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Abstract: Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle
and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a
significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates
an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing
areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to
demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections
on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant
acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-
labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species
could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological
changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené’s
organ infection was detected only in S. succinus. Our findings offer valuable insights for developing
biocontrol strategies to manage Rhipicephalus microplus populations effectively.
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1. Introduction

Rhipicephalus microplus, commonly known as the cattle tick, is a persistent bovine
ectoparasite in tropical and subtropical cattle-grazing areas worldwide [1]. The lifecycle of
this tick includes a nonparasitic larval phase on the ground [2] and a parasitic phase on
the cattle that may cause direct harm to the host, leading to skin damage, anemia, weight
loss, irritability, immunosuppression, and reduced milk production [3]. Moreover, during
this parasitic phase, R. microplus may also act as a vector for diseases such as anaplasmosis
and babesiosis [4,5], causing billions of dollars of damage to the cattle, milk, and leather
industries worldwide [1].

The emergence of acaricidal resistance in ticks has prompted a global initiative to
discover novel organisms that are pathogenic to ticks. This approach aims to achieve
enhanced and environmentally sustainable management of R. microplus and other tick
infestations in livestock, domestic animals, and humans [6–9]. Although research focus-
ing on fungal infections in cattle ticks has been predominant in this field [6,8,10–12], the
potential of bacterial infections in reducing R. microplus populations has been recognized
recently [13–15]. The key acaropathogenic bacterial species include Serratia sp. [16], Staphy-
lococcus saprophyticus [9], which was later reclassified as S. shinii by more stringent genomic
studies [14], S. xylosus [14], S. succinus [14], and Bacillus thuringiensis [13]. All of these
bacterial species have been demonstrated to be effective at controlling tick populations
through experimental infections at several developmental stages of the cattle tick [13,14,16].
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These bacterial infections cause pathogenic signs, including reduced oviposition in adult
ticks, reduced larval hatching, and survival [13,14,16]. The pathogenic signs of bacterial
infection reported in these studies include cuticle darkening, engorged female swelling,
hypostome exudates, egg darkening, reduced oviposition, and oviposition of dry eggs [14].

When ticks act as vectors of infectious diseases, they can carry various microorganisms
in their internal organs, such as Anaplasma marginale [17,18], Borrelia burgdorferi [19], Ehrlichia
canis [20], and Babesia sp. [21]. Many tick pathogens follow a common infection sequence:
the pathogen moves from the midgut to the salivary glands via the hemolymph. However,
Babesia spp. is an exception, undergoing a transovarial transmission phase. Nevertheless,
Babesia sp. also uses the salivary glands to continue its life cycle [21].

Rhipicephalus microplus is a blood-feeding parasite with a midgut that undergoes
notable changes as feeding progresses [22]. Initially, it starts as a “small tube-like structure”
that expands and differentiates [22,23]. This organ is integral to the energy metabolism of
ticks [24] and serves as a crucial site for the lifecycle of hemoparasites such as Babesia and
Anaplasma species [18,21,25].

Numerous microbiome analysis reports have documented the presence of bacteria
from the Staphylococcus genus in various organs of the tick species R. microplus and other
hard ticks. These organs include the salivary glands [26,27], gut [26,28], eggs [28], and
ovaries of Ixodes ricinus [29]. The identified species, S. pyogenes, S. aureus, and S. albus,
have been found in ticks [30]. On the other hand, reports indicate that staphylococcal
infections in R. microplus can lead to increased mortality, reduced oviposition, and inhibition
of the reproductive index [9,14]. However, information regarding the presence of the
Staphylococcus genus in the ovaries of R. microplus is lacking [28,29].

This study aimed to locate Staphylococcus shinii and S. succinus infections in R. mi-
croplus ticks, determine the specific organs targeted by these bacteria, and understand their
pathogenic activity.

2. Materials and Methods
2.1. Tick Rearing

The ‘Media Joya’ strain, known for its susceptibility to pesticides, was selected for
this study [31]. The strain was initially propagated by infesting healthy, stable bovines
with 20,000 larvae each. After 21 days, 75 semiengorged females, which ranged from
100–200 mg, were gathered and specifically chosen on the basis of their weight [31]. To
ensure the absence of signs of infection, such as color changes and exudate presence, as
well as the integrity of the hypostome, the ticks were washed with 0.1% benzalkonium
chloride and 0.05% sodium nitrite for 10 min, followed by rinsing in distilled water for an
additional 10 min as previously reported [14].

2.2. Bacterial Culture and Staining

Staphylococcus shinni S-1 [14] and Staphylococcus succinus [14] are nonmodified
strains registered with the World Federation Culture Collection as CM-CNRG TB
100 and CM-CNRG TB 102, respectively. These strains are associated with the bio-
project number PRJNA421192 in the GenBank database. S. shinni S-1 has the biosam-
ple identifier SAMN08134547 and the accession number GCA_002836805.1 (GenBank
GCF_002836805.1), whereas S. succinus is identified by SAMN08134550 with the acces-
sion number GCF_002836835.1 in the GenBank database. Escherichia coli. Top 10 is a
commercially available strain primarily used for plasmid cloning and transformation
and was obtained from Invitrogen (Groningen, The Netherlands). This strain has been
specifically modified for these purposes. Its genotype is F-mcrA (mrr-hsdRMS-mcrBC)
ϕ80lacZ∆M15 lacX74 recA1 araD139 (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG,
reflecting these specialized adaptations.

The bacterial strains S. shinii S-1, S. succinus, and E. coli Top 10 were cultivated in
preprepared tryptic soy broth (STA; Sigma-Aldrich, Burlington, MA, USA) at 37 ◦C with
150 rpm agitation for 24 h. The bacterial cultures were subsequently adjusted to a concentra-
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tion of 1 × 108 colony-forming units (CFU)/mL in 10 mL of 0.1 M NaHCO3 (Sigma-Aldrich,
Burlington, MA, USA) in phosphate-buffered saline (PBS; Sigma-Aldrich, Burlington, MA,
USA) at pH 8. The bacteria were stained with 20 mg of fluorescein 5(6)-isothiocyanate
(FITC; Sigma-Aldrich, Burlington, MA, USA) per strain and incubated for 30 min at 25 ◦C
with continuous agitation. After incubation, the bacteria were centrifuged at 2000 rpm for
5 min and washed with PBS six times. Finally, the bacteria were resuspended in 10 mL of
PBS and stored in a dark environment until further use.

2.3. Modified Adult Immersion Test

A modified adult immersion test (AIT) was used to evaluate the pathogenic activity of
S. shinii S-1, S. succinus, and E. coli Top 10 against female R. microplus ticks [14]. Eighteen
semiengorged ticks were immersed in PBS containing stained bacteria from S. shinii, S.
succinus, and E. coli Top 10 at a concentration of 1 × 108 colony-forming units (CFU)/mL.
An additional control group was treated with PBS alone. After a 10-min exposure, the ticks
were dried and incubated in separate Petri dishes for 24 and 48 h at 28 ◦C with 80% relative
humidity. The samples were subsequently dissected for further analysis.

2.4. Tick Dissection, Hemolymph Extraction, and Epifluorescence Microscopy

To accurately locate the bacteria within Rhipicephalus microplus, the ovaries, Gené’s
organs, salivary glands, vestibular vaginas, midgut, and tracheas of the treated semi-
engorged females were meticulously dissected at 2-, 24-, and 48-h posttreatment, following
well-established protocols [32]. The hemolymph was obtained by hypocuticular punctures,
as described previously [33]. After dissection, the organs were preserved in PBS at −70 ◦C
for examination. The organs were subsequently examined via epifluorescence microscopy
(Axioscope 40, Carl Zeiss, Jena, Germany) equipped with FITC (Filter 09 Zeiss BP 450–490,
FT 510, LP 515) and rhodamine (Filter 15 Zeiss BP 546/12, FT 580, LP 590) filters to identify
the presence of infected organs and evaluate any damage caused by the infection.

3. Results
3.1. Experimental Bacterial Infection of Engorged Female Ticks

Fifteen days after infection, the engorged females displayed swelling and exudate in
the genital orifice-hypostome area, as shown in Figure 1B. To determine the localization of
the bacteria within the organs, infected ticks were examined at 2, 24, and 48 h post-infection
to gain insight into the initial stages of the infection process.
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Figure 1. Signs of Staphylococcus infection in Rhipicephalus microplus-engorged females. During our 
experimental assessment of Staphylococcus infection in cattle ticks, we identified the main features 
Figure 1. Signs of Staphylococcus infection in Rhipicephalus microplus-engorged females. During our
experimental assessment of Staphylococcus infection in cattle ticks, we identified the main features of
bacterial infection in engorged female ticks. (A). Uninfected female tick showing the positions of the
genital pore (GP) and hypostome (H). (B). Staphylococcus shinii-infected female ticks showing signs of
exudates covering both the genital pore (GP) and the hypostome (H). Other signs of Staphylococcus
infection, in addition to exudate, include swollen bodies and color changes.
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3.2. Bacterial Organ Localization

Figure 2 shows the organ dissection of adult female ticks. Panel A illustrates the
reproductive system, highlighting how the oviducts connect to a single ovary on each side
(Ov). The oviducts also link to the vestibular vagina (Vv) and the seminal receptacle (Sr),
which opens to the exterior through the genital pore (Figure 1 GP) [34]. Panel B provides
a detailed view of the vestibular vagina (Vv), whereas panel C focuses on the salivary
glands (Sg).
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Figure 2. Dissections of adult female tick organs. (A) The female reproductive system at 20×
magnification shows oviducts (Ov)., vestibular vagina (Vv), ovary (Ova), and seminal receptacle (Sr).
(B) Close-up view of the vestibular vagina (Vv), seminal receptacle (Sr), oviducts (Ov), and tubular
accessory gland (Tag) at 50× magnification. (C) Salivary glands (Sg) at 50× magnification.

No fluorescent-stained E. coli Top10 was detected in any dissected organ or hemolymph
in the treated or untreated control groups (Figure 3). In contrast, fluorescent Staphylococcus
bacteria were identified in various organs, including the Gené’s organ, and the vestibular
vagina, as early as two hours after treatment (Figures 4 and 5). Epifluorescence microscopic
observation of tick tissues at 24 h posttreatment revealed the presence of stained S. shinii
S-1 and S. succinus in the salivary glands. Stained S. succinus was observed in Gene’s organ
(Figure 4) and in the vestibular vagina at 24 h (Figure 5). After 48 h, stained S. succinus and
S. shinii S-1 were observed in the salivary glands and vestibular vagina. Salivary glands
infected acini with S. succinus and S. shinii S-1 appeared to have been damaged during
infection (Figure 4), and stained bacteria were found in the hemolymph as early as two
hours post-infection (Figures 6 and 7).
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Figure 3. Experimental exposure of fluorescent E. coli and background autofluorescent control.
Fluorescence microscopy images displaying Rhipicephalus microplus salivary glands and Gené’s
organ. Images of tissue samples from the tick-treated group with 1 × 108 UFC/mL E. coli at 24 h
posttreatment were obtained via epifluorescence microscope. A schematic diagram was made to
illustrate the salivary gland, acini, and vestibular vagina with the seminar receptacle. Images were
captured using white, FITC, and rhodamine filters at 400× magnification. Ac: Acinni; SD: Salivary
Duct; SR: Seminal receptacle; Vv: Vestibular vagina.
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Figure 4. Fluorescence microscopy images displaying Rhipicephalus microplus salivary glands and
Gené’s organ. Images of tissue samples from the tick-treated (group treated) with 1 × 108 UFC/mL S.
succinus or S. shinii S-1 24 h posttreatment were obtained via an epifluorescence microscope, and a
schematic diagram was generated to illustrate the fluorescent bacteria in blue within the salivary and
Gené’s organ. Images were captured using white, FITC, and rhodamine filters at 400× magnification.
Ac: Acinni; SD: salivary duct; ID: infection damage; GF: Gené’s organ fold.
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Figure 5. Fluorescence microscopy images of the vestibular vagina of Rhipicephalus microplus. Tissue
samples from the tick group treated with 1 × 108 UFC/mL S. succinus and S. shinii were captured via
an epifluorescence microscope at 2- and 24-h posttreatment, and a schematic diagram was generated
to illustrate the fluorescent bacteria in blue within the vestibular vagina. Images were captured using
white, FITC, and rhodamine filters at 400× magnification. Sr: seminal receptacle; Vv: vestibular vagina.
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the group treated with 1 × 108 UFC/mL S. succinus-shinii at 2 h posttreatment. The arrows indicate
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1000× magnification.
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Figure 7. Fluorescence microscopy image of Rhipicephalus microplus hemolymph. Images of tissue
samples from the tick group treated with 1 × 108 UFC/mL. S. shinii S-1 at 2 h posttreatment were
obtained via an epifluorescence microscope. Images were captured using white and FITC filters at
1000× magnification.

4. Discussion

The cattle tick is known for transmitting harmful bacteria and blood parasites to bovines.
However, few studies have focused on the full cattle tick-associated microbiome, particularly
the role of individual microbial species that may serve as entomopathogens. Some of these
few reports have identified Staphylococcus sp. bacteria within R. microplus soft tissue [27],
including the tick salivary glands, through microbiome analysis [26]. A previous study using
an adult immersion test found that the Staphylococcus strains used in this work (S. shinii
S1, S. succinus) have a harmful effect on ticks. S. shinni S1 led to a 47% reduction in tick
reproduction, 27.5% mortality, 12% less egg laying, and 39.8% reduced hatching. S. succinus
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caused a 44% reduction in tick reproduction, 16% mortality, 3.11% less egg laying, and 44%
reduced hatching [14]. This study aimed to determine the localization and distribution of these
bacteria within the tick post-exposure. During this study, we located S. shinii and S. succinus
entomopathogenic bacteria within the salivary glands 24 and 48 h after experimental bacterial
exposure in engorged females (Figure 4); however, we could not detect any fluorescent bacteria
in the gut, suggesting that the experimental bacteria could not penetrate the gut during our
experiment. Alternatively, it is possible that the fluorescence was quenched by the presence of
blood cells, as previously documented [35], which could have masked the detection of the
bacteria. Further discussion and investigations are needed to understand these observations
fully. The Staphylococcus found in the gut through microbiome analysis in previous studies
likely represent different species that are part of the normal tick microbiome [26,27,29] rather
than the specific acaropathogenic bacteria under investigation in our study. Pathogens that
use ticks as vectors must travel across the gut wall; this event is crucial in completing their
life cycle [18–21,25]. This distinction may explain the differences between the absence of the
intestinal location of acaropathogenic microorganisms and the obligate intestinal presence of
tick-borne pathogens, which depend on the completion of their life cycle.

We observed a time frame of 48 h for our experimental analysis, which can be con-
sidered the initial stage of tick bacterial infection. However, the optimal time for the
Staphylococcus bacteria to exhibit their acaropathogenic activity on ticks remains to be
determined. This study focuses on the final life cycle stage of ticks. However, investigating
the impact of Staphylococcus bacterial infection on ticks during larval and other free-living
developmental stages is crucial for biological control. A loss of larval viability has been
reported when this developmental stage is exposed to bacteria through a modified larval
package test bioassay [14]. It remains to be determined whether the larvae salivary glands
are affected at this early stage of development. This raises questions about the impact of
Staphylococcus bacterial infection on the feeding and reproduction of ticks. Fluorescent
bacteria were identified in the vestibular vagina of engorged female ticks when they were
experimentally exposed to S. succinus as early as two hours posttreatment, indicating rapid
infection by this bacterial species (Figure 5). In contrast, for S. shinii S-1, fluorescent bacteria
were observed only 24 h posttreatment in the same organ (Figure 5).

These findings suggest distinct tick infection routes for different Staphylococcus bacteria
species. Previous reports suggest that an indicator of Staphylococcus infection in ticks is the
presence of exudate around the genital pore or the hypostome [9,14] (Figure 1). During our
study, we observed a reduction in tick oviposition attributed to Staphylococcus infection in
the engorged female’s vestibular vagina, which may obstruct the passage of eggs through
the oviduct and effectively reduce oviposition. This obstruction is likely due to blockage
of the genital pore by the bacterial exudate previously reported [9] and the consequent
swelling of the tick [9]. The rapid vaginal infection observed with S. succinus, compared
with the delayed infection with S. shinii S-1, could explain the more significant proportion
of ticks exhibiting swelling after exposure to S. succinus than after exposure to S. shinii-SI,
as previously reported [14]. No stained bacteria were found in either the oviduct or the
ovary, indicating that these bacteria may require more time to migrate to these structures.
Additionally, some degree of contraction of the vestibular vagina was observed in the S.
shinii S-1-treated group.

Additionally, fluorescent bacteria were detected in Gené’s organ at 24 h posttreatment,
but there was no detection at 48 h posttreatment; this was observed consistently in all the
dissected ticks, suggesting that the tick could control the infection. This is likely due to
the antimicrobial wax-producing capacity of the Gené’s organ [36,37]. Fluorescent bacteria
were consistently detected near organs, such as the trachea and synganglion, but not within
those organs. On the other hand, fluorescent bacteria were consistently detected in the
hemolymph just two hours after infection (Figures 3 and 4). These findings suggest that
Staphylococcus entomopathogenic bacteria may use the hemolymph as a pathway to reach
other organs. This pattern of bacterial transmission appears similar to that observed in
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other bacteria or protozoa transmitted by tick vectors [17,38,39]. The presence of bacteria
in specific organs and at various times is illustrated in Figure 6.

Before the tick’s infection, the bacteria source remains uncertain; however, previous
reports indicate that this particular Staphylococcus species constitutes part of the normal
microbiota on the bovine skin [14]. Considering these previous reports and the data
supported by our study, we propose that R. microplus tick Staphylococcus bacterial infection
is acquired during the blood-feeding process. In this proposed scenario, once the tick
inserts the hypostome through the bovine’s skin, a feeding cavity forms around it (Figure 8).
This cavity may serve as a culture medium for the multiplication of Staphylococcus, which is
part of the normal microbiota of bovine skin, potentially contaminating the blood supply
during feeding. The feeding process involves alternating between salivation within the
feeding cavity and blood sucking, which includes the periodic opening and closing of the
pharyngeal valve. During these processes, bacteria traveling in the blood may reach either
the salivarium or continue to the pharynx, esophagus, and midgut.
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Figure 8. Pathways of introducing skin origin bacterial infection in ticks during blood feeding. Skin
bacteria may infect a tick’s internal organs via the following mechanism: The tick attaches to the
bovine skin (B S) by introducing a hypostome (H). It induces the formation of a feeding cavity
(F C) within the skin colonized by skin bacteria (B). During the blood-feeding process of the tick,
the bacteria contained in the blood invade different organs, including the hemolymph (He), salivary
glands (S G), Gené’s organ (GO), vagina (V), and genital pore (G P), according to our experimental
data. No evidence of infection of the midgut (MG), ovary (Ov), synganglion (S), or anal pore (A P) was
found during this experimental study.

Our results revealed the presence of bacteria in the hemolymph, salivary glands,
and vestibular vagina, indicating that the bacteria might migrate from the salivarium to
other tissues, such as the salivary glands, hemolymph, and vestibular vagina [40]. This
pathway might also involve Gené’s organ in the case of S. succinus infection. Unless our
experimental methods fail to detect bacteria in the midgut, it seems likely that the bacteria
enter the midgut of the tick and subsequently travel through the hemolymph to reach
other tissues, such as the vestibular vagina and salivary glands. This migration pattern
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aligns with those observed in various well-known bacteria and protozoans that serve as
tick-borne pathogens [18–20,23,25]. For S. succinus, we detected bacteria in the vestibular
vagina as early as two hours posttreatment, suggesting a potentially more direct route
of infection, such as through the genital pore, especially when the exudate exiting the
hypostome reaches the near genital pore. As with other pathogen species, vertical bacterial
transmission cannot be ruled out. Previous studies reported that tick larvae hatched from
eggs laid by otherwise healthy engorged female ticks carried Staphylococcus bacteria [9]. The
larvae hatched under laboratory-controlled conditions, suggesting that the only plausible
source of S. saprophyticus bacteria was their apparently healthy mothers. This finding aligns
with recent studies that suggest that maternal transmission of microbiota to eggs can occur
during their passage through the genital pore exudate [41–43]. In our case, the presence
of bacteria in the vestibular vagina, through which the eggs passed during oviposition,
further supports this theory.

5. Conclusions

In this work, we investigated the in situ localization of Staphylococcus shinii and
Staphylococcus succinus in infected Rhipicephalus microplus. These bacteria have previously
been demonstrated to exhibit acaropathogenic activity against R. microplus and are also
components of the bovine skin microbiome. Our study revealed that after exposure, these
bacteria can infiltrate the hemolymph and infect areas such as the salivary glands, Gené’s
organ, and vestibular vagina of ticks. This infection correlates with observable symptoms
such as swelling and reduced oviposition.

These findings suggest that these bacteria could be explored as biological control
agents during cattle tick infestations, offering an alternative to chemical pesticides, particu-
larly in regions facing pesticide resistance challenges. These bacteria are part of the natural
bovine skin microbiome, so they are expected to pose minimal risk to cattle if applied
directly to the skin. However, further research is necessary to address potential impacts on
animal and human health when these bacteria are used for biocontrol purposes.

Additionally, these bacteria offer a valuable opportunity to understand better the inter-
actions between bacteria and ticks, including why some bacteria become acaropathogenic
and how this trait might be harnessed for tick control. Continued exploration in this area
could lead to innovative strategies for managing tick populations more effectively and
sustainably.
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