Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Participants and Treatment Exposure
3.2. Overall Summary of AEs
3.3. Most Common AEs
3.4. Treatment-Related AEs
3.5. Measures of Reactogenicity
3.6. AEs of Special Interest
3.7. Serious AEs and AEs with Outcome of Death
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.B. The burgeoning burden of respiratory syncytial virus among children. Infect. Disord. Drug Targets 2012, 12, 92–97. [Google Scholar] [CrossRef]
- Hall, C.B.; Weinberg, G.A.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Schultz, A.F.; Poehling, K.A.; Szilagyi, P.G.; Griffin, M.R.; Williams, J.V.; et al. Respiratory syncytial virus-associated hospitalizations among children less than 24 months of age. Pediatrics 2013, 132, e341–e348. [Google Scholar] [CrossRef]
- Villafana, T.; Falloon, J.; Griffin, M.P.; Zhu, Q.; Esser, M.T. Passive and active immunization against respiratory syncytial virus for the young and old. Expert Rev. Vaccines 2017, 16, 737–749. [Google Scholar] [CrossRef]
- Kim, H.W.; Canchola, J.G.; Brandt, C.D.; Pyles, G.; Chanock, R.M.; Jensen, K.; Parrott, R.H. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine. Am. J. Epidemiol. 1969, 89, 422–434. [Google Scholar] [CrossRef]
- AstraZeneca, A.B. Synagis (Palivizumab) US Prescribing Information. Available online: https://synagishcp.com/synagis.pdf (accessed on 20 February 2024).
- The PREVENT Study Group. Reduction of respiratory syncytial virus hospitalization among premature infants and infants with bronchopulmonary dysplasia using respiratory syncytial virus immune globulin prophylaxis. Pediatrics 1997, 99, 93–99. [Google Scholar] [CrossRef]
- Simoes, E.A.; Sondheimer, H.M.; Top, F.H., Jr.; Meissner, H.; Welliver, R.C.; Kramer, A.A.; Groothuis, J.R. Respiratory syncytial virus immune globulin for prophylaxis against respiratory syncytial virus disease in infants and children with congenital heart disease. The Cardiac Study Group. J. Pediatr. 1998, 133, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Chaw, P.S.; Hua, L.; Cunningham, S.; Campbell, H.; Mikolajczyk, R.; Nair, H. for the RESCEU Investigators Respiratory syncytial virus-associated acute lower respiratory infections in children with bronchopulmonary dysplasia: Systematic review and meta-analysis. J. Infect. Dis. 2020, 222 (Suppl. S7), S620–S627. [Google Scholar] [CrossRef]
- Chaw, P.S.; Wong, S.W.L.; Cunningham, S.; Campbell, H.; Mikolajczyk, R.; Nair, H. Acute lower respiratory infections associated with respiratory syncytial virus in children with underlying congenital heart disease: Systematic review and meta-analysis. J. Infect. Dis. 2020, 222 (Suppl. S7), S613–S619. [Google Scholar] [CrossRef]
- Zhu, Q.; McLellan, J.S.; Kallewaard, N.L.; Ulbrandt, N.D.; Palaszynski, S.; Zhang, J.; Moldt, B.; Khan, A.; Svabek, C.; McAuliffe, J.M.; et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Sci. Transl. Med. 2017, 9, eaaj1928. [Google Scholar] [CrossRef]
- Ngwuta, J.O.; Chen, M.; Modjarrad, K.; Joyce, M.G.; Kanekiyo, M.; Kumar, A.; Yassine, H.M.; Moin, S.M.; Killikelly, A.M.; Chuang, G.-Y.; et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med. 2015, 7, 309ra162. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.P.; Khan, A.A.; Esser, M.T.; Jensen, K.; Takas, T.; Kankam, M.K.; Villafana, T.; Dubovsky, F. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 2017, 61, e01714-16. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.T.; Aveson, V.G. Neonatal Fc receptor and IgG-based therapeutics. MAbs 2011, 3, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Mankarious, S.; Lee, M.; Fischer, S.; Pyun, K.H.; Ochs, H.D.; Oxelius, V.A.; Wedgwood, R.J. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J. Lab. Clin. Med. 1988, 112, 634–640. [Google Scholar] [PubMed]
- Hammitt, L.L.; Dagan, R.; Yuan, Y.; Cots, M.B.; Bosheva, M.; Madhi, S.A.; Muller, W.J.; Zar, H.J.; Brooks, D.; Grenham, A.; et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 2022, 386, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Dall’Acqua, W.F.; Kiener, P.A.; Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 2006, 281, 23514–23524. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.P.; Yuan, Y.; Takas, T.; Domachowske, J.B.; Madhi, S.A.; Manzoni, P.; Simões, E.A.F.; Esser, M.T.; Khan, A.A.; Dubovsky, F.; et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 2020, 383, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Muller, W.J.; Madhi, S.A.; Seoane Nuñez, B.; Cots, M.B.; Bosheva, M.; Dagan, R.; Hammitt, L.L.; Llapur, C.J.; Novoa, J.M.; Llorens, X.S.; et al. Nirsevimab for prevention of RSV in term and late-preterm infants. N. Engl. J. Med. 2023, 388, 1533–1534. [Google Scholar] [CrossRef] [PubMed]
- Domachowske, J.; Madhi, S.A.; Simões, E.A.F.; Atanasova, V.; Cabañas, F.; Furuno, K.; Garcia-Garcia, M.L.; Grantina, I.; Nguyen, K.A.; Brooks, D.; et al. Safety of nirsevimab for RSV in infants with heart or lung disease or prematurity. N. Engl. J. Med. 2022, 386, 892–894. [Google Scholar] [CrossRef]
- Domachowske, J.B.; Chang, Y.; Atanasova, V.; Cabañas, F.; Furuno, K.; Nguyen, K.A.; Banu, I.; Kubiak, R.J.; Leach, A.; Mankad, V.S.; et al. Safety of re-dosing nirsevimab prior to RSV season 2 in children with heart or lung disease. J. Pediatric Infect. Dis. Soc. 2023, 12, 477–480. [Google Scholar] [CrossRef]
- Simões, E.A.F.; Madhi, S.A.; Muller, W.J.; Atanasova, V.; Bosheva, M.; Cabañas, F.; Cots, M.B.; Domachowske, J.B.; Garcia-Garcia, M.L.; Grantina, I.; et al. Efficacy of nirsevimab against respiratory syncytial virus lower respiratory tract infections in preterm and term infants, and pharmacokinetic extrapolation to infants with congenital heart disease and chronic lung disease: A pooled analysis of randomised controlled trials. Lancet Child. Adolesc. Health 2023, 7, 180–189. [Google Scholar]
- Sanofi. BeyfortusTM (Nirsevimab-Alip) FDA Prescribing Information. 18 July 2023. Available online: https://products.sanofi.us/beyfortus/beyfortus.pdf (accessed on 20 February 2024).
- Wegzyn, C.; Toh, L.K.; Notario, G.; Biguenet, S.; Unnebrink, K.; Park, C.; Makari, D.; Norton, M. Safety and effectiveness of palivizumab in children at high risk of serious disease due to respiratory syncytial virus infection: A Systematic Review. Infect. Dis. Ther. 2014, 3, 133–158. [Google Scholar] [CrossRef] [PubMed]
- The IMpact-RSV Study Group. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics 1998, 102 Pt 1, 531–537. [Google Scholar] [CrossRef]
- Feltes, T.F.; Cabalka, A.K.; Meissner, H.C.; Piazza, F.M.; Carlin, D.A.; Top, F.H., Jr.; Connor, E.M.; Sondheimer, H.M.; for the Cardiac Synagis Study Group. Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J. Pediatr. 2003, 143, 532–540. [Google Scholar] [CrossRef]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
- Carbonell-Estrany, X.; Simões, E.A.F.; Dagan, R.; Hall, C.B.; Harris, B.; Hultquist, M.; Connor, E.M.; Losonsky, G.A.; for the Motavizumab Study Group. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: A noninferiority trial. Pediatrics 2010, 125, e35–e51. [Google Scholar] [CrossRef]
- Feltes, T.F.; Sondheimer, H.M.; Tulloh, R.M.R.; Harris, B.S.; Jensen, K.M.; A Losonsky, G.A.; Griffin, M.P. on behalf of Motavizumab Cardiac Study Group. A randomized controlled trial of motavizumab versus palivizumab for the prophylaxis of serious respiratory syncytial virus disease in children with hemodynamically significant congenital heart disease. Pediatr. Res. 2011, 70, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Warkentin, T.E. Platelet factor 4 triggers thrombo-inflammation by bridging innate and adaptive immunity. Int. J. Lab. Hematol. 2023, 45 (Suppl. S2), 11–22. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, S.; Ravi, S.; Budhathoki, R.; Arjyal, L.; Hamal, S.; Bista, A.; Khadka, S.; Uprety, D. Current understanding and future implications of sepsis-induced thrombocytopenia. Eur. J. Haematol. 2021, 106, 301–305. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Morooka, M.; Suga, S.; Niinomi, Y.; Kaneko, T.; Shinoda, K.; Muraki, Y.; Takahashi, K.; Sugaya, N.; Asano, Y. Five cases of thrombocytopenia induced by primary human herpesvirus 6 infection. Acta Paediatr. Jpn. 1998, 40, 278–281. [Google Scholar] [CrossRef]
- Hervé, C.; Laupèze, B.; Del Giudice, G.; Didierlaurent, A.M.; Tavares Da Silva, F. The how’s and what’s of vaccine reactogenicity. NPJ Vaccines 2019, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. INFANRIX (Diphtheria and Tetanus Toxoids and Acellular Pertussis Vaccine Adsorbed) US Prescribing Information. Available online: https://www.fda.gov/media/75157/download (accessed on 20 February 2024).
- Wyeth Pharmaceuticals. PREVNAR 13 (Pneumococcal 13-Valent Conjugate Vaccine [Diphtheria CRM197 Protein]). Available online: https://www.fda.gov/files/vaccines%2C%20blood%20%26%20biologics/published/Package-Insert------Prevnar-13.pdf (accessed on 20 February 2024).
- Esposito, S.; Abu-Raya, B.; Bonanni, P.; Cahn-Sellem, F.; Flanagan, K.L.; Torres, F.M.; Mejias, A.; Nadel, S.; Safadi, M.A.P.; Simon, A. Coadministration of anti-viral monoclonal antibodies with routine pediatric vaccines and implications for nirsevimab use: A White Paper. Front. Immunol. 2021, 12, 708939. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.F.; Coviello, S.; Monsalvo, A.C.; Melendi, G.A.; Hernandez, J.Z.; Batalle, J.P.; Diaz, L.; Trento, A.; Chang, H.-Y.; Mitzner, W.; et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 2009, 15, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.R.; Walsh, E.E. Formalin-inactivated respiratory syncytial virus vaccine induces antibodies to the fusion glycoprotein that are deficient in fusion-inhibiting activity. J. Clin. Microbiol. 1988, 26, 1595–1597. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Teng, M.N.; Collins, P.L.; Prince, G.A.; Exner, M.; Regele, H.; Lirman, D.D.; Rabold, R.; Hoffman, S.J.; Karp, C.L.; et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 2002, 196, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, D.; Yuan, Y.; Chang, Y.; Aksyuk, A.A.; Núñez, B.S.; Wählby-Hamrén, U.; Zhang, T.; Abram, M.E.; Leach, A.; Villafana, T.; et al. Durability of neutralizing RSV antibodies following nirsevimab administration and elicitation of the natural immune response to RSV infection in infants. Nat. Med. 2023, 29, 1172–1179. [Google Scholar] [CrossRef] [PubMed]
- Dagan, R.; Hammitt, L.L.; Seoane Nuñez, B.; Cots, M.B.; Bosheva, M.; Madhi, S.A.; Muller, W.J.; Zar, H.J.; Chang, Y.; Currie, A.; et al. Infants Receiving a single dose of nirsevimab to prevent RSV do not have evidence of enhanced disease in their second RSV season. J. Pediatric Infect. Dis. Soc. 2024, 13, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Drysdale, S.B.; Cathie, K.; Flamein, F.; Knuf, M.; Collins, A.M.; Hill, H.C.; Kaiser, F.; Cohen, R.; Pinquier, D.; Felter, C.T.; et al. Nirsevimab for prevention of hospitalizations due to RSV in infants. N. Engl. J. Med. 2023, 389, 2425–2435. [Google Scholar] [CrossRef]
Healthy Term and Preterm Infants Born ≥29 wGA Entering Their First RSV Season a | Infants Eligible for Palivizumab Entering Their First RSV Season | Children with CHD/CLD Entering Their Second RSV Season b | |||||||
---|---|---|---|---|---|---|---|---|---|
Preterm Infants Born ≤35 Weeks 0 Days GA without CHD or CLD | Infants with CHD/CLD | ||||||||
Characteristic | Nirsevimab (n = 2570) | Placebo (n = 1284) | Nirsevimab (n = 406) | Palivizumab (n = 206) | Nirsevimab (n = 208) | Palivizumab (n = 98) | Nirsevimab/Nirsevimab (n = 180) | Palivizumab/Nirsevimab (n = 40) | Palivizumab/Palivizumab (n = 42) |
Median age at randomization, months | 2.3 | 2.2 | 2.9 | 2.8 | 4.8 | 4.3 | 4.8 | 4.6 | 4.0 |
Median age at start of Season 2, months | – | – | – | – | – | – | 16.7 | 16.4 | 15.8 |
Age group at randomization, months, n (%) | |||||||||
≤3.0 | 1675 (65.2) | 828 (64.5) | 214 (52.7) | 111 (53.9) | 59 (28.4) | 29 (29.6) | 49 (27.2) | 10 (25.0) | 14 (33.3) |
>3.0 to ≤6 | 716 (27.9) | 362 (28.2) | 125 (30.8) | 59 (28.6) | 84 (40.4) | 42 (42.9) | 76 (42.2) | 19 (47.5) | 19 (45.2) |
>6.0 | 179 (7.0) | 94 (7.3) | 67 (16.5) | 36 (17.5) | 65 (31.3) | 27 (27.6) | 55 (30.6) | 11 (27.5) | 9 (21.4) |
Neonates | 564 (21.9) | 291 (22.7) | 40 (9.9) | 22 (10.7) | 6 (2.9) | 7 (7.1) | – | – | – |
Female sex, n (%) | 1208 (47.0) | 637 (49.6) | 201 (49.5) | 92 (44.7) | 95 (45.7) | 39 (39.8) | 81 (45.0) | 15 (37.5) | 15 (35.7) |
Race, c n (%) | |||||||||
American Indian or Alaska Native | 92 (3.6) | 52 (4.0) | 11 (2.7) | 5 (2.4) | 0 | 0 | 0 | 0 | 0 |
Asian | 111 (4.3) | 56 (4.4) | 26 (6.4) | 9 (4.4) | 10 (4.8) | 5 (5.1) | 10 (5.6) | 3 (7.5) | 2 (4.8) |
Black or African American | 416 (16.2) | 178 (13.9) | 49 (12.1) | 24 (11.7) | 10 (4.8) | 5 (5.1) | 9 (5.0) | 2 (5.0) | 1 (2.4) |
Native Hawaiian/other Pacific Islander | 21 (0.8) | 11 (0.9) | 3 (0.7) | 1 (0.5) | 1 (0.5) | 0 | 1 (0.6) | 0 | 0 |
White | 1441 (56.2) | 740 (57.6) | 304 (74.9) | 158 (77.1) | 177 (85.1) | 86 (87.8) | 152 (84.4) | 35 (87.5) | 38 (90.5) |
Other | 460 (17.9) | 236 (18.4) | 10 (2.5) | 6 (2.9) | 7 (3.4) | 0 | 5 (2.8) | 0 | 0 |
Multiple categories | 25 (1.0) | 11 (0.9) | 3 (0.7) | 2 (1.0) | 3 (1.4) | 2 (2.0) | 3 (1.7) | 0 | 1 (2.4) |
Ethnicity, n (%) | |||||||||
Hispanic or Latino | 793 (30.9) | 375 (29.3) | 77 (19.0) | 35 (17.1) | 22 (10.6) | 6 (6.1) | 19 (10.6) | 2 (5.0) | 2 (4.8) |
Northern Hemisphere, n (%) | 1883 (73.3) | 922 (71.8) | 362 (88.9) | 185 (88.9) | 207 (99.0) | 98 (97.0) | 178 (98.9) | 39 (97.5) | 41 (97.6) |
Gestational age group, n (%) | |||||||||
<29 weeks d | – | – | 48 (11.8) | 28 (13.6) | 80 (38.5) | 40 (40.8) | 71 (39.4) | 16 (40.0) | 16 (38.1) |
≥29 to ≤32 weeks | 219 (8.5) | 115 (9.0) | 91 (22.4) | 59 (28.6) | 37 (17.8) | 12 (12.2) | 33 (18.3) | 2 (5.0) | 8 (19.2) |
>32 to <35 weeks | 346 (13.5) | 173 (13.5) | 235 (57.9) | 112 (54.4) | 27 (13.0) | 12 (12.2) | 25 (13.9) | 4 (10.0) | 7 (16.7) |
≥35 to <37 weeks | 246 (9.6) | 121 (9.4) | 31 e (7.6) | 7 e (3.4) | 14 (6.7) | 9 (9.2) | 13 (7.2) | 4 (10.0) | 3 (7.1) |
≥37 weeks | 1759 (68.4) | 875 (68.1) | 1 f (0.2) | 0 | 50 (24.0) | 25 (25.5) | 38 (21.1) | 14 (35.0) | 8 (19.0) |
Weight on Day 1, kg, median | 5.1 | 5.0 | 4.3 | 4.2 | 5.0 | 4.8 | 9.7 | 9.8 | 9.9 |
Weight group on Day 1, n (%) | |||||||||
<2.5 kg g | 216 (8.4) | 102 (7.9) | 46 (11.4) | 28 (13.6) | 13 (6.3) | 2 (2.0) | – | – | – |
<5 kg g | 1371 (53.3) | 676 (52.6) | 243 (60.0) | 123 (59.7) | 101 (48.6) | 51 (52.0) | – | – | – |
≥5 kg h | 1199 (46.7) | 608 (47.4) | 162 (40.0) | 83 (40.3) | 107 (51.4) | 47 (48.0) | – | – | – |
<7 kg g | – | – | – | – | – | – | 4 (2.2) | 1 (2.5) | 1 (2.4) |
≥7 kg h | – | – | – | – | – | – | 176 (97.8) | 39 (97.5) | 41 (97.6) |
<10 kg g | – | – | – | – | – | – | 99 (55.0) | 25 (62.5) | 23 (54.8) |
≥10 kg h | – | – | – | – | – | – | 81 (45.0) | 15 (3.5) | 19 (45.2) |
Healthy Term and Preterm Infants Born ≥29 wGA a | Infants Eligible for Palivizumab Entering Their First RSV Season | Children with CHD/CLD Entering Their Second RSV Season b | |||||||
---|---|---|---|---|---|---|---|---|---|
Preterm Infants Born ≤35 Weeks 0 Days GA without CHD or CLD | Infants with CHD/CLD | ||||||||
Preferred Term, n (%) | Nirsevimab (n = 2570) | Placebo (n = 1284) | Nirsevimab (n = 406) | Palivizumab (n = 206) | Nirsevimab (n = 208) | Palivizumab (n = 98) | Nirsevimab/ Nirsevimab (n = 180) | Palivizumab/ Nirsevimab (n = 40) | Palivizumab/ Palivizumab (n = 42) |
Upper respiratory tract infection | 869 (33.8) | 417 (32.5) | 110 (27.1) | 56 (27.2) | 39 (18.8) | 23 (23.5) | 48 (26.7) | 8 (20.0) | 9 (21.4) |
Nasopharyngitis | 523 (20.4) | 292 (22.7) | 36 (8.9) | 20 (9.7) | 21 (10.1) | 19 (19.4) | 26 (14.4) | 7 (17.5) | 9 (21.4) |
Pyrexia | 348 (13.5) | 152 (11.8) | 54 (13.3) | 33 (16.0) | 29 (13.9) | 10 (10.2) | 23 (12.8) | 9 (22.5) | 6 (14.3) |
Gastroenteritis | 284 (11.1) | 128 (10.0) | 17 (4.2) | 14 (6.8) | 8 (3.8) | 2 (2.0) | 14 (7.8) | 2 (5.0) | 3 (7.1) |
Dermatitis diaper | 271 (10.5) | 126 (9.8) | 17 (4.2) | 3 (1.5) | 11 (5.3) | 3 (3.1) | 8 (4.4) | 0 | 1 (2.4) |
Rhinitis | 252 (9.8) | 126 (9.8) | 48 (11.8) | 27 (13.1) | 27 (13.0) | 13 (13.3) | 29 (16.1) | 6 (15.0) | 6 (14.3) |
Constipation | 112 (4.4) | 55 (4.3) | 16 (3.9) | 10 (4.9) | 21 (10.1) | 10 (10.2) | 5 (2.8) | 2 (5.0) | 2 (4.8) |
Healthy Term and Preterm Infants Born ≥29 wGA a | Infants Eligible for Palivizumab Entering Their First RSV Season | Children with CHD/CLD Entering Their Second RSV Season b | |||||||
---|---|---|---|---|---|---|---|---|---|
Preterm Infants Born ≤35 Weeks 0 Days GA without CHD or CLD | Infants with CHD/CLD | ||||||||
Preferred Term, n (%) | Nirsevimab (n = 2570) | Placebo (n = 1284) | Nirsevimab (n = 406) | Palivizumab (n = 206) | Nirsevimab (n = 208) | Palivizumab (n = 98) | Nirsevimab/ Nirsevimab (n = 180) | Palivizumab/ Nirsevimab (n = 40) | Palivizumab/ Palivizumab (n = 42) |
Bronchiolitis | 37 (1.4) | 33 (2.6) | 4 (1.0) | 0 | 7 (3.4) | 4 (4.1) | 1 (0.6) | 0 | 0 |
Pneumonia | 21 (0.8) | 12 (0.9) | 2 (0.5) | 0 | 3 (1.4) | 1 (1.0) | 2 (1.1) | 2 (5.0) | 0 |
Gastroenteritis | 19 (0.7) | 7 (0.5) | 0 | 1 (0.5) | 6 (2.9) | 0 | 3 (1.7) | 1 (2.5) | 1 (2.4) |
LRTI | 16 (0.6) | 10 (0.8) | 0 | 0 | 1 (0.5) | 2 (2.0) | 2 (1.1) | 0 | 0 |
Bronchitis | 13 (0.5) | 13 (1.0) | 3 (0.7) | 1 (0.5) | 2 (1.0) | 1 (1.0) | 0 | 0 | 0 |
Urinary tract infection | 7 (0.3) | 8 (0.6) | 1 (0.2) | 0 | 1 (0.5) | 1 (1.0) | 0 | 0 | 0 |
RSV bronchiolitis | 6 (0.2) | 12 (0.9) | 0 | 1 (0.5) | 4 (1.9) | 1 (1.0) | 0 | 0 | 0 |
Upper respiratory tract infection | 6 (0.2) | 5 (0.4) | 0 | 2 (1.0) | 1 (0.5) | 1 (1.0) | 1 (0.6) | 0 | 0 |
Viral upper respiratory tract infection | 5 (0.2) | 0 | 0 | 0 | 3 (1.4) | 1 (1.0) | 1 (0.6) | 0 | 0 |
COVID-19 | 3 (0.1) | 2 (0.2) | 3 (0.7) | 1 (0.5) | 0 | 0 | 2 (1.1) | 0 | 0 |
Inguinal hernia | 1 (<0.1) | 6 (0.5) | 1 (0.2) | 1 (0.5) | 0 | 0 | 0 | 0 | 0 |
Cardiac failure | 1 (<0.1) | 0 | 0 | 0 | 1 (0.5) | 2 (2.0) | 0 | 0 | 0 |
Failure to thrive | 1 (<0.1) | 0 | 0 | 0 | 2 (1.0) | 0 | 1 (0.6) | 0 | 0 |
Bradycardia | 0 | 0 | 1 (0.2) | 2 (1.0) | 0 | 0 | 0 | 0 | 0 |
Feeding intolerance | 0 | 0 | 0 | 0 | 2 (1.0) | 0 | 0 | 0 | 0 |
Pleural effusion | 0 | 0 | 0 | 0 | 0 | 0 | 2 (1.1) | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mankad, V.S.; Leach, A.; Chang, Y.; Wählby Hamrén, U.; Kiazand, A.; Kubiak, R.J.; Takas, T.; Villafana, T.; Shroff, M. Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials. Pathogens 2024, 13, 503. https://doi.org/10.3390/pathogens13060503
Mankad VS, Leach A, Chang Y, Wählby Hamrén U, Kiazand A, Kubiak RJ, Takas T, Villafana T, Shroff M. Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials. Pathogens. 2024; 13(6):503. https://doi.org/10.3390/pathogens13060503
Chicago/Turabian StyleMankad, Vaishali S., Amanda Leach, Yue Chang, Ulrika Wählby Hamrén, Alexandre Kiazand, Robert J. Kubiak, Therese Takas, Tonya Villafana, and Manish Shroff. 2024. "Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials" Pathogens 13, no. 6: 503. https://doi.org/10.3390/pathogens13060503
APA StyleMankad, V. S., Leach, A., Chang, Y., Wählby Hamrén, U., Kiazand, A., Kubiak, R. J., Takas, T., Villafana, T., & Shroff, M. (2024). Comprehensive Summary of Safety Data on Nirsevimab in Infants and Children from All Pivotal Randomized Clinical Trials. Pathogens, 13(6), 503. https://doi.org/10.3390/pathogens13060503