The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Growth Conditions
2.2. Sporulation of C. perfringens
2.3. Caco-2 Cell Culture
2.4. Collection of Caco-2 Cell Supernatants
2.5. Interaction between C. perfringens and Caco-2 Cells or Caco-2 Cell Supernatants
2.6. Determination of C. perfringens Enterotoxin (cpe) mRNA Levels
Primer | Sequence (5′-3′) | Amplicon Size (bp) | Reference |
---|---|---|---|
cpe F | GGAGATGGTTGGATATTAGG | 233 | [21] |
cpe R | GGACCAGCAGTTGTAGATA | ||
GAPDH F | AACAAGAGAACCTTTAGGGG | 123 | [20] |
GAPDH R | GTAGCAGGTTTAAGCACAAC |
2.7. Statistical Analyses
3. Results
3.1. Growth, Sporulation, and cpe Expression of C. perfringens in Modified Duncan Strong Medium
3.2. Survival, Sporulation, and cpe Expression of the C. perfringens Enterotoxin (cpe) Gene during Contact with Caco-2 Cells
3.3. Survival, Sporulation and cpe Expression of C. perfringens in Caco-2 Cell Supernatants
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collie, R.E.; Kokai-Kun, J.F.; McClane, B.A. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 1998, 4, 69–79. [Google Scholar] [CrossRef] [PubMed]
- McClane, B.A.; Chakrabarti, G. New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe 2004, 10, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; McClane, B.A.; Chen, J.M.; McClane, B.A. Characterization of Clostridium perfringens TpeL toxin gene carriage, production, cytotoxic contributions, and trypsin sensitivity. Infect. Immun. 2015, 83, 2369–2381. [Google Scholar] [CrossRef] [PubMed]
- Dabrowski, S.; Staat, C.; Zwanziger, D.; Sauer, R.-S.S.; Bellmann, C.; Gunther, R.; Krause, E.; Haseloff, R.F.; Rittner, H.; Blasig, I.E. Redox-sensitive structure and function of the first extracellular loop of the cell-cell contact protein claudin-1: Lessons from molecular structure to animals. Antioxid. Redox Signal. 2015, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kiu, R.; Hall, L.J. An update on the human and animal enteric pathogen Clostridium perfringens. Emerg. Microb. Infect. 2018, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Uzal, F.A.; McClane, B.A. Enterotoxic Clostridia: Clostridium perfringens enteric diseases. Microbiol. Spectr. 2018, 6, GPP3-0003-2017. [Google Scholar] [CrossRef] [PubMed]
- Rajkovic, A.; Jovanovic, J.; Monteiro, S.; Decleer, M.; Andjelkovic, M.; Foubert, A.; Beloglazova, N.; Tsilla, V.; Sas, B.; Madder, A. Detection of toxins involved in foodborne diseases caused by Gram-positive bacteria. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1605–1657. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Sabja, D.; Sarker, M.R. Host serum factor triggers germination of Clostridium perfringens spores lacking the cortex hydrolysis machinery. J. Med. Microbiol. 2011, 60, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Harry, K.H.; Zhou, R.; Kroos, L.; Melville, S.B. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J. Bacteriol. 2009, 191, 2728–2742. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Melville, S.B. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J. Bacteriol. 1998, 180, 136–142. [Google Scholar] [CrossRef]
- Chakrabarti, G.; Zhou, X.; McClane, B.A. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect. Immun. 2003, 71, 4260–4270. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.P.; Li, J.; Shrestha, A.; Freedman, J.C.; Beingesser, J.; McClane, B.A.; Uzal, F.A. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect. Immun. 2014, 82, 2211–2218. [Google Scholar] [CrossRef] [PubMed]
- Low, L.-Y.; Harrison, P.F.; Gould, J.; Powell, D.R.; Choo, J.M.; Forster, S.C.; Chapman, R.; Gearing, L.J.; Cheung, J.K.; Hertzog, P.; et al. Concurrent host-pathogen transcriptional responses in a Clostridium perfringens murine myonecrosis infection. mBio 2018, 9, e00473-18. [Google Scholar] [CrossRef] [PubMed]
- Miyakawa, M.E.F.; Creydt, V.P.; Uzal, F.A.; McClane, B.A.; Ibarra, C. Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect. Immun. 2005, 73, 8407–8410. [Google Scholar] [CrossRef]
- Singh, U.; Van Itallie, C.M.; Mitic, L.L.; Anderson, J.M.; McClane, B.A. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J. Biol. Chem. 2000, 275, 18407–18417. [Google Scholar] [CrossRef]
- Yasugi, M.; Sugahara, Y.; Hoshi, H.; Kondo, K.; Talukdar, P.K.; Sarker, M.R.; Yamamoto, S.; Kamata, Y.; Miyake, M. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production. Microb. Pathog. 2015, 85, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Löffler, A.; Labbe, R.G. Intracellular proteases during sporulation and enterotoxin formation by Clostridium perfringens type A. Curr. Microbiol. 1983, 8, 187–190. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- De Jong, A.E.I.; Beumer, R.R.; Rombouts, F.M. Optimizing sporulation of Clostridium perfringens. J. Food Prot. 2002, 65, 1457–1462. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Defoirdt, T.; Rajkovic, A. The impact of indole and mucin on sporulation, biofilm formation and enterotoxin production in foodborne Clostridium perfringens. J. Appl. Microbiol. 2024, 135, lxae083. [Google Scholar] [CrossRef] [PubMed]
- Meer, R.R.; Songer, J.G. Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. Am. J. Vet. Res. 1997, 58, 702–705. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Defoirdt, T. Quorum sensing positively regulates flagellar motility in pathogenic Vibrio harveyi. Environ. Microbiol. 2015, 17, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Melville, S.B.; Labbe, R.; Sonensheinl, A.L. Expression from the Clostridium perfringens cpe promoter in C. perfringens and Bacillus subtilis. Infect. Immun. 1994, 62, 5550–5558. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, G.; Ranaldi, M.L.; Scarino, A.; Stammati, F.; Zucco, F. The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Sabja, D.; Sarker, M.R. Interactions between Clostridium perfringens spores and Raw 264.7 macrophages. Anaerobe 2012, 18, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Briolat, V.; Reysset, G. Identification of the Clostridium perfringens genes involved in the adaptive response to oxidative stress. J. Bacteriol. 2002, 184, 2333–2343. [Google Scholar] [CrossRef] [PubMed]
- Jean, D.; Briolat, V.; Reysset, G. Oxidative stress response in Clostridium perfringens. Microbiology 2004, 150, 1649–1659. [Google Scholar] [CrossRef]
- Vidal, J.E.; Ohtani, K.; Shimizu, T.; McClane, B.A. Contact with enterocyte-like Caco-2 cells induces rapid upregulation of toxin production by Clostridium perfringens type C isolates. Cell. Microbiol. 2009, 11, 1306–1328. [Google Scholar] [CrossRef]
- Kendall, M.M.; Sperandio, V. What a dinner party! Mechanisms and functions of interkingdom signaling in host-pathogen associations. mBio 2016, 7, e01748. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Quan, G.; Jiang, X.; Yang, Y.; Ding, X.; Zhang, D.; Wang, X.; Hardwidge, P.R.; Ren, W.; Zhu, G. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front. Cell. Infect. Microbiol. 2018, 8, 314. [Google Scholar] [CrossRef] [PubMed]
- Song, W.Y.; Aihara, Y.; Hashimoto, T.; Kanazawa, K.; Mizuno, M. (−)-Epigallocatechin-3-gallate induces secretion of anorexigenic gut hormones. J. Clin. Biochem. Nutr. 2015, 57, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Van Klinken, B.J.; Oussoren, E.; Weenink, J.J.; Strous, G.J.; Büller, H.A.; Dekker, J.; Einerhand, A.W. The human intestinal cell lines Caco-2 and LS174T as models to study cell-type specific mucin expression. Glycoconj. J. 1996, 13, 757–768. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Defoirdt, T.; Rajkovic, A. The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens. Pathogens 2024, 13, 433. https://doi.org/10.3390/pathogens13060433
Wang C, Defoirdt T, Rajkovic A. The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens. Pathogens. 2024; 13(6):433. https://doi.org/10.3390/pathogens13060433
Chicago/Turabian StyleWang, Chao, Tom Defoirdt, and Andreja Rajkovic. 2024. "The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens" Pathogens 13, no. 6: 433. https://doi.org/10.3390/pathogens13060433
APA StyleWang, C., Defoirdt, T., & Rajkovic, A. (2024). The Effect of Caco-2 Cells on Sporulation and Enterotoxin Expression by Foodborne Clostridium perfringens. Pathogens, 13(6), 433. https://doi.org/10.3390/pathogens13060433