecycline (n = 42) 0 (0) 0 (0) 42 (100)
Penicillin and beta-lactamase
inhibitors Piperacillin/tazobactam (n = 39) 3 (7.7) 8 (20.5) 28 (71.8)

Cephalosporins Cefepime (n = 52) 7 (13.5) 5 (9.6) 40 (76.9)
Ceftazidime (n = 48) 4 (8.3) 4 (8.3) 40 (83.3)
Ceftriaxone (n = 48) 0 (0) 0 (0) 48 (100)

Aminoglycosides Amikacin (n = 52) 14 (26.9) 0 (0) 38 (73.1)
Gentamicin (n = 52) 9 (17.3) 4 (7.7) 39 (75.0)

To determine if there were some differences in the antibiotic-resistant profiles of
the isolates based on the susceptibility to quinolones, it was compared to ciprofloxacin-
resistant isolates vs. ciprofloxacin-susceptible isolates (Table 3). Antibiotic resistance rates
between the two groups were significantly different. Notably, ciprofloxacin-susceptible
isolates had higher rates of susceptibility to several antibiotics, including cefepime (50%,
p = 0.0018), ceftazidime (33.3%, p = 0.0046), amikacin (100%, p < 0.0001), and gentamicin
(100%, p < 0.0001). Based on these findings, it is suggested that ciprofloxacin may be a
viable treatment option for this particular phenotype.

Table 3. Antibiotic resistance rates of ciprofloxacin-resistant and ciprofloxacin-susceptible P. aeruginosa.

a Antibiotics
Ciprofloxacin-Resistant Ciprofloxacin-Susceptible

* p-Value
R, n (%) I, n (%) S, n (%) R, n (%) I, n (%) S, n (%)

Colistin (n = 44)
CIP-R (n = 38), CIP-S (n = 6) 2 (5.3) 4 (10.5) 32 (84.2) 1 (16.65) 1 (16.65) 4 (66.7) 0.2968

Tigecycline (n = 42)
CIP-R (n = 36), CIP-S (n = 6) 36 (100) 0 (0) 0 (0) 6 (100) 0 (0) 0 (0) >0.9999

Piperacillin/tazobactam (n = 39)
CIP-R (n = 34), CIP-S (n = 5) 26 (76.5) 5 (14.7) 3 (8.8) 2 (40) 3 (60) 0 (0) 0.0871

Cefepime (n = 52)
CIP-R (n = 46), CIP-S (n = 6) 39 (84.8) 3 (6.5) 4 (8.7) 1 (16.7) 2 (33.3) 3 (50) 0.0018

Ceftazidime (n = 48)
CIP-R (n = 42), CIP-S (n = 6) 38 (90.4) 2 (4.8) 2 (4.8) 2 (33.33) 2 (33.33) 2 (33.33) 0.0046

Ceftriaxone (n = 48)
CIP-R (n = 43), CIP-S (n = 5) 43 (100) 0 (0) 0 (0) 5 (100) 0 (0) 0 (0) >0.9999

Amikacin (n = 52)
CIP-R (n = 46), CIP-S (n = 6) 40 (87.0) 0 (0) 6 (13.0) 0 (0) 0 (0) 6 (100) <0.0001

Gentamicin (n = 52)
CIP-R (n = 46), CIP-S (n = 6) 39 (84.8) 4 (8.7) 3 (6.5) 0 (0) 0 (0) 6 (100) <0.0001

* Statistically significant p-values are presented in bold (p ≤ 0.05). The results display the total number of
CIP-R (ciprofloxacin-resistant) and CIP-S (ciprofloxacin-sensitive) isolates tested for each antibiotic separately.
a Not all the susceptibility test results were available. Results are presented as R: resistant, I: Intermediate, and
S: susceptible, isolate number/total (%).

3.3. Occurrence of Carbapenemase Encoding-Genes

Out of 52 isolates, 35 (67.3%) were positive for at least one carbapenemase-encoding
gene tested. Two isolates (3.8%) were positive for blaIMP; three (5.8%) were positive for
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blaKPC and blaNDM; four (7.7%) were positive for blaOXA-48, and eight (15.4%) were posi-
tive for blaOXA-1 and blaVIM. blaGES was detected only in one isolate (1.9%), and blaOXA-51
was the most frequently carbapenemase-encoding gene found within 22 isolates (42.3%).
None of the isolates tested carried blaOXA-23. Seventeen isolates (32.7%) were negative
for carbapenemase-encoding genes, suggesting that other mechanisms of resistance to
carbapenems are important for the strains isolated at the hospital. Moreover, 38.5%
(20 isolates) were positive for only one carbapenemase-encoding gene, 26.9% (14 isolates)
co-carrying two different genes, and 1.9% (1 isolate) co-carrying three different genes
(blaOXA-51, blaOXA-1, and blaVIM). The distribution of carbapenemase-encoding genes found
among isolates is shown in Table 4.

Table 4. Distribution of carbapenem-encoding genes and PMQR determinants in Pseudomonas
aeruginosa isolates (N = 52).

Carbapenemase-Encoding Genes PMQR Genes PMCR a CIP-Susceptibility b Total
Prevalence

(N = 52)MBL OXA SBL Qnr
Variants

Efflux
Pumps

Aminoglycoside
Variant mcr-1 R c

n = 46, (%)
S d

n = 6, (%)

blaIMP blaOXA-51 qnrC oqxA aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaIMP blaOXA-51 1 (2.2) 0 (0.0) 1 (1.9)

blaNDM blaOXA-1 aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaNDM blaOXA-1 1 (2.2) 0 (0.0) 1 (1.9)

blaNDM oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM blaOXA-51 aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM blaOXA-51 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM blaOXA-51 oqxA 0 (0.0) 1 (16.7) 1 (1.9)

blaVIM blaKPC
qnrB, qnrC,

qnrS oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM blaOXA-48 qnrS mcr-1 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM
blaOXA-51,
blaOXA-1

1 (2.2) 0 (0.0) 1 (1.9)

blaVIM aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaVIM 0 (0.0) 1 (16.7) 1 (1.9)

blaOXA-1 2 (4.3) 0 (0.0) 2 (3.8)

blaOXA-1 qnrS aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaGES qnrB, qnrS oqxA 0 (0.0) 1 (16.7) 1 (1.9)

blaOXA-48 blaKPC qnrS oqxA 0 (0.0) 1 (16.7) 1 (1.9)

blaOXA-48 qnrS oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51 blaKPC oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51,
blaOXA-1

oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51,
blaOXA-1

oqxA aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51,
blaOXA-48

1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51 aac-(6´)-lb 2 (4.3) 0 (0.0) 2 (3.8)

blaOXA-51 oqxA 4 (8.7) 0 (0.0) 4 (7.7)

blaOXA-51 4 (8.7) 0 (0.0) 4 (7.7)

blaOXA-51 qnrC oqxA 1 (2.2) 0 (0.0) 1 (1.9)

blaOXA-51 oqxA aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

qnrC, qnrS oqxA 2 (4.3) 1 (16.7) 3 (5.8)

qnrC 1 (2.2) 0 (0.0) 1 (1.9)
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Table 4. Cont.

Carbapenemase-Encoding Genes PMQR Genes PMCR a CIP-Susceptibility b Total
Prevalence

(N = 52)MBL OXA SBL Qnr
Variants

Efflux
Pumps

Aminoglycoside
Variant mcr-1 R c

n = 46, (%)
S d

n = 6, (%)

oqxA aac-(6´)-lb 1 (2.2) 0 (0.0) 1 (1.9)

oqxA 3 (6.5) 1 (16.7) 4 (7.7)

aac-(6´)-lb 3 (6.5) 0 (0.0) 3 (5.8)

- - - - - - 5 (10.9) 0 (0.0) 5 (9.6)

a PMCR: plasmid-mediated colistin resistant, b CIP-susceptibility: ciprofloxacin susceptibility, c R: resistant,
d S: susceptible. The hyphen indicates that there was no amplification of any carbapenemase-encoding genes or
PMQR genes.

3.4. Screening for Plasmid-Mediated Colistin-Resistant mcr-1 Gene

Only one isolate (1.9%) was positive for mcr-1 (PHH12 isolate, Supplementary Table S4).
This strain also carried blaOXA-48 and qnrS genes, was colistin intermediate with MIC
values ≤ 0.5 µg/mL, ciprofloxacin-resistant (MIC ≥ 4 µg/mL), doripenem resistant
(MIC ≥ 8 µg/mL), imipenem resistant (MIC ≥ 16 µg/mL), and meropenem resistant
(MIC ≥ 16 µg/mL). Furthermore, this strain was susceptible to amikacin (MIC = 8). In-
terestingly, none of the three isolates resistant to colistin (MICs values of ≥16 µg/m and
4 µg/mL) were positive for the mcr-1 gene, indicating the presence of other mechanisms of
resistance such as chromosome-encoded mutations.

3.5. Presence of PMQR Determinants

Among the 52 isolates, 18 (34.6%) isolates were positive for the qnr genes, 24 (46.2%)
isolates were positive for the oqxA gene, and 13 (25%) for the aac-(6′)-lb gene (Table 4). The
results indicated that oqxA was the most prevalent quinolone-resistance gene, followed by
the aac-(6′)-lb gene. In the case of qnr genes, qnrS was the most frequent gene (9 isolates,
17.3%), followed by qnrC (7 isolates, 13.5%) and qnrB (2 isolates, 3.8%). qnrD and qnrA were
not found in the isolates (Supplementary Table S4).

3.6. Co-Occurrence of Carbapenemase-Encoding Genes and PMQR Determinants

The co-existence of carbapenemase-encoding and quinolone-resistant genes was found
among CIP-resistant and CIP-sensible isolates (Table 4). The patterns of co-existence were
recognized as follows: blaOXA-51 co-carrying oqxA (11 isolates, 21.1%); blaOXA-51 co-carrying
aac-(6´)-lb (6 isolates, 11.5%); blaVIM co-carrying aac-(6′)-lb (2 isolates, 3.8%); blaKPC co-
carrying oqxA (3 isolates, 5.8%), with two of them also carrying qnrS; and blaOXA-48 co-
carrying qnrS (3 isolates, 5.8%), with two of them also carrying oqxA. However, it seems that
the co-existence is unrelated to a specific pattern of ciprofloxacin-resistant determinants.
No significant differences were found between PMQR and ciprofloxacin-resistant and
sensitive isolates.

4. Discussion

The incidence of plasmid-mediated quinolone-resistant determinants and carbapenemase-
encoding genes simultaneously in P. aeruginosa has been analyzed in limited studies. In
this study, the prevalence of PMQR and carbapenemase-encoding genes occurring at the
same time in P. aeruginosa strains isolated from clinical patients in Aguascalientes, Mexico
was reported. Fifty-two strains were investigated. The highest proportion of carbapenem-
resistant P. aeruginosa was isolated from respiratory tract samples. This was in concordant
with previous studies since carbapenem resistance is directly influenced by the culture site,
being higher in respiratory infections than in bloodstream infections [44]. Additionally,
urine cultures had a great proportion of carbapenem-resistant P. aeruginosa isolates in this
study. Moreover, we found that septic shock was an independent risk factor for 30-day
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mortality as well as extensively drug-resistant P. aeruginosa (XDR-PA), in agreement with
previous studies [45–47].

Higher resistance levels to all tested antibiotics were identified in the study by Nieto-
Saucedo et al. [13]. In the comparative analysis, resistance rates were as follows: amikacin
(24% vs. 73.1%), gentamicin (60% vs. 75%), ceftazidime (52% vs. 83.3%), cefepime (44% vs.
76%), ciprofloxacin (44% vs. 88.4%), colistin (0% vs. 6.8%), and piperacillin/tazobactam
(36% vs. 71.8%). This could be due to geographic variation, healthcare practices, and the
genetic mechanisms underlying resistance. Conversely, the study by Martinez-Zavaleta
et al. [48], also from Mexico, reported similar resistance rates in comparison to our findings,
showing resistance levels for amikacin (50% vs. 73.1%), gentamicin (70.8% vs. 75%), cef-
tazidime (73.9% vs. 83.3%), cefepime (76.5% vs. 76%), colistin (9.9% vs. 6.8%), and
piperacillin/tazobactam (57.3% vs. 71.8%). Furthermore, a study in Nigeria [49] re-
ported resistance rates of approximately 75% for ceftazidime, cefepime, ciprofloxacin,
and piperacillin/tazobactam in CRPA. Another study in Japan found that 47.1% of the
CRPA isolates were resistant to piperacillin-tazobactam and 73.4% to ciprofloxacin [50],
which aligns with the antimicrobial susceptibility found in this study.

Additionally, colistin (polymyxin E) was the most active agent tested, with less than
seven percent of the isolates resistant, suggesting its use as a better alternative to treat
these infections. The prevalence of colistin resistance was higher than one reported in a
previous study in Mexico (1.65% of prevalence) [51]. Even though colistin seems to be the
best option for treatment due to a lower resistance rate, this antibiotic could cause harmful
effects on human health, and precautions must be taken regarding its use. There were
notable variations in antibiotic resistance rates between the ciprofloxacin-resistant and
ciprofloxacin-susceptible isolates, which differed from a previous study [15]. Furthermore,
the ciprofloxacin-susceptible isolates exhibited higher susceptibility to aminoglycosides,
ceftazidime, and cefepime, suggesting a viable alternative for this type of phenotype.
Similarly, in a previous study [45], all XDR-P. aeruginosa isolates were susceptible to colistin,
suggesting its use as a better alternative treatment.

This study included only the CRPA isolates and the first eligible culture episode for
each patient. This approach was taken to minimize the chances of including the same
isolate multiple times, as some patients experienced two or three reinfections during the
study period. Moreover, the period of the study (2019 to 2023), the diversity of the specimen
types (blood, biopsy, respiratory tract, and urine), and the genes found in the different
isolates suggest that they represent distinct bacterial strains.

Among carbapenemase-encoding genes, Nieto-Saucedo et al. [13] found the blaIMP-75
gene as the most common carbapenemase-encoding gene for P. aeruginosa, contrasting
with our study since we detected only two isolates carrying blaIMP genes. The genes
blaGES and blaVIM were also found in P. aeruginosa [13,32]. In our study, blaGES and blaVIM
were also detected in the isolates, with blaVIM and blaOXA-51 being the most frequently
detected carbapenemase-encoding genes, which agrees with previous studies in Mexico,
where blaVIM resulted in the primary gene reported in the same bacteria [11]. Detection
of blaOXA-51 is rare for P. aeruginosa since this gene encoding Ambler class D oxacillinase
(OXA)-like carbapenemase, blaOXA-51 is naturally detected in A. baumannii and is related in
resistance to oxacillin, cephalosporins, and carbapenems [52,53]. However, in the last years,
it has been emerging in P. aeruginosa [54], as well as other oxacillinase-type enzymes such
as blaOXA-48 [55,56]. Moreover, we included various types of hospital-acquired infections
caused by P. aeruginosa such as monomicrobial and polymicrobial infections. Indeed, several
strains were isolated from patients with co-infection by A. baumannii, thus facilitating the
spread of resistant determinants through horizontal gene transfer, as well as influencing
the treatment responses and patient outcomes.

Carbapenemase-encoding genes were not amplified in thirty-two percent of the iso-
lates. Therefore, the production of carbapenemases may not be the primary mechanism
of resistance in P. aeruginosa strains circulating in the hospital, which is closer to those
described by Garza-Ramos et al. [11], where 47% of the isolates were negative for the
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presence of the carbapenemase-encoding genes tested. Other mechanisms may include
alteration or lack of porin OprD which has been related to reduced susceptibility to car-
bapenems [57], overexpression of efflux pumps, mutations in AmpC and its regulatory
genes, and plasmid-encoded AmpC. Nevertheless, detecting MBL-producing strains is of
great importance since options for P. aeruginosa are still limited. Lately, the treatment sug-
gested for MBL-carbapenemase includes cefiderocol, fosfomycin, high-dose amikacin, and
a synergic combination of colistin with fosfomycin or aminoglycoside, or the combination
of ceftolozane-tazobactam with amikacin or fosfomycin [58,59]. Meanwhile, ceftazidime-
avibactam could be usable for GES-carbapenemase P. aeruginosa [58], KPC and OXA-48
producers; ceftazidime-avibactam plus aztreonam seems to be a reliable option for MLBs
producers [31].

Only one strain tested carried the mcr-1 gene. Despite their harmful effects on human
health, polymyxins remain a last resort against Gram-negative MDR infections, especially
in carbapenem-resistant bacteria. The mcr genes are of great concern due to their high
potential for horizontal propagation. Among the variants described, mcr-1 is the most
prevalent within Mexico [11] and globally [60]. Previous reports have also revealed the
emergence of mcr-1 in P. aeruginosa [61,62]. In Mexico, mcr-1 has also been reported in
Klebsiella pneumoneae [11] and Escherichia coli [51]; meanwhile, mcr-2 has been detected in
Enterobacter cloacae [13]. The horizontal propagation of the mcr-1 gene into carbapenem-
resistant bacteria could severely limit antimicrobial treatment options. Thus, it is essential
to strengthen our surveillance of bacteria exhibiting this resistance mechanism.

Among fluoroquinolone resistance genes, there were found frequencies of 46.2% for
oqxA, 25% for aac-(6′)-lb, and 34.6% for qnr genes (17.3% for qnrS, 13.5% for qnrC, and 3.8%
for qnrB). The qnrD and qnrA genes were not detected. This agrees with Venkataramana
et al. [19], who found that plasmid-meditated resistance acc-(6′)-lb-cr is primarily responsi-
ble for mediating fluoroquinolone resistance in clinical isolates of P. aeruginosa. However,
higher frequency was found within 77.6% of the isolates testing positive for this gene. The
authors also found the genes qnrB (14.1%), qnrS (14.1%), and oqxAB (3.5%) in the isolates.
Similar results were detected by Abdelrahim et al., who showed a frequency of 77.3% for
acc-(6′)-lb-cr gene in P. aeruginosa [63]. In our study, several ciprofloxacin-resistant isolates
were negative for the PMQR tested. This might be attributable to the major mechanism for
fluoroquinolone resistance in P. aeruginosa, the mutations in the DNA gyrase encoded by
the gyrA and gyrB genes, as well as in the topoisomerase IV encoded by the parC and parE
genes [64].

Interestingly, in our study, oqxA has the highest frequency (46.2%), which encodes for a
multi-drug efflux pump belonging to the resistance-nodulation-division family (RND) [14],
implying its contribution to the reduced susceptibility to quinolones in the clinical isolates
of the region. In the study by Andres et al. [65], oqxA and oqxB were found in isolates with a
wide range of MIC values for ciprofloxacin, including some that were susceptible. Moreover,
Goudarzi et al. [66] highlighted that these genes were detected in both susceptible and
resistant isolates. This finding is supported by Agyepong et al. [67], who observed that
oqxA and oqxB were present together in susceptible and resistant ciprofloxacin isolates. This
agrees with our study, where several strains carrying oqxA were ciprofloxacin-sensitive
isolates, and the resistant ones have MIC values ≥ 4 µg/mL, suggesting that while oqxA
is associated with resistance, it can also coexist with susceptibility or low-level-resistant
isolates. Furthermore, the detection of oqxA gene is worrisome since the OqxAB multi-
drug efflux pump is linked to low to intermediate resistance to other antibiotics such as
quinoxalines, quinolones, tigecycline, nitrofurantoin, chloramphenicol, several detergents
and disinfectants [68], and the high level of expression of this efflux pump is associated to
high resistant to ciprofloxacin [69]. Additionally, the presence of aac(6′)-lb-cr gene enables
the selection of highly ciprofloxacin-resistant chromosomal mutants. It converts the low-
level fluoroquinolone resistance mediated by this enzyme into high-level resistance when
present alongside Qnr proteins [63].
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Like earlier studies [19,70], the qnrA gene was not detected in any of the isolates of P.
aeruginosa in this study. In contrast to our study, Lopez-Garcia et al. [32] did not find the
genes blaVIM, blaNDM, blaKPC, qnrA, qnrB, qnrS or aac-(6′)-Ib-cr in MDR P. aeruginosa strains.
Regardless, blaIMP (41%), blaGES (49%), blaOXA-2 (85%), and blaOXA-50 (100%) were found.
Another study in Iran [15] found higher prevalence rates of qnr genes compared to our
study: qnrA (25.8% vs. 0%), qnrB (29.2% vs. 3.8%), and qnrS (20.8% vs. 17.3%); however,
qnrD was also not detected as in this study.

Although some studies were carried out to detect PMQR in P. aeruginosa, recent reports
suggest a current increase in the mobile genetic pool in P. aeruginosa which could provide
multiple resistance to the most clinically used antibiotics [71]. Indeed, qnrS1 was detected
alongside the β-lactamase gene blaTEM-1 [72], while qnrVC was detected with the blaVIM-2
gene as part of class 1 integron [73]. Elena et al. [22] found the simultaneous presence
of blaVIM-11 and the PMQR qnrS1 in the same strain located in different plasmids. Other
studies have shown evidence of qnrVC1 and blaNDM-1 in the high-risk P. aeruginosa ST773
clone reported worldwide as MDR [24]. Lopez-Garcia et al. [32] found blaIMP-18 + aacA7
+ blaIMP-62 + qacH + aacA4 + aadA1 + blaOXA-2 in two strain isolates from the same patient.
Similarly, the co-existence of resistance genes in different combinations in P. aeruginosa has
also been previously reported with multiple ESBL genes and carbapenemase-encoding
genes (CTX-M-1, NDM-1, and OXA-48), with the addition of acc-(6′)-lb [74].

In this study, it was found that PMQR was present on resistant and susceptible
ciprofloxacin isolates, indicating a possible future increase in quinolone resistance. Sev-
eral isolates carried carbapenemase-encoding genes, and PMQR determinants simulta-
neously were found, indicating the dissemination of PMQR on carbapenem-resistant
strains. Figure 1 describes the presence of both genetic elements in P. aeruginosa. OXA-type
carbapenemase-encoding genes were found in combination with efflux pumps and amino-
glycoside variants (blaOXA-51 + oqxA + aac-(6′)-lb) as well as serin-based carbapenemase-
encoding genes with qnr-encoding variants and efflux pump genes (blaKPC + qnrB, qnrC,
qnrS + oqxA; blaGES + qnrB, qnrS + oqxA). The co-carriage of carbapenemase-encoding genes
and PMQR determinants might suggest the presence of circulating plasmids that carry
these resistance genes [63]. P. aeruginosa is a highly diverse pathogen that can adapt to its
environment. The rapid development of antimicrobial resistance in this bacterium may
be attributed to the excessive and inappropriate use of antibiotics. This creates selective
pressure which can lead to mutations, the acquisition of resistance genes through horizontal
gene transfer, the overexpression of beta-lactamases, and the proliferation of antibiotic
resistance [75]. While PMQR determinants by themselves generally produce low levels of
fluoroquinolone resistance, this plays a significant role in the emergence of clinical resis-
tance to ciprofloxacin. This allows the bacteria to grow at clinically relevant concentrations
of quinolones, potentially leading to treatment failures.
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The frequency of PMQR genes in clinical isolates of carbapenem-resistant P. aeruginosa
is worrisome since it enables their spread to other bacterial species by horizontal gene
transfer. It is important to emphasize that understanding the mechanisms of carbapenem
resistance in clinical isolates of P. aeruginosa is crucial in determining the most effective
treatment strategy.

Our study has some limitations. Firstly, all the strains were not tested with all an-
tibiotics because not all antibiotics were available at the time of the isolation. Secondly,
the study involved patients in one hospital center. To increase the statistical power of the
results, it would be necessary in the future to include a higher number of samples in a larger
multicenter study to improve the generalizability of the findings. However, although this
study is limited to a single center, it aims to guide the rational prescription of antibiotics in
a regional context. Finally, although all isolates come from different patients, the study did
not assess the genetic relationships among the resistant strains.

5. Conclusions

To the best of our knowledge, this is the first report in Mexico of PMQR genes
in carbapenem-resistant P. aeruginosa. The co-existence of PMQR with carbapenemase-
encoding genes in carbapenem-resistant P. aeruginosa is infrequent, though its occurrence
could complicate infection treatments and increase resistance through horizontal gene
transfer. Routine screenings are advisable as an infection control measure. This study aims
to guide the rational prescription of antibiotics in a regional context.
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