Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population, Samples, and Ethics
2.2. In-Hospital Procedures
2.3. Legionella Identification and Immunological Array Assay
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collier, S.A.; Stockman, L.J.; Hicks, L.A.; Garrison, L.E.; Zhou, E.J.; Beach, M.J. Direct healthcare costs of selected diseases primarily or partially transmitted by water. Epidemiol. Infect. 2012, 140, 2003–2013. [Google Scholar] [CrossRef]
- Herwaldt, L.A.; Marra, A.R. Legionella: A reemerging pathogen. Curr. Opin. Infect. Dis. 2018, 31, 325–333. [Google Scholar] [CrossRef]
- Murder, R.R.; Yu, V.L. Infection due to Legionella species other Than L. pneumophila. Emerg. Infect. Dis. 2002, 35, 990–999. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 439–466. [Google Scholar] [CrossRef]
- Nara, C.; Tateda, K.; Matsumoto, T.; Ohara, A.; Miyazaki, S.; Standiford, T.J.; Yamaguchi, K. Legionella-induced acute lung injury in the setting of hyperoxia: Protective role of tumour necrosis factor-alpha. J. Med. Microbiol. 2004, 53, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Chastre, J.; Raghu, G.; Soler, P.; Brun, P.; Basset, F.; Gibert, C. Pulmonary fibrosis following pneumonia due to acute legionnaires’ disease. Chest 1987, 91, 57–62. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Legionnaires’ Disease—Annual Epidemiological Report for 2017; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2019; Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AER_for_2017-Legionnaires-disease_1.pdf (accessed on 5 February 2024).
- Public Health Investigating Legionella Cases: 2017. Available online: https://www.hamilton.ca/government-information/news-centre/news-releases/publichealth-investigating-legionella-cases (accessed on 6 March 2019).
- Centers for Disease Control and Prevention. Legionellosis—United States, 2000–2009. Morb. Mort. Week. Rep. 2011, 60, 1083–1086. [Google Scholar]
- Moffat, J.F.; Tompkins, L.S. A quantitative model of intracellular growth of Legionella pneumophila in Acanthamoeba castellanii. Infect. Immun. 1992, 60, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z. Striking a balance: Modulation of host cell death pathways by Legionella pneumophila. Front. Microbiol. 2011, 2, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ziltener, P.; Reinheckel, T.; Oxenius, A. Neutrophil and alveolar macrophage- mediated innate immune control of Legionella pneumophila lung infection via TNF and ROS. PLoS Pathog. 2016, 12, e1005591. [Google Scholar] [CrossRef] [PubMed]
- Tateda, K.; Matsumoto, T.; Ishii, Y.; Furuya, N.; Ohno, A.; Miyazaki, S.; Yamaguchi, K. Serum cytokines in patients with Legionella pneumonia: Relative predominance of Th1-type cytokines. Clin. Diagn. Lab. Immunol. 1998, 5, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.S.F.; Marques, G.G.; Dellama, J.E.; Zamboni, D.S.; Voth, D.E. The Nlrc4 inflammasome contributes to restriction of pulmonary infection by flagellated Legionella spp. that trigger pyroptosis. Front. Microbiol. 2011, 2, 33. [Google Scholar] [CrossRef] [PubMed]
- Newton, H.J.; Ang, D.K.Y.; Van Driel, I.R.; Hartland, E.L. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev. 2010, 23, 274–298. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.K. MAP Kinase Pathways. Cold. Spring. Harb. Perspect. Biol. 2012, 4, a011254. [Google Scholar] [CrossRef] [PubMed]
- Soares-Silva, M.; Diniz, F.F.; Gomes, G.N.; Bahia, D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front. Microbiol. 2016, 7, 183. [Google Scholar] [CrossRef]
- Brieland, J.K.; Jackson, C.; Hurst, S.; Loebenberg, D.; Muchamuel, T.; Debets, R.; Kastelein, R.; Churakova, T.; Abrams, J.; Hare, R.; et al. Immunomodulatory role of endogenous interleukin- 18 in gamma interferon-mediated resolution of replicative Legionella pneumophila lung infection. Infect. Immun. 2000, 68, 6567–6573. [Google Scholar] [CrossRef]
- Head, B.M.; Trajtman, A.; Rueda, Z.V.; Vélez, L.; Keynan, Y. Atypical bacterial pneumonia in the HIV-infected population. Pneumonia 2017, 9, 12. [Google Scholar] [CrossRef]
- Weiss, D.; Boyd, C.; Rakeman, J.L.; Greene, S.K.; Fitzhenry, R.; McProud, T.; Musser, K.; Huang, L.; Kornblum, J.; Nazarian, E.J.; et al. A Large Community Outbreak of Legionnaires’ Disease Associated With a Cooling Tower in New York City, 2015. Public Health Rep. 2017, 132, 241–250. [Google Scholar] [CrossRef]
- Durrance, R.J.; Min, A.K.; Fabbri, M.; McGarry, T. Cavitary Legionella Pneumonia in AIDS: When Intracellular Immunity Failure Leads to Rapid Intrapulmonary Cavitation. Case Rep. Pulmon. 2021, 2021, 6754094. [Google Scholar] [CrossRef] [PubMed]
- Keynan, Y.; Rueda, Z.V.; Aguilar, Y.; Trajtman, A.; Vélez, L. Unique cytokine and chemokine patterns in bronchoalveolar lavage are associated with specific causative pathogen among HIV infected patients with pneumonia, in Medellin, Colombia. Cytokine 2015, 73, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Head, B.M.; Trajtman, A.; Bernard, K.; Burdz, T.; Vélez, L.; Herrera, M.; Rueda, Z.V.; Keynan, Y. Legionella co-infection in HIV-associated pneumonia. Diagn. Microbiol. Infect. Dis. 2019, 95, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.A.; Rohatgi, P.K.; Bergofsky, E.H.; Block, E.R.; Daniele, R.P.; Dantzker, D.R.; Davis, G.S.; Hunninghake, G.W.; King Jr, T.E.; Metzger, W.J. Clinical role of bronchoalveolar lavage in adults with pulmonary disease. Am. Rev. Respir. Dis. 1990, 142, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Velez, L.; Corread, L.T.; Mayad, M.A.; Mejıad, P.; Ortegab, J.; Bedoyac, V.; Ortega, H. Diagnostic accuracy of bronchoalveolar lavage samples in immunosuppressed patients with suspected pneumonia: Analysis of a protocol. Resp. Med. 2007, 101, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Mejia, G.I.; Castrillon, L.; Trujillo, H.; Robledo, J.A. Microcolony detection in 7H11 thin layer culture is an alternative for rapid diagnosis of Mycobacterium tuberculosis infection. Int. J. Tuberc. Lung. Dis. 1999, 3, 138–142. [Google Scholar] [PubMed]
- Kahn, F.W.; Jones, J.M. Analysis of bronchoalveolar lavage specimens from immunocompromised patients with a protocol applicable in the microbiology laboratory. J. Clin. Microbiol. 1988, 26, 1150–1155. [Google Scholar] [CrossRef] [PubMed]
- Benitez, A.J.; Winchell, J.M. Clinical application of a multiplex real-time PCR assay for simultaneous detection of Legionella species, Legionella pneumophila, and Legionella pneumophila serogroup 1. J. Clin. Microbiol. 2013, 51, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Cross, K.E.; Mercante, J.W.; Benitez, A.J.; Brown, E.W.; Diaz, M.H.; Winchell, J.M. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay. Diagn. Microbiol. Infect. Dis. 2016, 85, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Smith, L. A tutorial on Principal Components Analysis. Commun. Stat. Theory. Methods 2002, 17, 1–27. Available online: https://www.iro.umontreal.ca/~pift6080/H09/documents/papers/pca_tutorial.pdf (accessed on 25 January 2024).
- Head, B. Legionella- an underappreciated but important pathogen in HIV. Ph.D. Thesis, University of Manitoba, Winnipeg, MB, Canada, 2020. [Google Scholar]
- Benedict, K.; Reses, H.; Vigar, M.; Al, E. Surveillance for waterborne disease outbreaks associated with drinking water- United States, 2013–2014. Morb. Mortal. Wkly. Rep. 2017, 66, 1216–1221. [Google Scholar] [CrossRef]
- Matsunaga, K.; Klein, T.W.; Newton, C.; Friedman, H. Legionella pneumophila Suppresses Interleukin-12 Production by Macrophages. Infect. Immun. 2001, 69, 1929–1933. [Google Scholar] [CrossRef]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef]
- Lin, Y.; Gong, J.; Zhang, M.; Xue, W.; Barnes, P.F. Production of monocyte chemoattractant protein 1 in tuberculosis patients. Infect. Immun. 1998, 66, 2319–2322. [Google Scholar] [CrossRef]
- Deshmane, S.L.; Kremlev, S.; Amini, S.; Sawaya, B.E. Monocyte chemoattractant protein-1 (MCP-1): An overview. J. Interf. Cytokine. Res. 2009, 29, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Hartl, D.; Griese, M.; Nicolai, T.; Zissel, G.; Prell, C.; Reinhardt, D.; Schendel, D.J.; Krauss-Etschmann, S. A role for MCP-1/CCR2 in interstitial lung disease in children. Respir. Res. 2005, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Allam, C.; Mouton, W.; Testaert, H.; Ginevra, C.; Fessy, N.; Ibranosyan, M.; Descours, G.; Beraud, L.; Guillemot, J.; Chapalain, A.; et al. Hyper-inflammatory profile and immunoparalysis in patients with severe Legionnaires’ disease. Front. Cell. Infect. Microbiol. 2023, 13, 1252515. [Google Scholar] [CrossRef] [PubMed]
- Lettinga, K.; Weijer, S.; Speelman, P.; Prins, J.; Van der Poll, T.; Verbon, A. Reduced interferon-γ release in patients recovered from Legionnaires’ disease. Thorax 2003, 58, 63–67. [Google Scholar] [CrossRef]
- Antonia, A.L.; Gibbs, K.D.; Trahair, E.D.; Pittman, K.J.; Martin, A.T.; Schott, B.H.; Smith, J.S.; Rajagopal, S.; Thompson, J.W.; Reinhardt, R.L.; et al. Pathogen evasion of chemokine response through suppression of CXCL10. Front. Cell. Infect. Microbiol. 2019, 9, 280. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Lee, Z.L.; Naqvi, A.; Prasad, S. Importance of IP-10 as a biomarker of host immune response: Critical perspective as a target for biosensing. Curr. Res. Biotechnol. 2023, 5, 100130. [Google Scholar] [CrossRef]
- Liu, M.; Guo, S.; Hibbert, J.M.; Jain, V.; Singh, N.; Wilson, N.O.; Stiles, J.K. CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011, 22, 121–130. [Google Scholar] [CrossRef]
- Haugen, J.; Chandyo, R.K.; Brokstad, K.A.; Mathisen, M. Cytokine Concentrations in Plasma from Children with Severe and Non-Severe Community Acquired Pneumonia. PLoS ONE 2015, 10, e0138978. [Google Scholar] [CrossRef]
- Dávila, H.; Almeida, P.E.; Roque, N.R.; Castro-Faria-Neto, H.C.; Bozza, P.T. Toll-like receptor-2- mediated C-C chemokine receptor 3 and eotaxin-driven eosinophil influx induced by Mycobacterium bovis BCG pleurisy. Infect. Immun. 2007, 75, 1507–1511. [Google Scholar] [CrossRef]
- Raqib, R.; Moly, P.K.; Sarker, P.; Qadri, F.; Alam, N.H.; Mathan, M.; Andersson, J. Persistence of mucosal mast cells and eosinophils in Shigella-infected children. Infect. Immun. 2003, 71, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.I.; Malheiro, A.; Jose, P.J.; Conroy, D.M.; Williams, T.J.; Faccioli, L.H. Differential release of MIP-1α and eotaxin during infection of mice by Histoplasma capsulatum or inoculation of β-glucan. Inflamm. Res. 2004, 53, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Conroy, D.M.; Williams, T.J. Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir. Res. 2001, 2, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, P.; Paoletti, S.; Clark-lewis, I.; Uguccioni, M. Eotaxin-3 is a natural antagonist for CCR2 and exerts a repulsive effect on human monocytes. Chemokines 2003, 102, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Wolter, N.; Carrim, M.; Cohen, C.; Tempia, S.; Walaza, S.; Sahr, P.; de Gouveia, L.; Treurnicht, F.; Hellferscee, O.; Cohen, A.L.; et al. Legionnaires’ disease in South Africa, 2012–2014. Emerg. Infect. Dis. 2016, 22, 131–133. [Google Scholar] [CrossRef]
All Patients (n = 47) | Legionella-Negative (n = 30) | Legionella-Positive (n = 17) | p Value 3 | |
---|---|---|---|---|
Demographics | ||||
Age, mean (SD 2), years | 35.7 (8.8) | 36.7 (8.4) | 33.9(9.5) | 0.279 |
Male, n (%) | 38 (81) | 27 (90) | 11 (65) | 0.054 |
CD4 cell count (median cells/μL, IQR 1) | 36.5 (16–101) | 25 (12–92.8) | 32.5 (16–90.5) | 0.957 |
Pneumonia (n,%) | ||||
Pneumocystis jirovecii | 15 (32) | 9 (30) | 6 (35) | 0.708 |
Mycobacterium tuberculosis | 19 (40) | 9 (30) | 10 (59) | 0.054 |
Other | 13 (28) | 12 (40) | 1 (5.9) | 0.012 |
Outcome | ||||
ICU admission, n (%) | 16 (34) | 7 (23) | 9 (53) | 0.040 |
Intubation, n (%) | 6 (13) | 3 (10) | 3 (18) | >0.999 |
Mechanical ventilation, n (%) | 4 (8.5) | 2 (6.7) | 2 (12) | 0.613 |
Death, n (%) | 15 (32) | 6 (20) | 9 (53) | 0.020 |
Legionella-Positive Median (IQR 1) pg/mL | Legionella-Negative Median (IQR) pg/mL | p Value 2 | |
---|---|---|---|
IL-1Ra | 59.9 (34.41–216.72) | 63.72 (30.28–166.87) | 0.65 |
IL-6 | 11.43 (1.68–69.61) | 4.13 (0.94–11.47) | 0.22 |
IL-7 | 0.50 (0.24–1.91) | 0.24 (0.24–0.25) | 0.04 |
IL-8 | 235.7 (91.54–438.18) | 137.71 (27.59–436.19) | 0.45 |
IL-10 | 1.66 (1.12–2.39) | 1.29 (1.09–1.67) | 0.28 |
IL-12 | 4.45 (3.48–9.31) | 4.55 (2.85–6.98) | 0.77 |
IL-13 | 2.01 (1.45–3.26) | 1.43 (0.99–3.81) | 0.27 |
IL-17 | 4.03 (2.28–5.09) | 2.87 (2.20–3.65) | 0.43 |
eotaxin | 5.27 (3.58–17.13) | 3.08 (2.60–3.86) | <0.001 |
GCSF | 44.27 (11.29–73.41) | 20.39 (9.66–48.18) | 0.39 |
IFN-y | 1.11 (1.1–8.75) | 1.10 (1.10–2.22) | 0.18 |
IP-10 | 2017.09 (385.88–7902.06) | 496.58 (49.56–1618.3) | 0.07 |
MCP-1 | 133.84 (64.57–464.29) | 98.94 (46.7–211.93) | 0.12 |
MIP-1a | 3.66 (1.83–5.85) | 1.66 (1.14–3.92) | 0.07 |
PDGFBB | 2.87 (2.02–6.48) | 2.55 (1.6–7.08) | 0.50 |
MIP-1b | 52.97 (15.86–82.19) | 18.03 (8.46–46.59) | 0.14 |
RANTES | 182.35 (80.08–293.91) | 125.5 (22.87–269.71) | 0.44 |
TNF-a | 2.49 (1.63–3.46) | 2.12 (1.43–3.22) | 0.46 |
VEGF | 38.08 (23.69–94.31) | 59.0 (23.56–129.79) | 0.54 |
Rotated Component Matrix | |||||
---|---|---|---|---|---|
Variable | Factor1 | Factor2 | Factor3 | Factor4 | Factor5 |
IL-7 | 0.8669 | −0.1346 | 0.1715 | 0.1748 | 0.0641 |
IL-10 | 0.7710 | 0.3706 | 0.2238 | 0.2895 | 0.2582 |
IL-12 | 0.9091 | 0.0897 | 0.1307 | 0.1146 | 0.0667 |
IL-13 | 0.6562 | 0.2333 | 0.4058 | 0.0078 | −0.1972 |
RANTES | 0.7304 | −0.0863 | 0.3711 | 0.0116 | −0.2910 |
VEGF | 0.6576 | 0.0445 | 0.0447 | −0.1978 | 0.6067 |
IL-6 | 0.0322 | 0.9334 | −0.0411 | 0.2984 | −0.0054 |
G-CSF | 0.0727 | 0.9546 | 0.0545 | 0.1163 | −0.0033 |
IFN-γ | 0.0425 | 0.8867 | 0.3215 | 0.2580 | 0.0208 |
TNF-α | −0.0023 | 0.7050 | 0.0396 | −0.0768 | 0.3273 |
IL-17 | 0.2806 | 0.4328 | 0.7831 | 0.1716 | 0.0922 |
MIP-1α | 0.1288 | 0.0262 | 0.9355 | 0.0349 | 0.0392 |
PDGF-BB | 0.6281 | 0.0282 | 0.7200 | 0.0162 | −0.1241 |
MIP-1β | 0.2436 | 0.0387 | 0.9120 | 0.1304 | 0.0418 |
eotaxin | 0.2457 | 0.3161 | 0.0072 | 0.8240 | 0.2004 |
IP-10 | 0.0446 | 0.4256 | 0.3826 | 0.7481 | 0.0394 |
MCP-1 | 0.1647 | 0.3625 | 0.1412 | 0.5934 | −0.1809 |
IL-1RA | 0.0171 | 0.0285 | 0.0090 | 0.1310 | 0.9320 |
IL-8 | −0.0324 | 0.1452 | 0.5622 | 0.1697 | 0.5624 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Head, B.M.; Trajtman, A.; Mao, R.; Bernard, K.; Vélez, L.; Marin, D.; López, L.; Rueda, Z.V.; Keynan, Y. Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections. Pathogens 2024, 13, 173. https://doi.org/10.3390/pathogens13020173
Head BM, Trajtman A, Mao R, Bernard K, Vélez L, Marin D, López L, Rueda ZV, Keynan Y. Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections. Pathogens. 2024; 13(2):173. https://doi.org/10.3390/pathogens13020173
Chicago/Turabian StyleHead, Breanne M., Adriana Trajtman, Ruochen Mao, Kathryn Bernard, Lázaro Vélez, Diana Marin, Lucelly López, Zulma Vanessa Rueda, and Yoav Keynan. 2024. "Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections" Pathogens 13, no. 2: 173. https://doi.org/10.3390/pathogens13020173
APA StyleHead, B. M., Trajtman, A., Mao, R., Bernard, K., Vélez, L., Marin, D., López, L., Rueda, Z. V., & Keynan, Y. (2024). Inflammatory Patterns Associated with Legionella in HIV and Pneumonia Coinfections. Pathogens, 13(2), 173. https://doi.org/10.3390/pathogens13020173