Characterization of Gallibacterium anatis Isolated from Pathological Processes in Domestic Mammals and Birds in the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples, Isolation and Identification of Bacteria
2.2. Whole Genome Sequencing (WGS)
2.3. Multi Locus Sequence Typing (MLST)
2.4. Comparison of Hen and Calf G. anatis Isolates
2.5. Antimicrobial Susceptibility Testing
3. Results
3.1. Prevalence
3.2. Genotyping
3.2.1. Whole Genome Sequencing
3.2.2. AMR Genotyping
3.2.3. Multilocus Sequence Typing
3.2.4. Comparison of Hen and Calf Isolates
3.2.5. Susceptibility to Antimicrobials
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, H.; Bisgaard, M.; Bojesen, A.M.; Mutters, R.; Olsen, J.E. Genetic relationships among avian isolates classified as Pasteurella haemolytica, ‘Actinobacillus salpingitidis’ or Pasteurella anatis with proposal of Gallibacterium anatis gen. nov., comb. nov. and description of additional genomospecies within Gallibacterium gen. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 275–287. [Google Scholar]
- Krishnegowda, D.N.; Dhama, K.; Mariappan, A.K.; Munuswamy, P.; Yatoo, M.I.; Tiwari, R.; Karthik, K.; Bhatt, P.P.; Reddy, M.R. Etiology, epidemiology, pathology, and advances in diagnosis, vaccine development, and treatment of Gallibacterium anatis infection in poultry: A review. Vet. Q. 2020, 40, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Ghany, W.A.; Algammal, A.M.; Hetta, H.F.; Elbestawy, A.R. Gallibacterium anatis infection in poultry: A comprehensive review. Trop. Anim. Health Prod. 2023, 55, 383. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, B.M.; Frees, D.; Bojesen, A.M. Expression and secretion of the rtx-toxin gtxA among members of the genus Gallibacterium. Vet. Microbiol. 2011, 153, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Robles, F.; Ramirez, S.; Riber, A.B.; Bojesen, A.M. Culture-independent identification and quantification of Gallibacterium anatis (G. anatis) by real-time quantitative PCR. Avian Pathol. 2016, 45, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, L.; Vanneste, K.; Bogaerts, B.; De Keersmaecker, S.C.J.; Roosens, N.H.; Haesebrouck, F.; De Cremer, L.; Deprez, P.; Pardon, B.; Boyen, F. Isolation of drug-resistant Gallibacterium anatis from calves with unresponsive bronchopneumonia. Belgium. Emerg. Infect. Dis. 2020, 26, 721–730. [Google Scholar] [CrossRef]
- Schink, A.-K.; Hanke, D.; Semmler, T.; Roschanski, N.; Schwarz, S. Genetic organization of acquired antimicrobial resistance genes and detection of resistance-mediating mutations in a Gallibacterium anatis isolate from a calf suffering from a respiratory tract infection. Antibiotics 2023, 12, 294. [Google Scholar] [CrossRef]
- Halfen, J.; Carpinelli, N.A.; Lasso-Ramirez, S.; Michelotti, T.C.; Fowler, E.C.; St-Pierre, B.; Trevisi, E.; Osorio, J.S. Physiological conditions leading to maternal subclinical ketosis in Holstein dairy cows can impair the offspring’s postnatal growth and gut microbiome development. Microorganisms 2023, 11, 1839. [Google Scholar] [CrossRef]
- Gautier, A.L.; Dubois, D.; Escande, F.; Avril, J.L.; Trieu-Cuot, P.; Gaillot, O. Rapid and accurate identification of human isolates of Pasteurella and related species by sequencing the sodA gene. J. Clin. Microbiol. 2005, 43, 2307–2314. [Google Scholar] [CrossRef]
- de Moreuil, C.; Héry-Arnaud, G.; Fangous, M.S.; Le Berre, R. Gallibacterium anatis pulmonary abscess. Med. Mal. Infect. 2017, 47, 74–76. [Google Scholar] [CrossRef]
- Aubin, G.G.; Haloun, A.; Treilhaud, M.; Reynaud, A.; Corvec, S. Gallibacterium anatis Bacteremia in Human. J. Clin. Microbiol. 2013, 51, 3897–3899. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, F.; Han, H.; Zhao, J.; Mao, L. A case of human diarrhea caused by Gallibacterium anatis: A case report. Res. Sq. 2023, preprint. [Google Scholar] [CrossRef]
- Persson, G.; Bojesen, A.M. Bacterial determinants of importance in the virulence of Gallibacterium anatis in poultry. Vet. Res. 2015, 46, 57. [Google Scholar] [CrossRef] [PubMed]
- Chávez, R.F.O.; Barrios, R.M.M.; Xochihua, J.A.M.; Chávez, J.F.H.; Leon, J.B.H.; Yanes, M.A.; Martinez, V.A.F.; Mascareno, J.R.; Escalante, J.G.A.I. Antimicrobial resistance of Gallibacterium anatis isolates from breeding and laying commercial hens in Sonora, Mexico. Rev. Mex. Cienc. Pecu. 2017, 8, 305–312. [Google Scholar] [CrossRef]
- Bojesen, A.M.; Vazquez, M.E.; Bager, R.J.; Ifrah, D.; Gonzalez, C.; Aarestrup, F.M. Antimicrobial susceptibility and tetracycline resistance determinant genotyping of Gallibacterium anatis. Vet. Microbiol. 2011, 148, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.E.; Arroyo, L.G.; Costa, M.C.; Viel, L.; Weese, J.S. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. J. Vet. Intern. Med. 2017, 31, 928–939. [Google Scholar] [CrossRef] [PubMed]
- Šlosarková, S.; Pechová, A.; Staněk, S.; Fleischer, P.; Zouharová, M.; Nejedlá, E. Microbial contamination of harvested colostrum on Czech dairy farms. J. Dairy. Sci. 2021, 104, 11047–11058. [Google Scholar] [CrossRef] [PubMed]
- Šlosárková, S.; Nedbalcová, K.; Bzdil, J.; Fleischer, P.; Zouharová, M.; Staněk, S.; Kašná, E.; Pechová, A. Antimicrobial susceptibility of streptococci most frequently isolated from Czech dairy cows with mastitis. Ann. Anim. Sci. 2019, 19, 679–694. [Google Scholar] [CrossRef]
- Bzdil, J. Identifikace Bakterií Metodou MALDI-TOF MS (Identification of Bacteria by MALDI-TOF MS Method—In Czech); Standard Operating Procedure 06/21, 4 p; Ptácy s.r.o.: Valašská Bystřice, Czech Republic, 2021. [Google Scholar]
- Mráz, O.; Vladík, P.; Boháček, J. Actinobacilli in domestic fowl. Zentralbl Bakteriol. Orig. A. 1976, 236, 294–307. [Google Scholar]
- Quijada, N.M.; Rodriguez-Lazaro, D.; Eiros, J.M.; Hernandez, M. TORMES: An automated pipeline for whole bacterial genome analysis. Bioinformatics 2019, 35, 4207–4212. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Tange, O. GNU parallel-the command-line power tool. USENIX Mag. 2011, 36, 42–47. [Google Scholar]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Seeman, T. Available online: https://github.com/tseemann/abricate (accessed on 2 December 2023).
- Seeman, T. Available online: https://github.com/tseemann/mlst (accessed on 2 December 2023).
- Jolley, K.A.; Maiden, M.C.J. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computingplatforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Johnson, T.J.; Fernandez-Alarcon, C.; Bojesen, A.M.; Nolan, L.K.; Trampel, D.W.; Seemann, T. Complete genome sequence of Gallibacterium anatis strain UMN179, isolated from a laying hen with peritonitis. J. Bacteriol. 2011, 193, 3676–3677. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, CLSI Supplement VET01S, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; pp. 1–215. [Google Scholar]
- Comité de l’Antibiogramme de la Société Francaise de Microbiologie (CASFM). Comité de l’Antibiogramme de la Société Francaise de Microbiologie—Recommandations Vétérinaries; Société Francaise de Microbiologie: Paris, France, 2021; pp. 1–14. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters; EUCAST: Växjö, Sweden, 2023; Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 27 March 2023).
Antimicrobials | Antibiotics Concentration per Disc in µg (and IU) | Zone Diameter (mm) | ||
---|---|---|---|---|
R | S | Source | ||
penicillin G (Pasteurellaceae) | 6 (10) | <29 | ≥29 | CASFM VET [34] |
amoxicillin/clavulanic acid (Pasteurellaceae) | 20/10 | <14 | ≥21 | CASFM VET [34] |
cefalexin (Pasteurellaceae) | 30 | <12 | ≥18 | CASFM VET [34] |
trimethoprim/sulfamethoxazole (Pasteurellaceae) | 1.25/23.75 | <10 | ≥16 | CASFM VET [34] |
gentamicin (A. pleuropneumoniae) | 10 | ≤12 | ≥16 | CLSI VET [33] |
tetracycline (P. multocida) | 30 | <24 | ≥24 | EUCAST [35] |
enrofloxacin (Pasteurelaceae) | 5 | <17 | ≥22 | CASFM VET [34] |
colistin (Pasteurelaceae) | 50 | <15 | ≥15 | CASFM VET [34] |
Animal | Number of Animals/Samples | Number of Isolates (Prevalence %) | Origin of Isolates | Diagnosis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Heart | Trachea | Lung | Air Sacs | Liver | Spleen | Kidney | Small Intestine | Rectal Swab, Feces | ||||
Hen (adult) | 430 | 18 (4.2) | 12 | 15 | 15 | 15 | 11 | 13 | 12 | 7 | 0 | 11× multi-organ infection, 7× enteritis, 4× pneumonia, 4× aerosaculitis, 2× tracheitis, 1× myocarditis |
Rooster (adult) | 35 | 4 (11.4) | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 1 | 0 | 3× multi-organ infection, 1× nephritis, 1× enteritis |
Chicken | 396 | 3 (0.8) | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 1 | 0 | 2× multi-organ infection, 1× tracheitis, 1× pneumonia |
Turkey (adult) | 173 | 2 (1.2) | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 0 | 1× multi-organ infection, 1× pneumonia, 1× aerosaculitis |
Pigeon (adult) | 110 | 6 (5.5) | 5 | 6 | 6 | 6 | 5 | 5 | 5 | 1 | 0 | 5× multi-organ infection, 1× pneumonia, 1× aerosaculitis |
Duck (adult) | 21 | 2 (9.5) | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2× pneumonia, 1× tracheitis, 1× sinusitis |
Cattle | 1668 | 22 (1.3) | 1 | 2 | 2 | 0 | 1 | 3 | 1 | 5 | 15 | 15× diarrhea, 5× gastroenteritis, 1× multi-organ infection, 1× pneumonia |
Total | 2833 | 57 (2.0) | 24 | 33 | 33 | 28 | 24 | 29 | 25 | 16 | 15 | 23× multi-organ infection, 15× diarrhea, 10× pneumonia, 8× enteritis, 6× aerosaculitis, 5× gastroenteritis 4× tracheitis, 1× myocarditis, 1× nephritis, 1× sinusitis |
Aminoglycosides | Sulfonamides | Tetracyclines | Beta-Lactams | Trimethoprim | Phenicols | Macrolides | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Origin | Isolate | aph(3″)-Ib | aph(3′)-III | aph(6)-Id | aph(3′)-Ia | aadA | aadB | aphA1 | strA | strB | aac(6)-aph(2) | sul1 | sul2 | tet(B) | tet(M) | other | blaROB | blaCARB | blaTEM | dfrA1 | catA1 | catA3 | floR | ermB | Other |
Czech hens | H10 | ||||||||||||||||||||||||
H7 | |||||||||||||||||||||||||
H8 | |||||||||||||||||||||||||
H9 | |||||||||||||||||||||||||
G10 | aph(3″)-Ib | aph(6)-Id | sul2 | ||||||||||||||||||||||
G11 | aph(3″)-Ib | aph(6)-Id | sul2 | ||||||||||||||||||||||
Czech calves with diarrhea | G12 | aph(3′)-III | tet(B) | tet(M) | blaROB-1 | ||||||||||||||||||||
G6 | aph(3′)-III | tet(B) | tet(M) | ||||||||||||||||||||||
G7 | aph(3″)-Ib | aph(3′)-III | aph(6)-Id | sul2 | tet(B) | tet(M) | tet(H) | blaCARB-16 | dfrA1 | floR | |||||||||||||||
G8 | tet(B) | tet(M) | |||||||||||||||||||||||
G9 | aph(3″)-Ib | sul2 | tet(B) | dfrA1 | catA1 | catA3 | |||||||||||||||||||
H11 | aph(3″)-Ib | aph(6)-Id | aph(3′)-Ia | sul2 | tet(B) | catA3 | |||||||||||||||||||
H12 | aph(3′)-III | tet(B) | tet(M) | ||||||||||||||||||||||
Belgian calves with bronchopneumonia [6] | GB2 | aadA1 | aadB | aphA1 | strA | strB | sul2 | tet(M) | catA1 | catA3 | floR | ermB | |||||||||||||
GB3 | aadA1 | aadB | aphA1 | strA | strB | sul1 | sul2 | tet(B) | tet(M) | tet(Y) | blaCARB-8 | blaTEM-2 | floR | ermB | |||||||||||
GB4 | aph(3′)-III | aadA1 | strA | aac(6)-aph(2) | sul2 | tet(B) | tet(M) | blaTEM-2 | dfrA1 | catA1 | ermB | ||||||||||||||
GB5 | aadA1 | aadB | aphA1 | strA | sul2 | tet(B) | tet(M) | dfrA1 | catA1 | floR | ermB | ||||||||||||||
GB6 | aadA1 | aphA1 | strA | strB | sul1 | sul2 | tet(B) | tet(M) | tet(Y) | blaCARB-8 | blaTEM-2 | dfrA1 | floR | ermB | |||||||||||
GB7 | aadA1 | aadB | aphA1 | strA | strB | sul2 | tet(B) | tet(M) | blaTEM-2 | catA1 | catA3 | ermB | |||||||||||||
GB8 | aadA23 | aadB | aphA1 | strA | sul2 | tet(B) | tet(M) | blaTEM-2 | dfrA1 | catA1 | catA3 | ermB | mphE, mrsE | ||||||||||||
GB9 | aph(3′)-III | aadA1 | strA | aac(6)-aph(2) | sul2 | tet(B) | tet(M) | blaTEM-2 | dfrA1 | catA1 | ermB | ||||||||||||||
GB10 | aadA1 | aadB | aphA1 | strA | sul2 | tet(B) | tet(M) | catA1 | floR | ermB | |||||||||||||||
GB11 | aph(3′)-III | aadA1 | strA | aac(6)-aph(2) | sul2 | tet(B) | tet(M) | blaTEM-2 | dfrA1 | catA1 | ermB |
Number of Susceptible/Number of Tested Isolates Susceptible (%) | |||||||
---|---|---|---|---|---|---|---|
Animal | Tetracycline | Penicillin G | Gentamicin | Enrofloxacin | Amoxicillin/ clavulanic acid | Co-Trimoxazole | Colistin |
Birds | 7/33 (21.2) | 28/31 (90.3) | 33/33 (100) | 17/33 (51.5) | 30/33 (90.9) | 5/9 (55.6) | 30/33 (90.9) |
Mammals (calves) | 0/10 (0) | 10/10 (100) | 10/10 (100) | 1/10 (10) | 10/10 (100) | 4/9 (44.4) | 8/9 (88.9) |
Total | 7/43 (16.3) | 38/41 (92.7) | 43/43 (100) | 18/43 (41.9) | 40/43 (93) | 9/18 (50) | 38/42 (90.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzdil, J.; Šlosárková, S.; Fleischer, P.; Zouharová, M.; Matiašovic, J. Characterization of Gallibacterium anatis Isolated from Pathological Processes in Domestic Mammals and Birds in the Czech Republic. Pathogens 2024, 13, 237. https://doi.org/10.3390/pathogens13030237
Bzdil J, Šlosárková S, Fleischer P, Zouharová M, Matiašovic J. Characterization of Gallibacterium anatis Isolated from Pathological Processes in Domestic Mammals and Birds in the Czech Republic. Pathogens. 2024; 13(3):237. https://doi.org/10.3390/pathogens13030237
Chicago/Turabian StyleBzdil, Jaroslav, Soňa Šlosárková, Petr Fleischer, Monika Zouharová, and Ján Matiašovic. 2024. "Characterization of Gallibacterium anatis Isolated from Pathological Processes in Domestic Mammals and Birds in the Czech Republic" Pathogens 13, no. 3: 237. https://doi.org/10.3390/pathogens13030237
APA StyleBzdil, J., Šlosárková, S., Fleischer, P., Zouharová, M., & Matiašovic, J. (2024). Characterization of Gallibacterium anatis Isolated from Pathological Processes in Domestic Mammals and Birds in the Czech Republic. Pathogens, 13(3), 237. https://doi.org/10.3390/pathogens13030237